ERROR ANALYSIS OF A SPACE-TIME FINITE ELEMENT
METHOD FOR SOLVING PDES ON EVOLVING SURFACES *

MAXIM A. OLSHANSKIIT AND ARNOLD REUSKEN#

Abstract. In this paper we present an error analysis of an Eulerian finite element method
for solving parabolic partial differential equations posed on evolving hypersurfaces in R%, d = 2, 3.
The method employs discontinuous piecewise linear in time — continuous piecewise linear in space
finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and
test surface finite element spaces consist of traces of standard volumetric elements on a space-time
manifold resulting from the evolution of a surface. We prove first order convergence in space and
time of the method in an energy norm and second order convergence in a weaker norm. Furthermore,
we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in
a duality argument used in the proof of the second order convergence estimate.

1. Introduction. Partial differential equations posed on evolving surfaces ap-
pear in a number of applications. Well-known examples are the diffusion and transport
of surfactants along interfaces in multiphase fluids [17, 27], diffusion-induced grain
boundary motion [3, 22] and lipid interactions in moving cell membranes [10, 23].
Recently, several numerical approaches for handling such type of problems have been
introduced, cf. [7]. In [5, 8] Dziuk and Elliott developed and analyzed a finite ele-
ment method for computing transport and diffusion on a surface which is based on
a Lagrangian tracking of the surface evolution. If a surface undergoes strong defor-
mation, topological changes, or is defined implicitly, e.g., as the zero level of a level
set function, then numerical methods based on a Lagrangian approach have certain
disadvantages. Methods using an Eulerian approach were developed in e.g. [6, 28],
based on an extension of the surface PDE into a bulk domain that contains the sur-
face. An error analysis of this class of Eulerian methods for PDEs on an evolving
surface is not known.

In the present paper, we analyze an Eulerian finite element method for parabolic
type equations posed on evolving surfaces introduced in [15, 26]. This method does
not use an extension of the PDE off the surface into the bulk domain. Instead,
it uses restrictions of (usual) volumetric finite element functions to the surface, as
first suggested in [25, 24] for stationary surfaces. The method that we study uses
continuous piecewise linear in space — discontinuous piecewise linear in time volumetric
finite element spaces. This allows a natural time-marching procedure, in which the
numerical approximation is computed on one time slab after another. Moreover,
spatial meshes may vary per time slab. Therefore, in our surface finite element method
one can use adaptive mesh refinement in space and time as explained in [11] for the
heat equation in Euclidean space. Numerical experiments in [15, 26] have shown the
efficiency of the approach and demonstrated second order accuracy of the method in
space and time for problems with smoothly evolving surfaces. In [16] a numerical
example with two colliding spheres is considered, which illustrates the robustness of
the method with respect to topological changes. We consider this method to be a
natural and effective extension of the approach from [25, 24] for stationary surfaces
to the case of evolving surfaces. Until now, no error analysis of this (or any other)
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Euclidean finite element method for PDEs on evolving surfaces is known. In this
paper we present such an error analysis.

The paper is organized as follows. In section 2, we formulate the PDE that we
consider on an evolving hypersurface in R?, recall a weak formulation and a corre-
sponding well-posedness result. A finite element method is explained in section 3.
The error analysis starts with a discrete stability result that is derived in section 4.
In section 5, a continuity estimate for the bilinear form is proved. An error bound in
a suitable energy norm is derived in section 6. The analysis has the same structure
as in the standard Cea lemma: a Galerkin orthogonality is combined with continuity
and discrete stability properties and with an interpolation error bound. The error
bound in the energy norm guarantees first order convergence if spatial and time mesh
sizes are of the same order. In section 7, we derive a second order error bound in a
weaker norm. For this we use a duality argument and need a higher order regularity
estimate for the solution of a parabolic problem on a smoothly evolved surface. Such a
regularity estimate is proved in section A. Concluding remarks are given in section 8.

2. Problem formulation. Consider a surface I'(t) passively advected by a
smooth velocity field w = w(z,t), i.e. the normal velocity of I'(¢) is given by w - n,
with n the unit normal on I'(t). We assume that for all ¢ € [0,7T], I'(t) is a smooth
hypersurface that is closed (0T = @), connected, oriented, and contained in a fixed
domain © C R?, d = 2,3. In the remainder we consider d = 3, but all results have
analogs for the case d = 2. The conservation of a scalar quantity u with a diffusive
flux on T'(¢) leads to the surface PDE (cf. [21]):

@+ (divpw)u — vgAru =0 on I'(t), te (0,17, (2.1)

with initial condition u(z,0) = ug(z) for x € Ty := T'(0). Here & = %—&-W-Vu denotes
the advective material derivative, divp := tr ((/ — nn”)V) is the surface divergence
and Ar is the Laplace-Beltrami operator, v4 > 0 is the constant diffusion coefficient.

In the analysis of partial differential equations it is convenient to reformulate
(2.1) as a problem with homogeneous initial conditions and a non-zero right-hand
side. To this end, consider the decomposition of the solution u = @ + u°, where
ul(-,t) : T(t) — R, with t € [0,7T], is chosen sufficiently smooth and such that
u®(x,0) = up(x) on Iy, and %fr(t) u®ds = 0. Since the solution of (2.1) has the
mass conservation property % fr( t uds = 0, the new unknown function u satisfies
4(-,0) = 0 on 'y and has the zero mean property:

/ uds =0 foralltel0T]. (2.2)
T()

For this transformed function the surface diffusion equation takes the form

U+ (divpw)d —vgAri= f  on I(t), te (0,7,

’ (2.3)
u(-,0)=0 on Ty.
The source term is now f := Sy - (divpw)u® + v4Aru. Using the Leibniz formula
. . d
O+ vdivpwds = — vds, (2.4)
r () dt Jr

and the partial integration over I'(¢), one immediately finds fF(t) fds = 0 for all
t € [0,T]. In the remainder we consider the transformed problem (2.3) and write u
2



instead of @. In the stability analysis in section 4 we will use the zero mean property
of f and the corresponding zero mean property (2.2) of w.

2.1. Weak formulation. For the finite element method that we consider a
suitable weak formulation of (2.3) is needed. While several weak formulations of
(2.3) are known in the literature, see [5, 17], the most appropriate for our purposes is
the integral space-time formulation of (2.3) proposed in [26]. In this section we recall
this formulation. Consider the space-time manifold

S= |J reyx{t), Scr.

te(0,T)

Due to the identity
T 1
/ F(s,8) ds dt = / F(8)( + (w-n)2)~} ds, (2.5)
0o Jre S

the scalar product (v,w)y = fOT fF(t) vw ds dt induces a norm that is equivalent to

the standard norm on L?(S). For our purposes, it is more convenient to consider the
(-,)o inner product on L?(S). Let Vr denote the tangential gradient for I'(t) and
introduce the Hilbert space

H={veL*S)|||Vrv|rzs) <o}, (u,0)mg = (u,v)o+ (Vru,Vrv)o. (2.6)

We consider the material derivative @ of w € H as a distribution on S. In [26] it is
shown that C§(8) is dense in H. If i can be extended to a bounded linear functional
on H, we write & € H' and (4,v) = @(v) for v € H. Define the space

W={uecH]|ueHY}, with [[ullfy = [ulZ + [l

In [26] properties of H and W are analyzed. Both spaces are Hilbert spaces and
smooth functions are dense in H and W. We shall recall other useful results for
elements of H and W at those places in this paper, where we need them. Define

Wi={veW |v(,0)=0 onTly}

This space is well-defined, since functions from W have well-defined traces in L(I'(t))
for any ¢ € [0,T]. We introduce the symmetric bilinear form

a(u,v) = vg(Vru, Vro)o + (divew u, v)g, u,v € H,

which is continuous: a(u,v) < (va + aoo)l|ullm||v]|m, With as := [|divrw|| L (s). The

weak space-time formulation of (2.3) reads: Find u € W such that
(i, v) + a(u,v) = (f,v)o forall ve H. (2.7)

2.2. Well-posedness result and stability estimate. Well-posedness of (2.7)
follows from the following lemma derived in [26].
LEMMA 2.1. The following properties of the bilinear form (i, v) + a(u,v) hold.
a) Continuity: | (1, v) + a(u,v)| < (1+vg+ aco)|ullwllvllg  for all we W, ve H.
b) Inf-sup stability:

(&, v) + afu, v) > ce > 0. (2.8)

inf sup
O;éuei/cl)/ 0#veH HUHWHUHH



¢) The kernel of the adjoint mapping is trivial: If (4, v) +a(u,v) = 0 holds for some
veH andallueﬁ/, then v = 0.

As a consequence of Lemma 2.1 one obtains:
THEOREM 2.2. For any f € L*(S), the problem (2.7) has a unique solution

u € W. This solution satisfies the a-priori estimate

lullw < e [1flo- (2.9)

Related to these stability results for the continuous problem we make some remarks
that are relevant for the stability analysis of the discrete problem in section 4.

