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FINITE ELEMENT TECHNIQUES FOR THE NUMERICAL
SIMULATION OF TWO-PHASE FLOWS WITH MASS TRANSPORT

CHRISTOPH LEHRENFELD AND ARNOLD REUSKEN∗

Abstract. We consider a standard sharp interface model for the fluid dynamics in a two-
phase incompressible flow, combined with a convection-diffusion model for solute transport. Some
important numerical challenges related to these models are discussed. We present a finite element
discretization method for the solute transport model. The method is based on an Eulerian approach,
i.e. computational grids are not aligned to the interface and do not follow the interface motion. The
interface motion is described using the level-set technique. We treat three numerical techniques,
namely the extended finite element method (XFEM) for the approximation of discontinuities, the
Nitsche-method for a convenient handling of interface conditions (e.g., Henry condition) and the
space-time finite element technique. The basic underlying ideas are explained. These techniques
are combined and result in the space-time Nitsche-XFEM that is used for the discretization of a
two-phase solute transport problem. Properties of this method are discussed. Results of numerical
experiments with this method are presented.

Key words. Two-phase flow, mass transport, XFEM, Nitsche method, space-time finite element
method

AMS subject classifications. 65M60, 65Z05, 76T10

1. Introduction. Two-phase incompressible flows with surface tension forces
are usually modeled by either a diffusive interface or a sharp interface model. In
this paper we restrict to the numerical simulation of the latter class of models. For
numerical simulations based on a diffusive interface model we refer to the literature,
e.g. [2, 14, 29, 1]. In systems with incompressible fluids a sharp interface model
for the fluid dynamics typically consists of the Navier-Stokes equations for the bulk
fluids with an interfacial surface tension force term on the right-hand side in the mo-
mentum equation. This model is combined with a convection-diffusion equation for
mass transport (of a solute). We consider flow regimes with a low Reynold’s num-
ber (laminar flow), a small capillary number (significant surface tension forces) and a
moderate Schmidt number, such that concentration boundary layers can be resolved.
We explain why these models typically have a very high numerical complexity. Such
flow models can not be solved reliably and accurately by the commercial codes that
are available nowadays. There is a need for more efficient and reliable numerical tech-
niques for this class of models. The development, analysis and application of such
tailor-made numerical simulation methods is an important field in numerical analysis
and computational engineering science. In this paper we restrict to a certain class
of finite element discretization methods for two-phase incompressible flows, which
has been developed in recent years. We treat three important and rather general
finite element techniques that can be used for an accurate discretization of the mass
transport equation: The extended finite element method (XFEM) for the approxi-
mation of discontinuities, the Nitsche-method for a convenient handling of interface
conditions (e.g., Henry condition) and the space-time finite element technique. We
restrict ourselves to an explanation of the main ideas of these methods and refer to
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the literature for more detailed information. Some results of numerical experiments
with these methods that were obtained using the DROPS solver [7] are presented.
This finite element code is specifically developed for testing, improving and validating
(new) tailor-made numerical methods for the simulation of sharp interface models for
two-phase incompressible flows.
The two main contributions of this paper are a discussion of major numerical chal-
lenges for this problem class and an explanation of the three above-mentioned finite
element element techniques.

2. Mathematical Model.

2.1. Fluid dynamics and mass transport. We introduce a standard mathe-
matical model for the fluid dynamics in a two-phase flow with mass transport between
the bulk phases. This model is often used in the literature, e.g., [24, 28, 31, 9]. We re-
strict ourselves to isothermal conditions, incompressible fluids and assume that there
is no change of phase.

The given domain Ω ⊂ R3, contains two different immiscible incompressible phases
(liquid-liquid or liquid-gas) which may move in time and have different material prop-
erties ρi (density) and µi (viscosity), i = 1, 2. The density and viscosity, ρi and
µi, i = 1, 2, are assumed to be constant in each phase. For each point in time,
t ∈ [0, T ], Ω is partitioned into two open bounded subdomains Ω1(t) and Ω2(t),
Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = ∅, each of them containing one of the phases.
These phases are separated from each other by the interface Γ(t) = Ω1(t)∩Ω2(t). For
convenience we assume that Ω1(t) is strictly contained in Ω, i. e., does not touch ∂Ω.
The normal velocity VΓ = VΓ(x, t) ∈ R denotes the magnitude of the velocity of the
interface Γ at x ∈ Γ(t) in normal direction. nΓ denotes the unit normal on Γ pointing
from Ω1 to Ω2. To model interfacial forces we use the following standard (Cauchy)
ansatz. The interface is considered to be a 2D continuum and on each (small) con-
nected surface segment γ ⊂ Γ there is a contact line force on ∂γ of the form σΓn.
This σΓ is called the interface stress tensor and constitutive laws for σΓ have to be
provided by surface rheology. Examples will be given in Remark 1 below. Based on
the basic conservation laws of mass and momentum the following standard model (in
strong formulation) for the fluid dynamics of a two-phase incompressible flow can be
derived: {

ρi(
∂u
∂t + (u · ∇)u) = divσi + ρig

div u = 0
in Ωi(t), i = 1, 2, (2.1)

[σnΓ]Γ = divΓ σΓ on Γ(t), (2.2)

[u]Γ = 0 on Γ(t), (2.3)

VΓ = u · nΓ on Γ(t). (2.4)

with the bulk phase stress tensor σi = −pI + µi

(
∇u + (∇u)T

)
, i. e., we consider

Newtonian bulk fluids. The vector g denotes an external (gravity) force. The operator
divΓ denotes the tangential divergence, cf. [9]. The notation [·]Γ is used to denote
the jump of a quantity across Γ. The assumption that there is no change of phase
leads to the dynamic interface condition (2.4). Viscosity of the fluids leads to the
continuity condition in (2.3). Momentum conservation in a (small) material volume
that intersects the interface leads to the stress balance condition in (2.2). To make
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the problem well-posed one needs suitable initial conditions for Γ(0) and u(x, 0) and
boundary conditions for u or σn on ∂Ω.