REMARK 2.1. Lemma 2.1 and Theorem 2.2 have been proved for a slightly more
general surface PDE than the surface diffusion problem (2.3), namely

t+au—vgAru=f on I'(t), t€(0,7], and uw=0 on Iy,

with @ € L*°(S) and a right-hand side f € H’, not necessarily satisfying the zero
integral condition. The constant ¢, in the stability condition (2.8) can be taken as

Vd

V2

This stability constant deteriorates if vy | 0 or T'— oo.

. 1
Cs (14 vg+an) 2e 2TWatd)  a = ||o¢—§dinWHLw($), with oo := ||| Lo (s)-

REMARK 2.2. A stability result similar to (2.9), in a somewhat weaker norm
(without the ||@|| g/ term), can be derived using Gronwall’s lemma, cf. [5]. In (2.7) we
then take v = w[g 4, with ¢ € (0, T, and using the Leibniz formula we get

1 t t 1 t
- / u? ds+uy / / (Vpu)2 dsdt = / / fudsdr—= / / divpw u? dsdr.
2 Jre 0 Jr(r) 0 Jr(r) 2 Jo Jre)

Using standard estimates we obtain for h(t) := 3 fF(t) u?ds+ vy fot fF(T)(Vpu)2 dsdr:

1 t
h(t) < <|IfI12 4+ (1 + ||diV1"W||Loo($))/ h(r)dr for all t e [0,T], (2.10)
0

and using Gronwall’s lemma this yields a stability estimate.

REMARK 2.3. In general, for the problem (2.7) a deterioration of the stability
constant for T — oo, cf. Remark 2.1, can not be avoided. This is seen from the
example of a contracting sphere with a uniform initial concentration ug. The solution
then is of the form u(z,t) = uge, with A > 0 depending on the rate of contraction.
This possible exponential growth is related to the fact that if we represent (2.7) as

W+ Au=f, A:H — H' givenby (Au,v)= (divpwu,v)o+ va(Vru, Vrv)o,

the symmetric operator A is not necessarily positive semi-definite. The possible lack of
positive semi-definiteness is caused by divprw, which can be interpreted as local area
change: From the Leibniz formula we obtain fv(t) divpw(s, t) ds = % (1) lds =
4 |y(t)|, with y(t) a (small) connected subset of the surface I'(t). If the surface is not
compressed anywhere (i.e., the local area is constant or increasing) then divpw > 0
holds and A is positive semi-definite. In general, however, one has expansion and
compression in different parts of the surface. In the stability analysis of the discrete

4



problem in section 4 we restrict to the case that A is positive definite, cf. the comments
in Remark 4.1. The problem then has a nicer mathematical structure. In particular
the solution does not have exponentially growing components. The restriction to pos-
itive definite A still allows interesting cases with small local area changes (of arbitrary
sign) and (very) strong convection of I'(t). Even for very simple convection fields, A

can not be positive definite on the space I/(I)/, the trial space used in (2.7). This is due
to the fact that for u(x,t) = u(¢), i.e. w is constant in x, we have Vru = 0. We deal
with this problem by restricting to a suitable subspace, as explained below.

We outline a stability result from [26] for the case if A is positive definite on a
subspace. Functions u € H obey the Friedrichs inequality

1
/ Vrul? ds > cF(t)/ (- —a)2ds forallt € [0,T], (2.11)
r(t) T (1) T()

with cp(t) > 0 and u(t) := fF(t) u(s,t)ds. A smooth solution to problem (2.3)
satisfies the zero average condition (2.2) and so we may look for a weak solution from

the following subspace of W
Wi={ueW|at)=0 foral tel[0,T]}. (2.12)

Obviously, elements of w satisfy the Friedrichs inequality with @ = 0. Exploiting
this, one obtains the following result.
PROPOSITION 2.3. Assume f satisfies fF(t)fds = 0 for almost all t € [0,T].

Then the solution u € W of (2.7) belongs to w. Additionally assume that there exists
a cg > 0 such that

divpw(x,t) + vgcp(t) > ¢o  for all z €T'(t), t €[0,T] (2.13)

holds. Then the inf-sup property (2.8) holds, with W replaced by the subspace W and
min{vg,co}

Cs = oVa(14vatam)?’

where oo = ||divew| o< (s)-

If the condition in (2.13) is satisfied then A is positive definite on the subspace
W. Due to the positive-definitness the stability constant ¢, is independent of 7.

3. Finite element method. Consider a partitioning of the time interval: 0 =
thy < t1 < ... <ty =T, with a uniform time step At = T/N. The assumption
of a uniform time step is made to simplify the presentation, but is not essential. A
time interval is denoted by I, := (¢tn—1,t,]. The symbol 8™ denotes the space-time
interface corresponding to I, i.e., 8™ := Uper, I'(t) x {t}, and S := U1<p<nS™. We
introduce the following subspaces H, :== {v € H|v =0 on S\S8"} of H, and
define the spaces

Wo={veH,|veH,} vy, = v+ ol

An element (vy,...,vx) € ®N_| W, is identified with v € H, by vsn = vy Our finite
element method is conforming with respect to the broken trial space

N N
W im @ W, with norm (il = 3 ol = 0l + 3 ol
n=1 n=1
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For u € W, the one-sided limits u} = u4(-,t,) and u” = u_(-,t,) are well-defined
in L2(T(tn)) (cf. [26]). At ¢y and ty only uf and u” are defined. For v € Wb, a
jump operator is defined by [v]" = v} —v" € L*(I'(t,)),n=1,...,N—1. For n =0,
we define [v]? = 0.

On the cross sections I'(t,), 0 < n < N, of S the L? scalar product is denoted by
(W, ), = fF(tn) Y ds. In addition to a(-,-), we define on the broken space W the

following bilinear forms:

N N
d(u,v) = S d"(ww),  du,v) = (W0 ey, (o), = 3 (o)

n=1

It is easy to check, see [26], that the solution to (2.7) also solves the following
variational problem in the broken space: Find u € W? such that

(i, v), + a(u,v) + d(u,v) = (f,v)o for all v e WP (3.1)

This variational formulation uses W? C H as test space, since the term d(u,v) is not
well-defined for an arbitrary v € H. The initial condition u(-,0) = 0 is not an essential
condition in the space W, but is treated in a weak sense. From an algorithmic point
of view, this formulation has the advantage that due to the use of the broken space
Wb = @N_, W, it can be solved in a time stepping manner. The discretization that
we introduce below is a Galerkin method for the weak formulation (3.1), with a finite
element space W, c Wb.

To define this W}, consider the partitioning of the space-time volume domain
Q = Q x (0,7] C R**! into time slabs @, := Q x I,,. For each time interval I,, :=
(tn—1,tn] we assume a given shape regular tetrahedral triangulation 7, of the spatial
domain 2. The corresponding spatial mesh size parameter is denoted by h. Then
Or= U TnxI,isasubdivision of @) into space-time prismatic nonintersecting

n=1,...,N

elements. We shall call Qj, a space-time triangulation of (). This triangulation is
not fitted to the surface S. We allow 7, to vary with n (in practice, during time
integration one may adapt the space triangulation depending on the changing local
geometric properties of T'(¢)) and so the elements of Qj, may not match at t = ¢,,.

The local space-time triangulation Q;f consists of space-time prisms that are in-
tersected by S, i.e., Qp = {T x I, € Q | measz((T' x I,) NS > 0}, cf. Fig. 3.1. If
(T x I,) NS consists of a face F' of the prism T x I,,, we include in QF only one of
the two prisms that have this F' as their intersection. The (local) domain formed by
all prisms in Qy is denoted by Q°.

For any n € {1,..., N}, let V, be the finite element space of continuous piecewise
affine functions on 7,. We define the (local) volume space-time finite element space:

Vh = {U : QS —+R | U($,t> = ¢0(.’E) + t¢1(-’1§) on every Qn N Q87 with ¢07 ¢1 S Vn }

Thus, V}, is a space of piecewise bilinear functions with respect to Q‘s, continuous in
space and discontinuous in time. Now we define our surface finite element space as
the space of traces of functions from V}, on S:

Whp={w:S—=R|lw=vys, veV,}. (3.2)
The finite element method reads: Find w;, € W}, such that

(Un,vn)y + alun, vp) + d(un, vn) = (f,on)o  for all v, € Wi, (3.3)
6



f/n—l

Fic. 3.1. Illustration of the local space-time triangulation Q‘g in one time slab. In the left
picture we have a constant w, hence (2.13) is satisfied.

As usual in time-DG methods, the initial condition for up(-,0) is treated in a weak
sense. Due to u € HY(Q,,) for n =1,..., N, the first term in (3.3) can be written as

N ot
<iLh, vh>b = Z/ / (% +w- VU}L)’UhdS dt. (34)
iy Jrwy O

In the (very unlikely) case that T'(¢) is a face of two tetrahedra 73,75 and both T x I,
and Ty x I, are contained in Qf, we use a simple averaging in the evaluation of w-Vu,
in (3.4). Recall that the solution of the continuous problem (2.3) satisfies the zero
mean condition (2.2), which corresponds to the mass conservation law valid for the
original problem (2.1). We investigate whether the condition (2.2) is preserved for
the finite element formulation (3.3).