These Navier-Stokes equations model the fluid dynamics. Note that the evolution of
the interface Γ(t) is implicitly defined by this model.

Remark 1. We mention three important choices for the interface stress tensor σΓ.
For an extensive treatment of constitutive models for the surface stress tensor we refer
to [24]. For x ∈ Γ we define the projection P(x) = I − nΓ(x)nΓ(x)T . The operator
∇Γ = P∇ is the tangential gradient. A so-called clean interface model for surface
tension is given by σΓ = τP, with a constant surface tension coefficient τ > 0. This
results in the surface force

divΓ σΓ = divΓ(τP) = −τκnΓ (2.5)

used in (2.2). Here κ is the mean curvature of Γ, i. e., κ(x) = div nΓ(x) for x ∈ Γ.
In the remainder of this paper we restrict to this case. In certain systems, e.g. with
surfactants, the surface tension coefficient τ can not be assumed to be constant. This
then gives rise to so-called Marangoni forces and the surface tension force in (2.2) takes
the more general form divΓ σΓ = divΓ(τP) = −τκnΓ + ∇Γτ . A third example for
the interface stress tensor is one that is used to model viscous forces in the interface.
With DΓ(u) := P

(
∇Γu+(∇Γu)T

)
P the Boussinesq-Scriven constitutive law is given

by

σΓ = τP + (λΓ − µΓ) divΓ u P + µΓDΓ(u).

The constants µΓ > 0 and λΓ > 0 are called the interface shear viscosity and interface
dilatational viscosity, respectively. Other examples of interface stress tensors σΓ, e.g.
for the important case of visco-elastic interfacial behavior, are treated in [25].

We assume that one or both phases contain a dissolved species that is transported
due to convection and molecular diffusion and does not adhere to the interface. The
concentration of this species is denoted by c(x, t). A standard mathematical model
for the mass transport is as follows:

∂c

∂t
+ u · ∇c = div(Di∇c) in Ωi(t), i = 1, 2, (2.6)

[Di∇c · nΓ]Γ = 0 on Γ(t), (2.7)

c1 = CHc2 on Γ(t). (2.8)

The diffusion coefficient Di is piecewise constant and in general D1 6= D2. The inter-
face condition in (2.7) comes from mass conservation, which implies flux continuity
across the interface. The condition in (2.8) is Henry’s law, cf. Remark 2. The model
has to be completed with suitable initial and boundary conditions for the concentra-
tion c.

Remark 2. Henry’s law is a constitutive law describing the balance of chemical
potentials at the interface. Under the assumption that kinetic processes at the inter-
face are sufficiently fast, an instantaneous thermodynamical equilibrium is obtained.
Henry’s law states a linear dependence of the concentration at the interface on the
partial pressure in the fluids p = βici. The constants βi, i = 1, 2 depend on the
solute, the solvent and the temperature. The partial pressures from both sides have
to coincide. This yields

β1u1 = β2u2 (2.9)
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Liquid phase (Ω2 = ΩL) disperse phase (Ω1 = ΩB)

Density [kg/m3] 1205 1.122
Dynamic viscosity [Pas] 0.075 1.824 ·10−4

Henry weight β [1] 1 33
diffusion coeff. [m2/s] 6.224 ·10−6 1.916 ·10−5

surface tension [N/m] 0.063
bubble diameter [m] 0.004

Table 2.1
Material parameters for the example considered in this paper.

which results in (2.8) with CH = β2/β1. For further details on the modeling we refer
to [13, 28].

2.2. Example of a two-phase flow with mass transport. In this section
we describe a concrete example of a two-phase system. The fluid dynamics and mass
transport in this system can be accurately described by the models introduced in the
previous section. This example will be used in the numerical experiments in secion 8.
The example has also been considered in [4, 15, 20, 22].

In a large container filled with a water-glycerol mixture the rise of a 4mm air bubble
is considered. Initially the shape of the bubble is spherical and the bubble is placed
close to the bottom of the container. Both fluids are at rest. Due to buoyancy forces
the bubble rises up and deforms during this process until a quasi-stationary state
with a fixed ellipsoidal shape and a constant rise velocity is reached. We consider the
dissolution process of oxygen from the gaseous phase to the liquid during the rise of
the bubble. At the initial state the oxygen concentration inside the liquid mixture is
set to zero while the concentration inside the bubble is constant u0.

In Table 2.1 the material parameters for the considered substance systems are listed.
The mixture of water and glycerol consists of 18%(volume) water and 82%(volume)
glycerol. The corresponding material data are taken from the literature, cf. [4, 22].
In [22] experimental results for the considered setup are given, however, only with
respect to the fluid dynamics.

In order to characterize the predominant effects in flows and specifically two-phase
flows the dimensionless numbers Re, Ca and Sc are introduced. The Reynold’s num-
ber Re describes the ratio between inertia forces and viscous forces within a fluid. For
the case of a rising bubble it is defined as

Re = ρLUBdB/µL (2.10)

where UB is a characteristic velocity of the fluid, here the terminal rise velocity of
the bubble, and dB is the (initial) bubble diameter. Note that in the definition of
the Reynold’s number the fluid properties of the gas phase do not enter. In the
considered case we have Re ≈ 7.6 which says that inertia forces are important for
the fluid behavior, but viscosity is still sufficiently high such that the flow can be
considered as laminar.