Assume that wy is a solution of (3.3). Denote up(t) = fF(t) upds. We have
fF(t) fds=0forallt > 0. In (3.3), set v, = 1 for t < ¢, and v, = 0 for t > t,.
This implies @y, —(t,) = fr(tn) uds = 0 for n = 0,1,.... Setting vj, =t —t,,_1
for t,_1 <t < t, and v, = 0 otherwise, we additionally get ftt;:l up(t)dt = 0.
Summarizing, we obtain the following:

tn
Up,—(tn) =0 and / ap(t)dt =0, n=1,2.... (3.5)

tn—1

For a stationary surface, @ (t) is a piecewise affine function and thus (3.5) implies
up(t) = 0, i.e., we have exact mass conservation on the discrete level. If the surface
evolves, the finite element method is not necessarily mass conserving: (3.5) holds,
but @ (t) # 0 may occur for t,—1 <t < t,. To enforce a better mass conservation
and enhance stability of the finite element method, cf. Remark 4.1, we introduce a
consistent stabilizing term to the discrete bilinear form. More precisely, define

T
ay(u,v) := a(u,v) + 0'/0 a(t)o(t)dt, o>0. (3.6)

Instead of (3.3) we consider the stabilized version: Find u;, € W}, such that
(Un,vn)y + ao(un,vn) + d(un,ve) = (f,vn)o  for all v, € Wy, (3.7)

As mentioned above, taking o > 0 we expect both a stabilizing effect and an improved
mass conservation property. Adding this stabilization term does not lead to significant
additional computational costs for computing the stiffness matrix, cf. section 3.1.
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For the solution v € W of (3.1), the stabilization term vanishes: @(t) = 0.
Therefore the error e = u—uy, of the finite element method (3.7) satisfies the Galerkin
orthogonality relation:

(€, vn), + ag(e,vn) +d(e,vp) =0 for all v, € Wi, (3.8)

3.1. Implementation aspects. We comment on a few implementation aspects.
More details are found in the recent article [15].

By choosing the test functions vy, in (3.7) per time slab, one obtains an implicit
time stepping algorithm. Two main implementation issues are the approximation of
the space-time integrals in the bilinear form (i, vp), + @o(un,vn) and the represen-
tation of the finite element trace functions in Wj. To approximate the integrals, one
makes use of the formula (2.5) converting space-time integrals to surface integrals
over S, and next one approximates S by a ‘discrete’ surface S"; this is done locally,
i.e. time slab per time slab. The surface S can be the zero level of ¢, € W, where
¢ is a bilinear finite element approximation of a level set function ¢(z,t), the zero
level of which is the surface S. To reduce the “geometric error”, it may be efficient
to find ¢, € W; in a finite element space with mesh size h < h, At < At, e.g.,
h = ih, At = 1At (one refinement of the given outer space-time mesh). Within each
space-time prism the zero level of ¢, € W} can be represented as a union of tetra-
hedra, cf. [15], and standard quadrature formulas can be used. Results of numerical
experiments, with such treatment of integrals over S, are reported in [15, 16, 26].

For the representation of the finite element functions in W, it is natural to use
traces of the standard nodal basis functions in the volume space-time finite element
space V3. In general, these trace functions form (ounly) a frame in Wj. A finite
element surface solution is represented as a linear combination of the elements from
this frame. Linear systems resulting in every time step may have more than one
solution, but every solution yields the same trace function, which is the unique solution
of (3.7). If At ~ h and ||w||z~(s) = O(1), then the number of tetrahedra 7" € 7,
that are intersected by I'(t), t € I,,, is of the order O(h~?2). Hence, per time step the
linear systems have O(h~2) unknowns, which is the same complexity as a discretized
spatially two-dimensional elliptic problem. Note that although we derived the method
in R3**!, due to the time stepping and the trace operation, the discrete problems
have two-dimensional complexity. Since the discrete problems have a complexity of
(only) O(h™?) it may be efficient to use a sparse direct solver for computing the
discrete solution. Linear algebra aspects of the surface finite element method have
been addressed in [24] and will be further investigated in future work.

The stabilization term in (3.6) does not cause significant additional computational
work. In one time slab it has the form ‘[tin—l a(t)v(t)dt. Let ¢;, 1 < i < M, denote
the nodal basis functions in the outer space V},, then the M x M- matrix representing
this bilinear form has entries ftt:fl fF(t) ¢jds fF(t) ¢;dsdt. If quadrature for fti"il,
with nodes &1,...,&k € [tn—1,tn], is applied this results in a stabilization matrix of
the form S = Zle a2zl with o € R, 2, € RM. The vector z, has entries
(zr); = fF(gr) 0i(s,&) ds. We need only a few quadrature points, e.g. k = 2, hence
S is a sum of only a few rank one matrices. The stabilization matrix is symmetric
positive semi-definite and often improves the conditioning of the stiffness matrix.

4. Stability of the finite element method. We present a stability analysis of
the discrete problem (3.7) for the positive definite case, cf. Remark 2.3. In Remark 4.1
below we explain why we restrict ourselves to the positive definite case and comment
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on the role of the stabilization. We introduce the following mesh-dependent norm:

N 3
bl :=< max [ [+ D )7, 1+|u||H> .

n=1

THEOREM 4.1. Assume (2.13) and take o > %} max \le(t)l where cp(t) is defined
t€[0,7)

n (2.11). Then the inf-sup estimate

inf  sup (4, v), + ao(u,v) + d(u,v)

> ¢4 (4.1)
uEW? pepys ol llulln )

and the ellipticity estimate

n=1

N
(i, u)y + ao (u, u) + d(u, u) > 2¢ (IuNI% + 3 "M, + IIUII?{> (4.2)

for all w € W hold, with ¢, = +min{1,v4,co} and ¢y from (2.13). The results in
(4.1), (4.2) also hold with W* replaced by Wi,

Proof. Take u € Wb u # 0, and let M € {1,...,N}. Set & = u for t € (0,¢p/]
and @ =0 for ¢t € (tpr,T). Applying partial integration on every time interval we get

M

n n— 1 fua .
S (I, = o) =5 v .

n=1

N =

<it, ﬂ’>b =

It is also straightforward to derive

1 1 1<
du, @) = =35 3 (2, = i, ) + 5 e, + 5 D0 N2, -
n=1 n=1

The Friedrichs inequality (2.11) yields

ul?ds > ¢ u? sfizf .

Using this, we get

tv
ao(u, @) = / Vd||Vpu||%z(F(t)) + (divpw, u?) 2 r@ry) + ou(t)® dt
0

_ vacr(t)
2 [I(t)|

tar
. _ 1%
> / §(l/dCF + 2divrw, UQ)LQ(F(t)) + (O’ )u(t)2 + 72d ||VFU||%2(F(t)) dt
0

tm
1
> / 2(ud0p + 2divrw, u )Lz(r‘(t)) U ||Vpu||L2 (r(1y) 4t
0
Combining the relations above and using (2.13), we get
o _ 1 n—
(@, @)y + ag(u,a) +d(u, ) 2 3 (uM”tM +ZH Iz,

tm
+ [ ol + vl Frulagy dt) @3)
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Taking M = N in this inequality proves (4.2). Let M be such that |[u®|m =
max,—1, N |[u™|Z

7n. Setting v = 4+ u, using (4.3) and performing obvious computa-
tions gives (4.1). Since Wj, C W° and u € W), = @ € W}, the results in (4.1), (4.2)
also hold on the finite element subspace. 0O

In this stability result there are no restrictions on the size of h and At. In
particular the stability is guaranteed even if At is large. This is in agreement with the
strong robustness of the method, observed in the numerical experiments in [15, 26, 16].

REMARK 4.1. We comment on the assumptions we use in Theorem 4.1. An
inf-sup result in WP, similar to (4.1), can also be derived for the general (indefinite)
case, i.e., without assuming (2.13), and without stabilization. Such a result is given
in Lemma 5.2 in [26]. The proof uses a test function of the form v = pe™"u + z,
with a suitable p > 0, v > 0 and z € W?°. The factor e~ is used to control the term
(divpwu, u)g. Of course, the stability constant then depends on T' and deteriorates
for T'— oo. For the discrete space W}, however, we are not able to derive a stability
result for the general (indefinite) case. The key point is that for u;, € W), a test
function of the form e~"*uy, is not allowed, since it is not an element of the test space
Wy,. Using an approximation (interpolation or projection) of e~"uy in the finite
element space we are not able to get sufficient control of the term (divpwu,u)o. A
similar difficulty, for the general problem, arises if one applies a discrete analogon of
the Gronwall argument outlined in Remark 2.2: Let u = u;, € W), be a finite element
function. For the corresponding test function one can take v = @ as in the proof
above, i.e., v = uj[,t,,]- Taking o = 0 we obtain

1 M2 1 X 112 fat 2
= = E T + V dsdt
2 ||u7 ||t]\/[ + 2 —~ ||[u] ||tn_1 VdA A(t)( Fu) S

tar 1 tm
= / / fudsdt — = / / divpwu? ds dt.
o Jre 2Jo Jro

Define h(t) := %fr(t) u?ds + 22/1:1 [[w]" M2, + va fg fF(T)(Vpu)Q dsdr, for t €
(tar—1,ta), = 1,...N. With similar arguments as in Remark 2.2 we get the

estimate
1 ) ) tyv
hltar) < SIFIE + (14 divewloms) [ B(rydr M =1,
0

cf. (2.10). To apply a discrete Gronwall inequality we need to control fot M h(r)dr by
the values h(tg), k = 0,..., M. For a stationary I'(¢), this can be realized using the
fact that w is linear w.r.t. ¢ on I,,. For an evolving I'(¢), however, the function h(t) can
have rather general behavior and it is not clear under which reasonable assumptions
the integral can be bounded by the function values h(tx).