Related to the surface tension force the dimensionless capillary number Ca is often
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used to characterize the ratio between viscous and surface tension forces:

Ca = µLUB/τ (2.11)

with τ the constant surface tension coefficient of a clean interface. For the system
considered here we have a capillary number Ca ≈ 0.14 which states that the surface
tension forces are predominant. The dominance of the surface tension forces implies
that the deformation of the bubble shape is moderate and that the resulting bubble
shape is stable.

The Reynold’s and capillary numbers describe the main characteristics of the fluid
flow behavior. For the description of the most important effects of the mass transport
in such a two-phase flow system, one typically uses the Schmidt number

Sc =
µ

ρD
(2.12)

which describes the ratio between kinematic viscosity ν = µ/ρ and diffusion D in
a fluid. In liquids the diffusion is typically orders of magnitude smaller than the
kinematic viscosity leading to high Schmidt numbers in liquid phases. Typical values
for Sc in liquids are about 1000. In gaseous phases the Schmidt number is typically of
order one. For the dissolution process in the considered example the Schmidt number
in the gaseous phase is significantly smaller than in the liquid phase. This is reflected
in considerably smaller layers attached to the interface in the liquid phase than in the
gaseous phase. The presence of thin boundary layers renders the accurate simulation
of mass transport extremely difficult. In [4] instead of the physically correct diffusivity
in the liquid, an artificial diffusivity is used to be able to prescribe the Schmidt number.
Several Schmidt numbers have been considered to investigate the dependency of the
dissolution process on the Schmidt number Sc. Here, we restrict to the case Sc = 10
in the liquid phase, for which a thin boundary layer exists the resolution of which
is, however, still possible. This corresponds to the material parameters of Table 2.1
(with an artificial value D1 = 6.224 · 10−6m2/s for the diffusion coefficient in the
liquid phase).

In Fig. 2.1 the rise of the bubble is illustrated. One can capture the main character-
istics of the dissolution of oxygen in the liquid phase and the velocity field in terms
of streamlines. The results shown are simulation results obtained with discretization
techniques discussed below.

Remark 3.
The characteristics of a two-phase flow problem as introduced above depend on the
values of the dimensionless numbers Re, Ca and Sc. A further relevant dimensionless
number is the Peclet number Pe, which is the ratio of rate of advection of a physi-
cal quantity by the flow to the rate of diffusion of the same quantity. The relation
Pe = Re ·Sc holds. In certain flow regimes there are phenomena that cause a (strong)
increase in the numerical complexity of the simulation. We briefly address a few im-
portant examples of such phenomena.
Flows with a low Reynold’s number (diffusion dominates) are laminar and typically
show a much smoother and more stable behavior than flows with a (very) large
Reynold’s number (convection dominates), which may even become turbulent. Al-
ready for one-phase incompressible flows it is well-known that the numerical simula-
tion of laminar flows is significantly easier than that of flows with a large Reynold’s
number. This obviously carries over to two-phase incompressible flows. Note that in
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t = 0.00s t = 0.10s t = 0.20s

Fig. 2.1. Concentration contours in the fluid phase at several times for the dissolution process
of oxygen from a rising air bubble in a water-glycerol mixture for Schmidt number Sc = 10 (left)
and streamlines around the bubble at t = 0.2s (right).

two-phase flows, depending on the fluid parameters, the Reynold’s numbers within
the separate phases can be very different.
For a large capillary number Ca, surface tension is small compared to viscous or in-
ertia forces acting on the interface. This typically leads to large deformations of the
interface. Such a strong dynamics of the interface is numerically difficult to handle.
A small capillary number on the other hand causes other numerical difficulties. These
are due to the fact that a small value for Ca corresponds to a large surface tension
force which strongly influences the fluid dynamics but is singular in the sense that it
acts only on the (evolving) interface.
If in the mass transport problem the Peclet number Pe is very large, this corresponds
to a convection-dominated transport problem. Then typically very sharp interior or
boundary layers occur, which are difficult to deal with numerically. For laminar flows
with a small Reynold’s number, say Re = O(1), the magnitude of the Peclet number
is of the same order as that of the Schmidt number, due to the relation Pe = Re ·Sc.
Some specific numerical challenges for two-phase flow simulations are discussed in
section 3.

2.3. One-fluid model. As a basis for numerical simulations of two-phase flows
one typically does not use a model with two Navier-Stokes equations in the two
subdomains, as in (2.1), with coupling conditions as in (2.2), (2.3) and a dynamic
condition as in (2.4). Instead one very often uses a one-fluid model, which we explain
in this section. For the numerical interface representation different techniques are
used in the literature, e.g. the Volume of Fluid (VOF) method, the level set (LS)
method and the phase field method. For a treatment of these methods we refer to
the literature, e.g. [27, 21, 31, 9]. In this paper we restrict to the level set method,
which we briefly explain. At t = 0 a smooth function φ0(x), x ∈ Ω, is chosen, which
characterizes the initial interface Γ(0) in the following way:

φ0(x) < 0 ⇔ x ∈ Ω1(0), φ0(x) > 0 ⇔ x ∈ Ω2(0), φ0(x) = 0 ⇔ x ∈ Γ(0).
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A popular choice is to take φ0 (approximately) equal to a signed distance function to
the initial interface, cf. Fig. 2.2.

Fig. 2.2. Initial level set function φ0 equals a signed distance function, 2D example.

For t > 0 the level set function values φ(x, t) are defined by keeping the values constant
along characteristics, induced by the velocity filed u. This results in the transport
equation

∂φ

∂t
+ u · ∇φ = 0 in Ω, t ≥ 0, (2.13)

which is called the level set equation. The interface Γ(t) can be characterized by values
of the level set function at time t:

Γ(t) = {x ∈ Ω : φ(x, t) = 0 } . (2.14)

The level set equation describes the evolution of the interface, hence the condition
(2.4) is not needed anymore. The jumps in the coefficients ρ and µ can be described
using the level set function φ in combination with the Heaviside function H : R→ R;
H(ζ) = 0 for ζ < 0, and H(ζ) = 1 for ζ > 0. For ease one can set H(0) = 1

2 . We
define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ),

µ(φ) := µ1 + (µ2 − µ1)H(φ).
(2.15)

The continuity condition in (2.3) is easy to satisfy by restricting to numerical approx-
imations for the velocity that are continuous. The important stress balance condition
(2.2) can be reformulated as a localized force term in the momentum equation. Based
on these observations the model (2.1)-(2.4) can be reformulated as follows: ρ(φ)

(∂u

∂t
+ (u · ∇)u

)
= divσ(φ) + ρ(φ)g + δΓ divΓ σΓ

div u = 0
in Ω, (2.16)

∂φ

∂t
+ u · ∇φ = 0 in Ω, (2.17)

with σ(φ) := −pI +µ(φ)
(
∇u + (∇u)T

)
, i.e., σ = σi in Ωi(t), and δΓ a suitable Dirac

delta function that localizes the force divΓ σΓ on the interface. Note that in (2.16)
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we now have one Navier-Stokes equation in the whole domain Ω. Hence, this model
is called the one-fluid model. Compared to the two Navier-Stokes equations in (2.1)
the Navier-Stokes equation in (2.16) is more complicated, due to the discontinuities in
viscosity µ and density ρ and the localized interface force term δΓ divΓ σΓ. To obtain
a well-posed model one has to add suitable boundary and initial conditions for φ and
u. Note that the initial condition for φ determines the initial interface Γ(0), due to
(2.14). This one-fluid model forms the basis for many numerical simulations of the
fluid dynamics in two-phase incompressible flow systems in the literature.

In this paper we restrict to finite element discretization methods. For these one needs
a suitable variational formulation of the partial differential equations. Since in the
part on numerical methods below we focus on the mass transport equation, we only
treat a variational formulation of the mass transport model (2.6)-(2.8). This is done
in section 5. For suitable variational formulations of the one-fluid model, consisting
of the Navier-Stokes equations (2.16) and the level set equation (2.17), we refer to the
literature, e.g. [9].

3. Numerical challenges. The two-phase flow models introduced above pose
enormous challenges to numerical simulation tools. Such flow models can not be
solved reliably and accurately by the commercial codes that are available nowadays.
Below we address a few causes of the very high numerical complexity of this problem
class.

Evolving unknown interface. The interface evolution is determined by the dy-
namic condition VΓ = u ·nΓ. The interface is a geometric object and it turns out that
an accurate numerical approximation of this object and its evolution is a big chal-
lenge. In case of geometric singularities (e.g. droplet break up or collision) it becomes
even more complicated. An accurate interface approximation is of major importance
for the two-phase flow simulation, in particular in systems where the surface tension
is a driving force.

Discretization of surface tension force. In many systems the surface tension
force has a strong effect on the fluid dynamics. Hence, an accurate discretization of
divΓ σΓ is essential for accurate simulation results. This surface tension force acts only
on the (unknown) interface and depends on the curvature of the interface, cf. (2.5).
An accurate discretization of the surface tension force turns out to be a very difficult
task.

Moving discontinuities. Many quantities are discontinuous across the (evolving)
interface. For example, the density and viscosity values have jumps across the inter-
face. Due to surface tension forces the pressure is discontinuous across the interface.
The force balance (2.2) and a jump in the viscosity across the interface typically in-
duce a discontinuity across the interface of the normal derivative of the velocity. Due
to the Henry condition (2.8) the concentration c is discontinuous across the interface.
For an accurate numerical treatment of such moving discontinuities special numerical
techniques are required.

Transport processes on moving manifolds. If surfactants are considered, this
leads to a transport equation on the (evolving) interface. The numerical solution of
partial differential equations on moving manifolds is a difficult topic, which has been
addressed in the literature only recently.
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Resolution of boundary layers. In many applications boundary layers form at
the interface of the two-phase system. The resolution of these boundary layers is very
demanding. In [4] the dependency of the boundary layer thickness on the Schmidt
number has been investigated for the setting described above and a correlation of the
form Sc−0.65 · 0.5mm has been observed. The findings in that paper imply a ratio
between the bubble diameter and the thickness of the boundary layer of 8 for Sc = 1
up to 400 for Sc = 1000. Hence, for realistic Schmidt numbers (Sc ≈ 1000), the
resolution of boundary layers with three-dimensional simulation tools is extremely
difficult. For these realistic Schmidt numbers the Peclet number Pe = Re · Sc is very
large and thus the transport problem is strongly convection dominated, which causes
problems with respect to the stability of the finite element discretization. Typically
this requires some form of convection stabilization.

Numerical solution of discrete problems. After implicit discretization in time
and discretization in space one obtains a very large nonlinear system of equations
(for the discrete quantities) in each time step. In simulations by far most of the total
computing time is needed for solving these large nonlinear systems. For efficiency
reasons one has to use iterative solvers that take advantage of certain structural
properties of the problem. Related to the development of such iterative solvers there
are many open problems.