In view of these observations we restrict the analysis to the nicer positive definite
case, hence we assume that (2.13) holds. As mentioned in Remark 2.3, condition
(2.13) is not sufficient for A to be positive definite on W},. The difficulty comes from
the functions u(zx,t) that are constant in spatial directions. For the continuous case
we dealt with this problem by restricting to the subspace W, cf. (2.12). In case of an
evolving I'(t), requiring the discrete solution uy, to lie in W is a too strong condition,
which leads to an unacceptable reduction of the degrees of freedom (often, only uy, = 0
is allowed). This is the reason, why we introduce the stabilization. For o sufficiently

10



large the corresponding stabilized operator A, is positive definite on W},. In numerical
experiments we observe that in general o = 0 results in a stable method.

The ellipticity result (4.2) is sufficient for existence of a unique solution and (4.1)
yields an a-priori bound in the || - ||p-norm. We summarize this in the following
proposition.

PROPOSITION 4.2. Assume (2.13) and take o as in Theorem 4.1. Then the
discrete problem (3.7) has a unique solution up, € Wy,. For uy, the a priori estimate

lunlln < eI llo- (4.4)
holds, with cs as in Theorem 4.1.

5. Continuity result. We derive continuity results for the bilinear form of the
finite element method.

LEMMA 5.1. For any e,v € W? the following holds, with constants c independent
of e,v,hyN:

N-1

| (€, 0), + ao(e,0) +d(e,v)| < cllolalllelws + D llle]" ), (5.1)
n=0
N-1

| (€, 0) + ao(e,0) + d(e,v)| < cllelln([vllws + D I[]"[len + lollz)- (5.2)

Proof. The stabilizing term in a, (e, v) is estimated as follows:
T T
a/ / edm/ vdx dt| < a/ IT(¢)] / edx / vide | dt
0o Jr@e) r(t) 0 ING)) T'(t) (5.3)

<o max |I'(t)|||ello]|v]o-
<o masx [0 lel vl
The material derivative term is treated using partial integration:

N

1
2

N
(e, vy, = Z ((ef,vﬁ)tn - (eﬁfl,vzfl)t"fl) — (divpwe, v)o — (0,€),

1\7:1 N-1
= Z([e}n_lﬂjiil)tnfl - Z ([v]nv eﬁ)tn + (ef, U)T - (diVFW 6,1))0 - <i}7 e>b
" N-1 "
= —d(e,v) — ([W]™, e™)e, + (eN,v)r — (divrwe, v)o — (0, €), -

Now we use the relation (v, e), = 25:1 (On, en) and the Cauchy inequality to estimate

N 2
| (€, v),, +d(e,v)| < [le¥Iz]lvllz + accllellollvllo + llell <Z II@nII?{;>
(5-4)

n=1
N—1
+ max lle™ ||, Z 1],

=1,..., —

11



Combining (5.3), (5.4), and a(e,v) < v4||Vrellol|Vrvllo + asollello]|v]lo, we get

| <é7 U>b + aU(ev U) + d(67 U)‘

2

N
< Ie¥lzllllr + (o + @ mas (@D lelolllo + el (Z ||1>n||%%>
’ n=1

N-1

n n

+val[VrelolVrvllo + _max "], 221 I[o]"[I¢,,-
n—=

The Cauchy inequality and the definition of the norms |e||s, ||v|w+ imply the result

n (5.2). The inequality in (5.1) is proved by the same arguments, but skipping the

partial integration step. 0O

The norm || - || is weaker than the norm || - || used for the stability analysis
of the original ‘differential’ weak formulation (2.7), since the latter norm provides
control over the material derivative in H'. For the discrete solution we can establish
control over the material derivative only in a weaker sense, namely in a space dual to
the discrete space. Indeed, using estimates as in the proof of Lemma 5.1 we get

|ao (un, v)| < Jlunlln ((aoo o max Ir@Nllvlg + V§|VFU||3> < c¢llunllnllvlla,
and thus for the discrete solution up, € W}, of (3.7) one obtains, using (4.4):

(Un,v), + d(up, v) . (f,vn)o — ag(up,v)

veW), ol veW), vl e

< cll fllo- (5.5)

6. Discretization error analysis. In this section we prove an error bound for
the discrete problem (3.7). The analysis is based on the usual arguments, namely
the stability estimate derived above combined with the Galerkin orthogonality and
interpolation error bounds. The surface finite element space is the trace of an outer
volume finite element space Vj. For the analysis of the discretization error in the
surface finite element space we use information on the approximation quality of the
outer space. Hence, we need a suitable extension procedure for smooth functions on
the space-time manifold §. This topic is addressed in subsection 6.1.

6.1. Extension of functions defined on S. For a function u € H?(S) we need
an extension u® € H2(U), where U is a neighborhood in R* that contains the space-
time manifold §. Below we introduce such an extension and derive some properties
that we need in the analysis. We extend w in a spatial normal direction to I'(t) for
every t € [0,T]. For this procedure to be well-defined, and the properties to hold, we
need sufficient smoothness of the manifold S. We assume S to be a three-dimensional
C3-manifold in R*. For some § > 0 let

U={x:=(2,t) € R3 | dist(z,T(t)) < 6} (6.1)

be a neighborhood of §. The value of § depends on curvatures of S and will be specified
below. Let d: U — R be the signed distance function, |d(z,t)| := dist(z,I'(t)) for all
x € U. Thus, S is the zero level set of d. The spatial gradient np = V,d € R? is the
exterior normal vector for I'(¢). The normal vector for S is

ns = Vd/||Vd|| = (or, V)T €R*, Vr =w - nr.

1
V1+VE

12



Recall that Vr is the normal velocity of the evolving surface I'(¢). The normal np has
a natural extension given by n(x) := V,d(x) € R3 for all x € U. Thus, n=nr on S
and ||n(x)|| = 1 for all x € U. The spatial Hessian of d is denoted by H € R3*3. The
eigenvalues of H are x1(x,t),k2(z,t), and 0. For 2 € I'(¢) the eigenvalues k;(x,t),
i = 1,2, are the principal curvatures of I'(t). Due to the smoothness assumptions on
S, the principal curvatures are uniformly bounded in space and time:

sup sup (|1 (z,1)] + [w2(2,1)]) < Fmax-
te[0,T] z€T'(t)

We introduce a local coordinate system by using the projection p: U — S:
p(x) = x — d(x)(n(x),0)" = (z — d(z,t)n(z,t),t) forall x = (z,t) € U.

For § sufficiently small, namely ¢ < kL., the decomposition x = p(x)+d(x) (n(x), 0)

is unique for all x € U ([14], Lemma 14.16).
The extension operator is defined as follows. For a function v on & we define

vé(x) :=v(p(x)) forall xeU, (6.2)

i.e., v is extended along spatial normals on S.

We need a few relations between surface norms of a function and volumetric norms
of its extension. Define p(x) := (1 — d(x)r1(x)) (1 — d(x)r2(x)) for x € U. From
(2.20), (2.23) in [4] we have

uw(x)dz = ds(p(x))dr x €U,

where dz is the volume measure in R3, ds the surface measure on I'(¢), and 7 the
local coordinate at y € I'(t) in the (orthogonal) direction nr(y). Assume § < TrL .
Using the relation x;(x) = %, i=1,2,x €U, ((2.2.5) in [4]) one obtains
1% < ulx) < f—g for all x € U. Now let v be a function defined on & and w,
defined on U, given by w(x) = g(x)v(p(x)), with a function g that is bounded on
U: |lgllp~@w) < ¢g < 00. An example is the pair w = v* and v given in (6.2), with
g = 1. For v,w we have the following, with U(t) = {z € R? | dist(z,['(t)) < § } the
cross-section of U for ¢ € [0, T] and a local coordinate system denoted by x = (p(x), 7):

T
ol = [ wredaxse [ [ weuto dade
U 0 JU(t)

<o f ' / VPO dadt = ¢ / ' | Z / VOO ds(pOoyrdr (63

T
< 05/ / vidsdt < c5||v||2L2(5)-
0 T(t)

The constant ¢ in the estimate above depends only on the smoothness of S and
on ¢,. If in addition |g(x)| > ¢o > 0 on U holds, then we obtain the estimate
Hw||%2(U) > 05||11H%2(S), with a constant ¢ > 0 depending only on |Vr| and ¢q. Using
these results applied to w = v¢ as in (6.2) (i.e., g = 1), we obtain the equivalence

Hue||%2(U) ~ (5Hu||2L2(3) for all u € L*(S). (6.4)
13



results. From

In the remainder of this section, for u defined on S, we derive bounds on derivatives
of u® on U in terms of the derivatives of uw on §. We first recall a few elementary

s ue ) ., Vrwu= (Isx3 — nrnf)V,us,
t
one derives the following relations between tangential derivatives:

V. u®
Vgu = (I4><4 — ngnT) < u

Vrwu = BVsu, B:=[I3x3,—Vrnr] € R, (6.5)
i = (14 VZ)(Vsu)s +w- Vrgyu,

(6.6)
where (Vsu)4 denotes the fourth entry of the vector Vsu € R%. The spatial deriva-
tives of the extended function can be written in terms of surface gradients (cf., e.g.
(2.2.13) in [4]):

Veul(x) = (I - dH)Vppu(p(x)) = (I - dH)BVsu(p(x)) =: B1Vsu(p(x)), (6.7)
for x € U. This implies V,u(x) = Vppu(p(x)) = Vrpu(x) for x € S. For the
time derivative we obtain

uf (x) = %(ue op)(x) = %ue(x —d(z,t)n(z,t),t)

(p(x)) = (din + dny) - Vous(p(x)) = ug (p(x)) — (din + dny) - Ve u(p(x))
(6.8)
The time derivative u§ on S is represented in terms of surface quantities, cf. (6.6)

uf =i—w-Vout =i —w-Vpyu=(1+VZ)(Vsu)s onS.
Using this and (6.5) in (6.8) we obtain, for x € U,

uf(x) = (14 V2)(Vsu(p(x)))s — (dm+dn,) - BVsu(p(x)) =: By - Vsu(p(x)). (6.9)

The matrices By, By in (6.7), (6.9) depend only on geometric quantities related to
S (d, dt, H, Vr, n, n;). These quantities are uniformly bounded on U due to the
smoothness assumption on S. Hence, from (6.7) and the result in (6.3) we obtain

||Vue||%2(U) < C5HVSU||2Lz(5) for all u € H'(S).

(6.10)
We need a similar result for the H? volumetric and surface norms. From (6.7) we get
ou®
Dx;

(x) = b; - Vsu(p(x)), z € U, i = 1,2,3, with b; the i-th row of the matrix B;.
For z € {x1,x2, 23,1} we get
a?ue

020x;

0
(x) = (bs): - Vsu(p(x)) + bi(VsVsu)(p(x)) 5-p(x), x €U
L*> norms on U and application of (6.3) yields
o2ue |2

With similar arguments, using (6.9), one can derive the same bound for |
Hence we conclude

Due to the smoothness assumption on S the vectors b, (b;)., %p(x) have bounded

. (2 IDkulfes) + IVsullias))-
L2(U

|pn=2

8%u’ ”2
9z0t 1 L2 (U)-

[ufl|F2 0y < eOllullFrzsy  for all ue H(S). (6.11)
14



6.2. Interpolation error bounds. In this section, we introduce and analyze
an interpolation operator. Recall that the local space-time triangulation Q‘,f consists
of cylindrical elements that are intersected by S, cf. Fig. 3.1, and that the domain
formed by these prisms is denoted by Q. For K € Q;f , the nonempty intersections
are denoted by Sx = K NS. Let

I, : C(Q%) =V,

be the nodal interpolation operator. Since the triangulation may vary from time-slab
to time-slab, the interpolant is in general discontinuous between the time-slabs.

In the remainder we take At ~ h. This assumption is made to avoid anisotropic
interpolation estimates, which would significantly complicate the analysis for the case
of surface finite elements.

We take a fixed neighborhood U of S as in (6.1), with ¢ > 0 sufficiently small
such that the analysis presented in section 6.1 is valid (6 < %Ii;ullx). The mesh is
assumed to be fine enough to resolve the geometry of S in the sense that Q‘E cVU.
We need one further technical assumption, which holds if the space time manifold S
is sufficiently resolved by the outer (local) triangulation Q.

ASSUMPTION 6.1. For Sk = KNS, K € Q‘,f, we assume that there is a local
orthogonal coordinate system y = (z,0), z € R3, § € R, such that Sk is the graph
of a C* smooth scalar function, say gr, i.e., Sk = {(2,9x(2)) | 2 € Zx C R®}.
The derivatives |[Vgk | L~ (z,) are assumed to be uniformly bounded with respect to
K € QY and h. Finally it is assumed that the graph Sk either coincides with one
of the three-dimensional faces of K or it subdivides K into exactly two subsets (one
above and one below the graph of gx ).

The next lemma is essential for our analysis of the interpolation operator. This
result was presented in [18, 19]. We include a proof because the 4D case is not
discussed in [18, 19].

LEMMA 6.1. There is a constant ¢, depending only on the shape regularity of the
tetrahedral triangulations T, and the smoothness of S, such that

)220y < eth™ vl Za () + BllvlF (k) for all ve HY(K), K € Q. (6.12)

Proof. We recall the following trace result (e.g. Thm. 1.1.6 in [2]) for a reference
simplex K:

Hv”i%ak) < ch||L2(f()Hv||H1(f() for all v € H'(K).

The Cauchy inequality and the standard scaling argument yield for K € Q;Ls
||U||2L2(3K) < C(h_1||v||%2(1<) + h||”|@11(K)) for all v e H'(K), (6.13)

with a constant ¢ that depends only on the shape regularity of K. Take K € Q;f
and let Sk = {(2,9(2)) | 2 € Zx C R®} be as in Assumption 6.1. If Sk coincides
with one of the three-dimensional faces of K then (6.12) follows from (6.13). We
consider the situation that the graph Sk divides K into two nonempty subdomains
K;, i =1,2. Take i such that Sx C OK;. Let n = (ny,...,n4)7 be the unit outward
pointing normal on dK;. For v € H'(K) the following holds, where div, denotes the
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divergence operator in the y = (z, 0)-coordinate system (cf. Assumption 6.1),

/ v—dy—/ div, (1?2) dy:/aK n'(;) ds:/aK ngv? ds

:/ n41;2 ds+/ n4v2 ds.
Sk OK;i\Sk

On Sk the normal n has direction (—V.g(z),1)7 and thus n4(y) = (|V.g(2)||2+1)"=
holds. From Assumption 6.1 it follows that there is a generic constant ¢ such that
1 < n4(2)~! < c holds. Using this we obtain

/ v ds < ¢ / nav?ds < cllv 2 (x
SK SK

< clvllzz iy vl ) +c/ v?ds
oK

(K:) —I—C/ v?ds
8K \Sk

< e(h ol Ze gy + RlvllE k) + C/BK v ds < c(h7[l|72 k) + BllvIEn i),

where in the last inequality we used (6.13). O

We prove the following approximation result:
THEOREM 6.2. For sufficiently smooth u defined on & we have:

N
> M= Inu e 5oy < h*CTullz(s), K =0,1,

(6.14)
[ = (Inu®) |l < ch?||ullgzpinyy, n=1,..., N,

||u - (Ihue)+||tn < ch2||u||H2(p(tn)), n = 0, ey N —1.
The constants ¢ are independent of u,h, N.

Proof. Since S is a smooth three-dimensional manifold, the embedding H?(S) —
C(S) holds. Hence u € C(S) implies u¢ € C(U), and the nodal interpolant Iu® is
well defined. Define v, = (I,u®)|s € Wj. Using Lemma 6.1, we obtain for K € Q3:

[ = vpll7e(s,y < e(hHu® = Tnul|[Fa gy + hllu® = Tnusll3n )
Standard interpolation error bounds for I, and summing over all K € Qf yields
ot = on gy < eh¥lu2eqs),
We use QF C U and (6.11) to infer
lu = vonllZ2(s) < e0h®ullFas)-
Since we may assume § ~ h, the result in (6.14) follows for ¥ = 0. The same technique
is applied to show the result for k = 1:
1V (0= 00) 2280y < eIV = ) 225,
< (W V(= Inud) |22 gy + RV (u® = D) 3 ) < chlluf|fze )
Summing over all K € QF and using (6.11), with § ~ h, then yields the first estimate
n (6.14). The second and third estimates follow by similar arguments, using that

u® is the extension in normal spatial direction and combining this with the three-
dimensional version of Lemma 6.1 and standard interpolation error bounds for [ huleT,

with T a tetrahedron such that K =T x I,, € Q‘}f. 0
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6.3. Discretization error bound. The next theorem is the first main result of
this paper. It shows optimal convergence in the | - ||, norm.

THEOREM 6.3. Let u € W be the solution of (2.7) and assume u € H?*(S),
u € H2(D(t)) for all t € [0,T). Let up, € Wy, be the solution of the discrete problem
(3.7) with a stabilization parameter o as in Theorem 4.1. The error bound holds:

lu—unlln < ch(lullzs) + sup_lullizr)-
t€[0,T

Proof. For the solution u € H%(S) let e; = u — (Inu®)|s denote the interpolation
error and e = u — uy, the discretization error. The stability result in (4.1) with W?°
replaced by W}, and the continuity result (5.1) imply in a standard way, cf. e.g. [12]:

N-1
llelln < llezlln + e(llerllws + > lller]"llen)-

n=0

Using the first interpolation bound in Theorem 6.2 and H,, C L?(S™) we get

N N
lerlifn =D 1Dl + lerllz < D 1EDnlZeqsm + llerlF
n=1 n=1

N
<>l en)all3nse < ch?lull}s).-

n=1

(6.15)

Furthermore, applying the result in the second and the third interpolation bounds in
Theorem 6.2 we obtain

N-1 N-1
D lled e < Mlen)+lleo + D (l(en)™ e + lI(er) llen)

n=0 n=1

< ch? (At)*1 sup llull 2 (pmyy < ch sup H'LL||H2(F(t)).
1 te[0,7]

n=0,...,N— ,

This together with (6.15) proves the theorem. O

7. Second order convergence. In this section we derive an error estimate
llu — upl|+ < ch? for At ~ h in a suitable norm with the help of a duality argument.
To formulate an adjoint problem, we define a “reverse time” in the space-time manifold
S. Let X (t) be the Lagrangian particle path given by w and initial manifold I'y:

dX

E(t):w(x(t),t), te[0,T], X(0) €.