Linearization. The flow model contains several strongly nonlinear couplings. In
the model (2.16)-(2.17) the transport of the level set function depends on the flow
field u. The latter is determined from the Navier-Stokes equation (2.16), but in this
equation there is a strong dependence on (the zero level of) the level set function
φ. This coupling between fluid dynamics, (2.16), and interface evolution, (2.17), is
strongly nonlinear. If mass transport is considered and if there is a dependence of τ on
the dilute concentration, i. e., τ = τ(c), this coupling in two directions between fluid
dynamics and mass transport is also in general strongly nonlinear. The same holds
for a coupling in two directions between fluid dynamics and surfactant transport, i. e.,
τ = τ(S), where S is the surfactant concentration on the evolving interface. The
topic of development of effcient and robust linearization techniques is an important
one.

For dealing with these challenges, special numerical approaches have been developed.
In the remainder of this paper we treat three numerical techniques in more detail,
namely:

• XFEM for nonaligned discontinuities (section 4),

• Nitsche method for interface conditions (section 5),

• Space-time FEM. (section 6).

All three techniques are based on rather general numerical concepts. Our aim is to
explain the basic ideas of these concepts and avoid technical details. In section 7
these techniques are combined and result in a very efficient numerical method for
the simulation of the mass transport equation. This type of advanced finite element
methods for the mass transport equations have been introduced in the literature only
very recently, see for instance [16, 17].

4. XFEM for nonaligned discontinuities. In interface capturing methods,
like VOF and the level set method, the interface is given implicitly and typically not
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aligned with the grid or triangulation that is used in the discretization of the flow
variables. This nonalignment causes severe difficulties for the discretization methods,
because certain important quantities (pressure, solute concentration) are discontin-
uous across the interface. In the past decade, in the finite element literature the
extended finite element method (XFEM), also called cut finite element method, has
been developed to overcome these difficulties. There is an extensive literature on the
XFEM, cf. [6, 8, 26, 10, 12] and the references therein. We outline the basic idea
of this technique for the approximation of the discontinuous solutions such as the
pressure p or the solute concentration c.

It is known that the approximation of a smooth function with a discontinuity across
the nonaligned interface with piecewise polynomials gives only poor approximation
results. The approximation error (in the L2 norm) scales with

√
h independent of

the polynomial degree. To overcome this, we introduce a special finite element space.
The main idea is depicted in Fig. 4.1. We first consider the simpler problem of

Ω+
1

Ω+
2

Γ

Ω−
2

Ω−
1

ΩΓ

ϕj

ϕx
j

Fig. 4.1. Extended finite element space as a sum of fictitious domain spaces (left) and sketch
of a standard and an extended basis function (right), 2D example.

approximating a function w1 in the domain Ω1. The function in Ω1 has a smooth
extension w̃1 into Ω+

1 , the domain of all elements (triangles in Fig. 4.1) which have
some part in Ω1. For the approximation of this smooth extension w̃1 we use standard
piecewise linears in Ω+

1 and obtain the usual good approximation of w̃1 and thereby
also of w1. We apply the same procedure on Ω+

2 and can thus construct a good
approximation of a smooth function w which is discontinuous across Γ. For this
procedure we need one degree of freedom per vertex except for vertices in ΩΓ, the
domain of elements which are intersected by the interface. Here, we need two degrees
of freedom per vertex, one for each domain (Ω+

1 and Ω+
2 ). The corresponding finite

element space is

QΓ
h = R1Qh ⊕R2Qh

with Qh the finite element space of piecewise linears and Ri the restriction operator
to Ωi. Note that dim(RiQh) coincides with the number of vertices in Ω+

i . This finite
element space and especially its dimension depends on the location of the interface
Γ.

The finite element space QΓ
h can also be characterized as an extension of the standard

finite element space Qh, i.e., QΓ
h = Qh ⊕ Qx

h, with a suitable space Qx
h, which is
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spanned by so-called enrichment functions. We explain how the basis functions of Qx
h

are constructed. To this end, consider a basis function ϕj ∈ Qh corresponding to a
vertex xj in ΩΓ. Without loss of generality assume the vertex xj lies in Ω1. Then
we define the enrichment function ϕx

j = R2ϕj . For a vertex in Ω2 we accordingly
define ϕx

j = R1ϕj . This choice gives the locality property of the new basis functions
ϕx
j (xk) = 0 for all vertices xk. The basis functions ϕj and ϕx

j corresponding to a

vertex xj in ΩΓ are depicted in Fig. 4.1 (right) for a 2D example. In practice the
interface Γ is replaced by a numerical approximation Γh.

This XFEM has been succesfully applied in the simulation of two-phase flow fluid
dynamics. We illustrate this for a toluene-water rising droplet system. The results
are taken from [9] and illustrate the effect of using the XFEM instead of a standard
FEM for discretization of the pressure variable. We refer to section 7.11.2 in [9] for
a precise description of the flow system and the numerical solver components used.
The pressure is either discretized using the XFEM space QΓh

h or the standard finite
element space Qh consisting of piecewise linears. Fig. 4.2 shows the initial shape of
the droplet and the droplet shapes after 10 time steps for both cases.

Fig. 4.2. Initial droplet shape (left) and after 10 time steps for the XFEM case (middle) and
the standard FEM case (right).

Fig. 4.3. Velocity field at interface for the
XFEM case.

Fig. 4.4. Velocity field at interface for the
standard FEM case.

While the interface is smooth using the extended pressure finite element space, it
shows many “spikes” in the case of the standard pressure space. These spikes are
of course non-physical and only caused by numerical oscillations at the interface,
so-called spurious velocities, which are shown in Fig. 4.4. The velocity field for the
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XFEM case is smooth showing the characteristic vortices, cf. Fig. 4.3. Note that
the scaling of the color coding in both figures is very different, with a maximum
velocity of 5 · 10−3m for the extended pressure space compared to 5 · 10−1m for the
standard pressure space. These results clearly show, that for this realistic two-phase
flow example the standard pressure space Qh is not suitable, whereas the extended
pressure space QΓh

h yields satisfactory results.

In the numerical simulations of two-phase flows presented in this paper we use the
XFEM for the discretization of the (discontinuous) pressure variable and the (discon-
tinuous) solute concentration c. In the literature one can also find extended finite
element techniques for the discretization of the velocity, which is nonsmooth across
the interface because it has a kink behavior. Such a so-called kink enrichment method
for the velocity is treated in e.g. [8]. In the simulation of the two-phase fluid dynamics,
however, such an enrichment of the velocity finite element space is not often used in
practice, cf. [8] for an explanation of this.

Remark 4. The finite element space QΓh

h depends on the location of the interface Γh.
Thus, if the interface evolves the finite element space QΓ

h and its dimension changes.
This causes difficulties for the numerical treatment of unsteady problems. A solution
to this is discussed in section 6.

Remark 5. The use of the XFEM enrichment functions, which results in an accurate
discretization, causes problems for the solution of the linear system arising from the
discretization. The key problem is that the conditioning of the resulting matrix de-
pends on the position of the interface with respect to the triangulation. To overcome
this problems stabilization techniques have been introduced in [5, 12, 32]. For the dis-
cretization of a (Navier-)Stokes problem with an enrichment of the pressure space a
stabilization is used to guarantee LBB-stability for the pair of finite element spaces in
[12]. In [5, 32] stabilized discretizations for interface problems as they appear for mass
transport problems are discussed. In [18] it is shown that for the solution of mass
transport problems optimal iterative strategies can be designed without additional
stabilizations.

5. Nitsche method for interface conditions. The Nitsche method is a gen-
eral finite element technique for enforcing boundary or interface conditions in a weak
sense. The technique can be used in different applications, cf., e.g. [10, 11]. In this
section we explain the basic idea of the Nitsche method for the mass transport problem
(2.6)-(2.8) for the case that the interface is stationary. The method allows an accurate
and convenient treatment of the Henry interface condition. The generalization to the
case of an evolving interface is briefly addressed in section 7.

The Nitsche method can only be applied in a variational setting. Therefore, we first
need a well-posed variational formulation of the mass transport equation. The Henry
condition can be reformulated in the form [βc]|Γ = 0, with a suitable piecewise con-
stant βi > 0 in Ωi, i = 1, 2. We assume that the velocity field u is given. Furthermore,
for simplicity we assume that the dilute concentration has to satisfy the homogeneous
boundary condition c = 0 on ∂Ω. For the variational formulation we need suitable
scalar products and (Sobolev) spaces. Here we outline the key components, details
are given in section 10.2 in [9]. We define a function space

V := { v ∈ L2(Ω) : v|Ωi
∈ H1(Ωi), i = 1, 2, v|∂Ω = 0, [βv]|Γ=0 }.
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It is important to note that the Henry condition is put as an essential condition in
the definition of this space. On V we use the weighted scalar products

(u, v)0 := (βu, v)L2 =

∫
Ω

βuv dx, (u, v)1,Ω1∪Ω2
:=

2∑
i=1

βi

∫
Ωi

∇ui · ∇vi dx

Related to the transport problem we define the bilinear form

a(u, v) := (Du, v)1,Ω1∪Ω2
+ (u · ∇u, v)0, u, v ∈ V. (5.1)

Here D denotes the piecewise constant diffusion coefficient. A suitable variational for-
mulation of the mass transport problem, with a source term f , is as follows: determine
c = c(·, t) ∈ V such that for t ∈ [0, T ]

(
∂c

∂t
, v)0 + a(c, v) = (f, v)0 for all v ∈ V (5.2)

holds. The derivative ∂c
∂t is defined in a suitable weak sense (not specified here).

It can be shown that this is a well-posed weak formulation of the mass transport
equation.

We introduce a Nitsche based finite element discretization of this problem. We assume
that the interface is nonaligned, and therefore one has to be careful with the choice
of the finite element space. In section 4 it is explained that the XFEM space QΓ

h is
a suitable finite element space for the discontinuous dilute concentration c. It is very
difficult (often even impossible), in particular for the case of an evolving interface,
to incorporate the Henry interface condition [βc]|Γ in this finite element space. The
Nitsche technique allows us to use the space QΓ

h without the Henry interface condition.
The Henry condition is enforced, in a weak sense, by changing the bilinear form in
the variational problem. Before we introduce this modified bilinear form we need a
suitable averaging of functions across the interface. We consider a triangulation Th
consisting of tetrahedra T , with hT := diam(T ) and h := max {hT : T ∈ Th }. For
any tetrahedron T ∈ Th let Ti := T ∩Ωi be the part of T in Ωi. We define the weighted
average