Hence, I'(t) = { X(t) | X(0) € Iy }. Define, for ¢t € [0,T7:

X(t):=X(T—t), T(t):=0(T—1t), w(z,t):=—-w@T—t), zcQ.

dX dXx o~
S = (T =) =—w(X(T =1),T ~t) =w(X(t),1),
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it follows that X (t) describes ‘the particle paths corresponding to the flow w with
X(0)=X(T) e T(T). Hence, I'(t) = { X(t) | X(0) e T'(T') =Ty }. We introduce the
material derivative with respect to the flow field w:

ov

B, ) = S

x,t) +w(x,t) - Vo(z,t), (x,t)€S.
For a given f* € L?(S) we consider the following dual problem

ﬁfudAfv+a/~ vds = f* on L(t), t€0,T],
T(t) (7.1)

v(-,0)=0 on Ty=I(T).

The problem (7.1) is of integro-differential type. From the analysis of [26] it follows
that a weak formulation of this problem as in (2.7), with the bilinear form a(-,-)
replaced by a,(-,-), has a unique solution v € W. As is usual in the Aubin-Nitsche
duality argument, we need a suitable regularity result for the dual problem (7.1). In
the literature we did not find the regularity result that we need. Therefore we derived
the result given in Theorem 7.1. A proof is given in the appendix. A corollary of this
theorem gives the regularity result for the dual problem that we need.
THEOREM 7.1. Consider the parabolic surface problem

u—vgAru=f on [(t), t € (0,7T],

u(-,0) =0 on Ty, (7:2)

Let S be sufficiently smooth (precise assumptions are given in the proof) and f €

L3(S). Then the unique weak solution u € W of (7.2) satisfies u € HY(S), u €
H2(T(t)) for almost all t € [0,T), and

T
el s, + / el 22y dt < el FI2, (7.3)

with a constant ¢ independent of f. If in addition f € H'(S) and flp, = 0, then
u € H%(S) and

sup ullzzry) + llullazis) < el fllais) (7.4)
t€[0,T]

with a constant c independent of f.
COROLLARY 7.2. Let S be sufficiently smooth (as in Theorem 7.1). Assume
f* € HY(S). Then the unique weak solution v € Wy of (7.1) satisfies v € H*(S) and

sup |[vllgzrey) + 1vlla2is) < ellf*[lais)s (7.5)
t€[0,7)

with a constant ¢ independent of f*.
Proof. We have v € Wy C L?(S). Hence, ff(t) vds € L*(S) and

/~ vds
I'(t) 0

< (max [LODIvllo < e f*1a < cllfllo
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Therefore, v solves the parabolic surface problem
U —vgAgv =F on I(t),
v(-,0)=0 on T\,

with F := f* faff(t) vds € L*(S) and ||[F|lo < c||f*|lo- The first part of Theorem 7.1
yields v € L*(S) and [|9]|o < ¢|/F|lo- Hence, employing the Leibniz formula we check
%ff(t)vds € L?(S). This and v € H yields ff(t)vds € HY(S) together with a
corresponding a priori estimate. Therefore, F € H'(S) and || F| g1 sy < c||f* a1 (s)-
From v(-,0) = 0 on Ty and f"|1:O =0 we get F|1:0 = 0. Applying the second part of
the theorem completes the proof. O

LEMMA 7.3. Assume v € H?*(S) solves (7.1) for some f* € H(S). Define
v¥(z,t) ==v(x, T —t), xe€l({t)=T(T—1t). Then one has

(2,0%), + ap(2,0%) + d(2,0*) = (2, f*)o  for all z € Wy, + H*(S). (7.6)
Proof. From the definitions and using the Leibniz rule we obtain (note that v* is
continuous, hence v = v} = v*"):

(2,07), + ao(2,0") + d(z,0")

tr N
= Z/ / 2v* + zv*divrw ds dt + Z([z]" Loon=hy,
I'(t)

n=1
T
+1/d(sz,va*)0+a/ / zdm/ v* dx dt
o Jre I(t)
N
Z b — (2o, ) Z/ / 20% ds dt
n=1 tn—1 JI(t)
N
Z v 1) 1 +Vd(VFZ,VF’U*)0+U(Z,/ v* dl‘)()
n=1 I'(¢)

Now note that on S:

P00 = G ) WOV (0 = = ST =) = W T — ) Vo, T -1
=—0(-,T —t),

and Apyv*(-,t) = AF(T%)U(',T —t). From this and the equation for v in (7.1) it
follows that v* + vgArv* — o fr(t) v*dxr = —f* on S. This completes the proof. O

Denote by || - || -1 a norm dual to the H{(S) norm with respect to the L?-duality.
In the next theorem we present the second main result of this paper.

THEOREM 7.4. Assume that S is sufficiently smooth (as in Theorem 7.1) and
that the assumptions of Theorem 6.3 are satisfied. Then the following estimate holds:

Ju = upll-1 < ch®(Jullzsy + sup [l m2rey)-
t€[0,T]
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Proof. Take arbitrary f* € H}(S). Using the relation in (7.6), Galerkin or-
thogonality, the second continuity result in Lemma 5.1 and the error estimate from
Theorem 6.3 we obtain with e := u — uy, ef = v* — I, (v*)¢ € W?:

(e, f o = (&,v"), + ac(e, U*) —|—d(e v*) = (é,er), +aq(e,er) +d(e er)

< cllelln(llesllws + Z ["len +llelir)
N-1
< ch(([ull p2cs) +ts[tép el 2oy (lerllws + D e llen + llerlir)-
€ n=1

Applying interpolation estimates as in the proof of Theorem 6.3, we get

N—-1
lezllws + > len)™llen + llezllz < ch(llo*||m2cs) + P 0" | 2 ey))-

n=1 s

Hence, using (7.5) we get
(e,.f)o < ch*(llullmzs) + sup Nl gz (0" lrzes) + sup v m2re))
t€[0,T] t€[0,T)

< ch? (||UHH2(S)+ sup ||u||H2(F(t)))Hf ||H1(5).
t€[0,T]

From this the result immediately follows. O

REMARK 7.1. Numerical experiments suggest that the method has second order
convergence in the L?(S) norm. We proved the second order convergence only in the
weaker H~1(S) norm. The reason for using this weaker norm is that our arguments
use isotropic polynomial interpolation error bounds on 4D space-time elements. These
bounds require isotropic space-time H?(S)-regularity bounds for the solution. For
our class of parabolic problems such isotropic regularity bounds are more restrictive
than in an elliptic case, since the solution is in general less regular in time than in
space. Due to this, instead of the common f* € L?(S) regularity assumption for the
right-hand side of the dual problem we need the stronger assumption f* € H(S) to
guarantee a H?(S)-regularity of the solution. This stronger regularity requirement
for f* results in the weaker H~1(S) error norm. It may be possible to derive second
order convergence in the L?(S)-norm, if suitable anisotropic interpolation estimates
are available. So far, however, we have not been able to derive such estimates for the
finite element space-time trace space. This topic is left for future research.

8. Conclusions and outlook. We analyzed an Eulerian method based on traces
on the space-time manifold of standard bilinear space-time finite elements. A stabil-
ity result is derived in which there are no restrictions on the size of At and h. This
indicates that the method has favourable robustness properties. We proved first and
second order discretization error bounds for this method. To the best of our knowl-
edge, this is the first Eulerian finite element method which is proved to be second
order accurate for PDEs on evolving surfaces. In the applications that we consider,
we restrict to first order finite elements, due to the fact that the approximation of the
evolving surface causes an error (“geometric error”) of size O(h?), which is consis-
tent with the interpolation error for P1 elements. Results of numerical experiments,
which illustrate the second order convergence and excellent stability properties of the

20



method, are presented in [15, 26, 16]. These experiments clearly indicate that second
order convergence holds in L?(S) norm, which is stronger than the H~!(S) norm
used in our analysis. The experiments also show that the stabilization term (o > 0
in (3.6)) improves the discrete mass conservation of the method, but is not essential
for stability or overall accuracy. Essential for our analysis is the condition (2.13),
which allows a strong convection of I'(¢) but only small local area changes. Numerical
experiments indicate that the latter is not critical for the performance of the method.