{v} := κ1(v1)|Γ + κ2(v2)|Γ, (κi)|T :=
|Ti|
|T | , (5.3)

where vi denotes the restriction of a function v to Ωi. We now introduce the modifi-
cation of the bilinear form in (5.1):

ah(u, v) := (Du, v)1,Ω1∪Ω2 + (u · ∇u, v)0 +NΓ
h (u, v) with

NΓ
h (u, v) := −([βu], {D∇v · nΓ})Γ − ({D∇u · nΓ}, [βv])Γ + λh−1([βu], [βv])Γ,

(5.4)

with λ > 0 a parameter. Here (·, ·)Γ denotes the L2 scalar product on the interface Γ
(in practice replaced by an approximation Γh). In this modified bilinear form the term
({D∇u · nΓ}, [βv])Γ is added for consistency reasons, the term ([βu], {D∇v · nΓ})Γ

is included to maintain symmetry and the term λh−1([βu], [βv])Γ is used because we
want to satisfy the Henry condition [βc]|Γ = 0 (approximately). The latter term
penalizes the jump [βu]|Γ. An important property of this Nitsche method is that the
penalty term is consistent: it vanishes if we insert the solution c of the continuous
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problem. The Nitsche-XFEM discretization of the mass transport problem (5.2) is as
follows: determine ch = ch(·, t) ∈ QΓ

h such that for t ∈ [0, T ]

(
∂ch
∂t

, vh)0 + ah(ch, vh) = (f, vh)0 for all vh ∈ QΓ
h. (5.5)

In practice the integrals (and average) over Γ that occur in this equation are replaced
by the corresponding ones over Γh. Note that (5.5) is a discretization only w.r.t. the
space variable. The time discretization can be realized by some finite differencing
(method of lines). In section 6 we explain an alternative for this “first space then
time discretization” approach which is also suitable for the case where the interface
is not stationary. Again, we emphasize that the Henry condition is not built into
the finite element space QΓ

h, but weakly enforced by a suitable modification of the
bilinear form. The performance of the method turns out to be rather robust w.r.t.
the choice for the stabilization parameter λ. Error analysis for this method has been
developed and yields that for the discrete solution ch an optimal error bound of the
form ‖c(·, t)− ch(·, t)‖L2(Ω) ≤ ch2 holds [23]. Also bounds for the error in the Henry

condition are available and of the form ‖[βch(·, t)]Γ‖Γ ≤ ch3/2.

6. Space-time formulation of parabolic problems. The solution of prob-
lems with moving interfaces in an Eulerian framework is challenging. Between time
steps some degrees of freedom switch phases. The derivation of appropriate discrete
equations for these unknowns is not straightforward. The solution can be discontinu-
ous across the interface. Hence, an approximation of the time derivative by some kind
of finite difference stencil, as it is typically done in the method of lines, is not feasible.
One way to deal with this problem is a formulation in space-time. The domain and
the time interval define a so-called time slab on which the new formulation of the
problem is derived. In the space-time setting the (space-time) interface is station-
ary and the time derivate can naturally be defined within the separate space-time
subdomains.

We explain the basic concept of the space-time finite element method for a simpler
problem with a smooth solution, namely the parabolic model problem

∂u

∂t
−∆u = f in Ω, t ∈ [0, T ],

u(·, 0) = u0 in Ω,

u(·, t) = 0 on ∂Ω.

(6.1)

For simplicity we assume f to be independent of t. We use a partitioning of the time
domain 0 = t0 < t1 < . . . < tN = T , with a fixed time step size ∆t = T/N , i. e., tj =
j∆t. This assumption of a fixed time step is made to simplify the presentation, but
is not essential for the method. Corresponding to each time interval In := (tn−1, tn)
we have a consistent triangulation Tn of the domain Ω. This triangulation may vary
with n. Let Vn be a finite element space of continuous piecewise polynomial functions
corresponding to the triangulation Tn, with boundary values equal to zero. For 1 ≤
n ≤ N and a nonnegative integer k we define, on each time slab Qn := Ω × In, a
space-time finite element space as follows:

Vkn :=

 v : Qn → R : v(x, t) =

k∑
j=0

tjφj(x), φj ∈ Vn

 , (6.2)
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for 1 ≤ n ≤ N . The corresponding space-time discretization of (6.1) reads: Determine
uh such that for all n = 1, 2, . . . , N , (uh)|Qn ∈ Vkn and∫ tn

tn−1

(∂uh
∂t

, vh
)
L2 + (∇uh,∇vh)L2 dt+ ([uh]n−1, vn−1,+

h )L2

=

∫ tn

tn−1

(f, vh)L2 dt for all vh ∈ Vkn,
(6.3)

where (·, ·)L2 = (·, ·)L2(Ω),

[wh]n = wn,+
h − wn,−

h , w
n,+(−)
h = lim

s→0+(−)
wh(·, tn + s),

and u0,−
h ∈ V1 an approximation of the initial data u0. Such space-time finite ele-

ment methods for parabolic problems are well-known in the literature. For an anal-
ysis and further explanation of this discretization method we refer to the literature,
e.g. [30].

As examples, we consider two important special cases, namely k = 0, k = 1. If k = 0
then vh ∈ Vkn does not depend on t. Define unh(x) := uh(x, t), t ∈ In. The method
(6.3) for determining unh ∈ Vn reduces to the implicit Euler scheme:

1

∆t
(unh − un−1

h , vh)L2 + (∇unh,∇vh)L2 = (f, vh)L2 for all vh ∈ Vn.