There are several topics that we consider to be of interest for further research.
Maybe an error analysis that needs weaker assumptions (than (2.13)) and/or avoids
the stabilization can be developed. A second interesting topic is the derivation of
anisotropic interpolation error estimates which may then lead to a second order error
bound in the L?(S) norm. A further open problem is the derivation of rigorous error
estimates for the case when the smooth space-time manifold S is approximated, e.g.,
by a piecewise tetrahedral surface.

Appendix A. Proof of Theorem 7.1. Without loss of generality we may set

vg = 1. The weak formulation of (7.2) is as follows: determine u € W such that
(,v) + (Vru, Vrv)g = (f,v)o forall v e H. (A1)

The proof is based on techniques as in [5], [13]. We define a Galerkin solution in a
sequence of nested spaces spanned by a special choice of smooth basis functions. We
derive uniform energy estimates for these Galerkin solutions and based on a com-
pactness argument these estimates imply a bound in the || - ||g1(s) norm for the
weak limit of these Galerkin solutions. We use a known H?2-regularity result for the
Laplace-Beltrami equation on a smooth manifold and energy estimates for the mate-
rial derivative of the Galerkin solutions to derive a bound on the || - || z2(sy norm for
the weak limit of these Galerkin solutions.

1. Galerkin subspace and boundedness of L?-projection. We introduce Galerkin sub-

spaces of V[O/, similar to those used in [5]. For this we need a smooth diffeomorphism
between S and the cylindrical reference domain S =Ty x (0,T). We use a Lan-
grangian mapping from T’y x [0,7] to the space-time manifold S, as in [26]. The
velocity field w and T’y are sufficiently smooth such that for all y € T’y the ODE
system

By0) =y, (1) = w(B(y,0).0), t€[0.T]

has a unique solution z := ®(y,t) € I'(¢) (recall that I'(¢) is transported with the
velocity field w). The corresponding inverse mapping is given by ®~!(z,t) := y € T,
x € I'(t). The Lagrangian mapping ® induces a bijection

F:Tyx[0,T] =>S, F(y,t):=(P(y,t),t).

We assume this bijection to be a C2-diffeomorphism between these manifolds.
For a function u defined on S we define @ =wuo F on T’y x (0,T):

u(y,t) = uw(®(y,1),t) = u(x,1).
Vice versa, for a function @ defined on Ty x (0,7) we define u =uo F~! on S:

u(z,t) =a(® (x,t),t) = Uy, t).
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By construction, we have

A~

ou

u(z,t) = 5

(y,1). (A.2)

We need a surface integral transformation formula. For this we consider a local
parametrization of I'g, denoted by u : R? = T'g, which is at least C? smooth. Then,
®op = ®(u(-),t) defines a C? smooth parametrization of T'(t). For the surface
measures d s and ds on I'g and T'(¢), respectively, we have the relations

ds =~(t)ds,  ds=7(,t)ds, (A.3)

with functions v and 7 that are both C! smooth, bounded and uniformly bounded
away from zero: v > c¢>0on 'y x (0,7) and ¥ > ¢ > 0 on S, cf. section 3.3 in [26].

Denote by qASj, 7 € N the eigenfunctions of the Laplace-Beltrami operator on I'y.
Define ¢; : S = R by ¢;(®(y,1),t) := QASj(y), and note that due to (A.2) one has
¢; = 0. The set {¢;(-,t)|j € N} is dense in H'(T'(t)). We define the spaces

Xn(t) =span{d1(-,t),...,on (-, 1)},

N
Xy ={) w(t)p;(x,t) | u; € H'(0,T;R), u;(0) =0, 1<j< N}
j=1

Below, in step 2, we construct a Galerkin solution in the subspace Xy C W. Note that
for v € X we have v(-,t) € Xn(t). In the analysis in step 6, we need H'-stability of
the L2-projection on X (t). This stability result is derived in the following lemma.

LEMMA A.1. Denote by Px ) the L?-orthogonal projector on Xn(t), i.e., for
¢ e 1(T(1):

/ PXN(t)(vds:/ Cuvds  for all ve Xn(t).
T() T(t)

For ¢ € HY(T'(t)) the estimate

IV Py Cllrzey) < ClICHa ) (A.4)

holds with a constant independent of N and t.
Proof. Fix some t € (0,7) and let v be a smooth and positive function on Ty
defined in (A.3), then (f,g), := [, fg~yds defines a scalar product on L?(T'g). This

scalar product induces a norm equivalent to the standard L?(I'g)-norm. For given f €
H'(Ty) let fx be an (-,-),-orthogonal projection on Xy (0). Since Arfn € Xn(0),
we have fFo v fArfyds = fl‘o v fnArfn ds. Using this and partial integration we
obtain the identity:

/ |VFfN|2’Yd5:/ (VrfnVry) (f*fN)dSJF/ (Ve fnVrf)y ds.
T'o

o To

Applying the Cauchy inequality, positivity and smoothness of v, we get

/\VrfN|2dSSC/ 2+ Ve f? ds,
Ty To
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i.e. the (-,-),-orthogonal projection on Xy (0) is H'-stable. For ¢ € H'(I'(t)) define
C=Co®e H'(Ty) and Cy =y o ® € Xy(0). From

NNy dS = (NYN ds =/ Cn ds = Cihny d5 Y iy € Xn(0),
To T(t) (1) To

it follows that E ~ is the (-,-),-orthogonal projection of Z Using the H'-stability of
this projection, the smoothness of ® and ®~! and (A.3), we obtain

VN2 < CUIVECYlz2ry) < C NI rg) < C IS a (reey-
Thus, the estimate in (A.4) holds. O

2. Existence of Galerkin solution ux € Xy and its boundedness in H'(S) uniformly
in N. We look for a Galerkin solution uy € Xy to (7.2). We consider the following
projected surface parabolic equation: determine uy = (uy,...uy) € H(0,T;RY)

such that for un(z,t) := Zjvzl u;j(t)¢p;(x,t) we have uy(-,0) =0 and

/ (iy — Aruy)¢p ds = fods forall ¢ € Xy(t), ae intel0,T]. (Ab)
r(t) I(t)
In terms of uy this can be rewritten as a linear system of ODEs of the form
duN
M(t)w + A(t)un(t) =b(t), un(0)=0. (A.6)

The matrices M, A are symmetric positive semi-definite. Since for the eigenfunctions
we have ¢; € C%(Tg), see [1], and the diffeomorphism F is C?-smooth, we have
M,A € WL(0,T;RY*N). The smallest eigenvalue of M(t) is bounded away from
zero uniformly in ¢ € [0,7]. The right-hand side satisfies b € L?(0,T;R"™). By the
theory of linear ordinary differential equations, e.g., Proposition 6.5 in [20], we have
existence of a unique solution uy € H'(0,T;RY). Moreover, if f € H'(S), then
be HY0,T;RY) and uy € H%(0,T;RY). For the corresponding Galerkin solution
uy € Xn, given by un(z,t) = Zjvzl u;j(t)¢p;(x,t), we derive energy estimates. Taking
¢ =un(-,t) € Xn(t) in (A.5) and applying partial integration we obtain the identity

1d

1
f—/ uyy ds +/ |Vrun|? — = (divpw)u?, ds = fuy ds.
2 dt I'(t) I'(t) 2

I'(t)

Applying the Cauchy inequality to handle the term on the right-hand side and using
a Gronwall argument, with uy(-,0) = 0, yields

T
sup / uyy ds—|—/ / [Vruy|? dsdt < C||f|5,
te(0,T) JT(t) 0 I'(t)

and thus

lunllz < Cllfllos (A7)

with a constant independent of N. Taking ¢ = un(-,t) € Xy(t) in (A.5) and using
the identity

1d

1
/vpv-vp@ ds = 77/ |Vrol? ds—f/ |VroAdivrw ds+/D(w)vpv-vpv ds,
r 2dt Jp 2 J)r r
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with the tensor D(w)y; = 5 (50 + 5% (cf. (2.11) in [5]) yields

1d
.0 2
Uy ds+ = — Vrun|® ds
/r(t) N 2 dt Jre | |
1
= 5/ ‘VFUN‘ZdiVFW ds — D(W)VF’LLN -Vrun ds + fun ds.
r'(t) I'(t) r'(t)

Employing the Cauchy inequality and a Gronwall inequality, with ux(-,0) = 0, we
obtain

T
sup/ \vpuNPder// i 2 ds dt < C| £, (A.8)
() o Jre

te(0,T)

with a constant independent of N. From the results in (A.7) and (A.8) we obtain the
uniform boundedness result

lunllmrs) < Clifllo- (A.9)

3. The weak limit u solves (A.1) and ||ullg1(sy < C||fllo holds. From the uniform
boundedness (A.9) it follows that there is a subsequence, again denoted by (un)nen,
that weakly converges to some u € H!(S):

uy —u in HY(S). (A.10)
As a direct consequence of this weak convergence and (A.9) we get

[ull sy < el fllo- (A.11)

We recall an elementary result from functional analysis. Let X, Y be normed spaces,
T : X — Y linear and bounded and (z,)nen a sequence in X, then the following
holds:

Ty —2x inX = Tz,—Tz inY. (A.12)
Hence, from (A.10) we obtain the following, which we need further on:
uy =4 in L*S), uy —u in H. (A.13)

We now show that u is the solution of (A.1). Define Xy := span{¢1,..., ¢y} and note
that UyenXy is dense in H!(Iy). The set ¢ = {t — Z?:Otjz/}j | ; € Xn, n,N €
N} is dense in L2(0,7; H'(I'g)). Using this and Lemma 3.3 in [26] it follows that
C={>" tip;(x,t) | ;(-,t) € Xn(t), n,N € N} is dense in H. Consider ¢(z,t) =

t/¢r(x,t). From (A.5) it follows that for N > k we have

T T
/ / unY + Vruy -V ds dt = / / fy ds dt
0 Jr(t) 0o Jr(t)

and using (A.10) it follows that this equality holds with uy replaced by u. From
linearity and density of C' in H we conclude that u € H'(S) C W solves (A.1). It
remains to check whether u satisfies the homogeneous initial condition.
From the weak convergence in H'(S), the boundedness of the trace operator
T : HY(S) — L*(Ty), Tv = v(-,0) and (A.12) it follows that ux(-,0) converges
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weakly to u(-,0) in L?(T'g). From the property uy(-,0) = 0 for all N it follows that
u(+,0) = 0 holds. Hence u € W holds.

4. The estimate ||VZullo < ¢|fllo holds. The function u is a (weak) solution of
—Aru = f — 4 on I'(t), with f(-,t) —u(-,t) € L*(I'(¢)) for almost all ¢ € [0,7]. The
H?2-regularity theory for a Laplace-Beltrami equation on a smooth manifold (see [1])
yields u € H%(T'(t)) and

lull g2y < Cell f5t) —al, )l 2 (A.14)

Due to the smoothness of S we can assume C; to be uniformly bounded w.r.t. t.
Using this and (A.11) we get

T T
IVEullg S/O lull o ey dt < C/O 1FCo8) = aC, 01220 dt < cllfI. (A.15)

From this and (A.11) the result (7.3) follows.

5. The estimate sup,e(o 1) ulla2ry) + 1IVrillo < el fllmi(s) holds. We will use the
assumptions f € H(S) and fl4—o = 0. We need a commutation formula for the
material derivative and the Laplace-Beltrami operator. To derive this, we use the
notation Vrg = (D, g,...,D,;9)T for the components of the tangential derivative and
the following identity, given in Lemma 2.6 of [9]:

(ng) = D;g— Aij(w)D;g, with Aij(w)=D;w; — vivsD;ws, mnr = (v, va)T.
Let Vrw = (Vrw; ... Viwy) € RI*d A = Vrw — npnI:C(VFW)T and e; the ¢-th
basis vector in R%. This relation can be written as (Qig) = D;g — el AVrg. For
a vector function g = (g1, ...,gq4)7 this yields (divpg) = divrg — tr(AVrg). For a
scalar function ¢ the relation yields (Vfg) = Vrg — AVrg. Taking g = Vrf thus
results in the following relation:

(Arg) — Arg = —divr (AVrg) — tr(AV3g) =t R(w,g). (A.16)

We take ¢ = ¢; (1 < i < N) in (A.5). Recall that from f € H(S) and smooth-
ness of S it follows that for b, M, A in (A.6) we have b € H*(0,T;RY) and M, A €
W2 (0, T;RV*N) and thus uy € H?(0,T;RY). Hence, differentiation w.r.t. t of
(A.5), with ¢ = ¢;, is allowed and using the Leibniz formula, ¢; = 0 and the commu-
tation relation (A.16) we obtain, with vy =y,

/ (On — Arvn)o; ds
I'(¢)

(A.17)
= f/ (iny — Arun)pidivpw ds +/ (f + fdivpw + R(w,un))¢; ds.
T'(t) T'(t)
We multiply this equation by 4;(t) and sum over i to get
1d 5 5
-—— vy ds + |[Vron|* ds (A.18)
2dt Jr) r()

= —/ (in — Arun)vydivpw ds —|—/ (f + fdivpw + R(w,uy))vn ds
I'(t) I'(t)

1
+ f/ v%divpw ds.
2 Jrw
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To treat the first term on the right-hand side, we apply partial integration and the
Cauchy inequality:

| (4n — Arun)vydivew ds|
I'(t)

. 1
< C(HUNH%%F(@) + ||VFUN||2L2(r(t))) + ZHVF'UNHQL?(F(t))'

For the second term we eliminate the second derivatives of ux that occur in R(w, uy)
using the partial integration identity [, fD?g ds = — [ D,;fD;g ds+ [, fD;grv; ds.
Thus we get

| (f + fdivew + R(w, un))vy ds|
I'(t)

< c(|lfle2ey + 1 |z lvnllz e + cllun |l m @ v e @)

. ) 1
< C(Hf||2L2(F(t)) + ||f||2L2(r(t)) + ||UN||§11(r(t)) + ||UN||%2(r(t))) + ZHVFUNH%Z(F(t))'

The two terms i”vaNHsz(F(t)) can be absorbed by the term ||vaN||2L2(F(t)) on the

left-hand side in (A.18). Using the estimates (A.8), (A.9) and a Gronwall inequality,
we obtain from (A.18)

T
sup / o ds + / / Vrow[2dsdt < C(If 13 + lon]2,). (A19)
te(0,T) JT(t) 0 T'(t)

Since uy € H?(0,T;RY), the function d;‘—tN is continuous and from (A.6) we get

d';—tN(O) = M(0)~!b(0) = 0, due to the assumption f(-,0) = 0 on I'g. Therefore,

on(z,0) = N 25(0)¢;(2,0) = 0 on T'g. Using this in (A.19) we get

j=1"dt

sup / o di+ o3 = sup / i, dt + lliw|% < Cllf 2 (A20)
te[0,T] JT(t) te[0,T] JT(t)

uniformly in N. Hence for a subsequence, again denoted by (vy)nven, we have vy — v
in H. This implies, cf. (A.12), vy — v in L?(S). Due to (A.13) and uniqueness of
weak limits we obtain v = u, i.e.

vy =4 in H (A.21)

holds. Passing to the limit in (A.20) yields, cf. exercise 7.5.5 in [13],

sup [ ddt+ il < Clflms)
t€[0,T]JT(1)

which implies

IVrillo < Cllfllas) (A.22)
and by (A.14) it also implies
sup |ullg2(r(ey) < Cllflacs)- (A.23)
t€[0,7]
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6. The estimate |illo < c|f|la1(s) holds. First we show i € H'. For arbitrary
¢ € C(8) and (v = Px,y)C(-,t) € Xn(t), with Px, () the orthogonal projection
defined in Lemma A.1, using the relation (A.17) we obtain

T T T
<ﬂN,C>=/ / unC detZ/ / ’iI:NCNdetZ/ / ONCN ds dt
0o Jr(t) 0o Jr(t) 0 JT(t)
T
= / / [(f + Aron) — (an — Apuy)divew + fdivew + R(w, uy )¢y ds dt.
0 JT()

Applying partial integration, the Cauchy inequality, Lemma A.1 and the estimates
(A.8) and (A.19), we get

1
2

T
| {in, Q) [ < cl[fllms) (/0 1Cn 122y + IV 2200 dt) <cllfllars)lCla-

Since C!(S) is dense in H, we get iy € H' and ||iin | g < c|| fll#1(s), uniformly in
N. Take ¢ € C}(S). Recall that i — @ in L*(S), cf. (A.13). Using this we get

N—o0

T T
(i, ¢) = — / / a¢ + uCdivpw dsdt = — lim / / unC + anCdivew ds dt
o Jr®) 0 JI(t)

= 1i

i (i, €) < sup [[in [l Kl < ell fllas) K-
— 00 N

Therefore, i € H" and ||il|z < c||f||g1(s) and iy — @ in H'. Thus, for vy = iy,
v = 4 we have, cf. (A.21),

vy —v in H, oy =0 in H'. (A.24)

We take test function (z,t) = t/¢r(x,t) as in step 3. Using the relation (A.17), we
get for N > k:

(65, %) + (Vron, Vi)o = (f + R(w, un), ¥)o
— [(’[LN, QZJdiVFW)Q + (VFUN, Vp(djdiVFW))o — (f, lf}dIVFW)]

For N — oo, due to uy — u in H'(S), we can replace ux by u and since u is the
solution of (A.1) the term between square brackets vanishes. Using the weak limit
results in (A.24) and applying a density argument (as in step 3) we thus obtain

(0,€) 4+ (Vro, Vré)o = (f + R(w,u), &)y forall & € H.

From vy — v in W, boundedness of the trace operator from W to L?(T) we obtain
vy (+,0) = v(-,0) in L?(Ty). Hence, due to vy|r, = 0 we obtain v|p, = 0. Therefore,
for the function v := 4, we have v € Wy is the weak solution of the surface parabolic
equation (A.1) with the right hand side f* = f + R(w,u) from L?*(S). Hence we
can apply the regularity result in (A.11) and get © € L?(S). Thus, i € L*(S) and
. 1

lillo < Cllf*llo < |1 fllo + (fOT ”uH?{?(F(t)) dt)? < C||fllm(s)- Finally note that from
this estimate and the results in (7.3), (A.22), (A.23) we obtain the HZ2-regularity
estimate in (7.4).
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