We now consider k = 1. Then on Qn the function unh can be represented as unh(x, t) =
ûnh(x) + 1

∆t (t− tn−1)ũnh(x), with ûnh, ũ
n
h ∈ Vn. These unknown functions are uniquely

determined by the coupled system

(ûnh + ũnh, vh)L2 + ∆t
(
∇ûnh +

1

2
∇ũnh,∇vh

)
L2 = (un−1,−

h , vh)L2 + ∆t(f, vh)L2 ,

1

2
(ũnh, vh)L2 + ∆t

(1

2
∇ûnh +

1

3
∇ũnh,∇vh

)
L2 =

1

2
∆t(f, vh)L2 , (6.4)

for all vh ∈ Vn, cf. [30]. Note that although the discretization is in d+1 dimension, if d
is the dimension of the spatial domain, the method has a time-stepping structure such
that the computational complexity essentially depends (only) on the dimension of the
underlying spatial finite element space Vn. The considered method is often called a
Discontinuous Galerkin (DG) method (in time) as the space-time finite element space
does not ensure continuity in time in a strong sense, but only in a weak sense. As a
time integration method the space-time DG method is stable and has good smoothing
properties. The big advantage, however, is the great flexibility that comes with the
space-time formulation. This flexibility is used to incorporate the more difficult case
where for instance diffusion coefficients are discontinuous across a moving interface
and the finite element space is no longer independent of time. We explain this in the
next section.

7. Space-time Nitsche-XFE method. The discretization of a parabolic prob-
lem with a moving interface is significantly more difficult than for the model problem
discussed before. We apply the concepts of the XFEM space and the Nitsche tech-
nique in a space-time setting, which results in a suitable discretization method for the
mass transport problem with a moving interface. We only sketch the components of
such a discretization and refer to [17] for details.
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Fig. 7.1. Sketch of space time slabs and relevant areas for the space-time XFEM.

In order to capture the moving discontinuities a generalization of the enrichment
procedure of the XFEM space as described in section 4 is needed. We take k = 1
(linear finite elements) in (6.2) and apply the enrichment procedure on a space-time
slab, cf. Fig. 7.1. In the enrichment special discontinuous space-time basis functions,
which depend on the interface position in space-time, are added to the original finite
element space V1n. This is depicted in Fig. 7.1: the marked space-time elements are
cut by the (space-time) interface and corresponding to every degree of freedom in
these elements an enrichment function is added. This can lead to a different number
of unknowns on different time slabs. This, however, is not a problem due to the weak
coupling introduced by the Discontinuous Galerkin formulation in time.

The (weak) enforcement of the interface condition for the stationary interface as
described in section 5 has a straightforward extension to the space-time domain. The

corresponding contribution of the Nitsche integrals takes the form
∫ tn
tn−1

N
Γ(t)
h (u, v) dt,

with N
Γ(t)
h as in (5.4).

The resulting discrete problem does not allow for a block structure as in (6.4) where
only space integrals have to evaluated. This is due to the fact that the problem
parameters D and β as well as the ansatz and test function depend on space and
time. Instead, integration on space-time geometries has to be used.

Remark 6. Due to the discontinuous coefficients and shape functions the space-
time formulation is posed on space-time subdomains Qn

i =
⋃

t∈[tn−1,tn] Ωi(t). To

implement a method with integrals of the form
∫
Qn

i
· dxdt one needs special strategies

for the numerical integration. We do not discuss this here but refer to [16] for more
information on this.

To summarize, a very efficient and accurate finite element discretization of the mass
transport problem (2.6)-(2.8) is obtained, by using a variational formulation in space-
time in which the Henry condition is treated by the Nitsche technique and the finite
element space is built by the space-time XFEM. A rigorous error analysis of this
method, resulting in second order error bounds both with respect to the space and
time mesh size, is given in [17].
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8. Numerical simulation of mass transport problem. We discuss the re-
sults of numerical simulations of the two-phase flow system described in section 2.2.
The simulation of the fluid dynamics of this flow problem has also been considered
in [20, 4, 15]. The numerical simulation including mass transport, with Sc = 10, has
further been investigated in [4, 15]. For the fluid dynamics of the system experiments
have been carried out in [22]. The methods described above are implemented in the
software package DROPS, cf. [7]. For the rise velocity and the pathlength of the
barycenter of the bubble we get values of 0.112m/s and 21.44mm, respectively. The
final shape of the bubble has an aspect ratio of maximum height to maximum width
of 0.88. All three values are in good agreement with the numerical and experimental
results in [4, 15, 20, 22]. Based on this and a systematic validation study of fluid
dynamics simulations with DROPS in [3, 19] we conclude that the flow field obtained
with DROPS is sufficiently accurate to serve as a reliable input for the simulation of
the mass transport problem, which we discuss next.

0.84u0 1.0u0

u(t = 0.000s) u(t = 0.001s) u(t = 0.010s) u(t = 0.020s) u(t = 0.040s)

u(t = 0.080s) u(t = 0.120s) u(t = 0.160s) u(t = 0.200s) v(t = 0.200s)

Fig. 8.1. Concentration distribution inside the gaseous bubble.

We consider the numerical solution of the described system with a discretization
combining the space-time formulation, the extended finite element technique (in space-
time) and the Nitsche method. Piecewise linear functions in space and time are
used and a Nitsche stabilization parameter λ = 20. In Fig. 2.1 the evolution of
concentration isolines in the liquid for the simulation at different time stages is shown.
The corresponding concentration fields inside the bubble at different times and the
streamlines corresponding to the velocity (relative to the bubble rise velocity) at
T = 0.2 are shown in Fig. 8.1. Note that the scalings in Fig. 2.1 and Fig. 8.1 are
very different due to the large Henry number.

In Fig. 8.2 we consider the concentration along straight lines which are crossing the
center of the bubble at T = 0.2. We consider the line through the tip of the bubble
(0◦), a line through the equator (90◦) and one line at a 135◦ angle from the tip. On
those lines we plotted the concentration. Due to the Henry interface condition the
concentration has jumps across the interface such that the concentration inside the
bubble is 33 times larger than outside. We adapted the scaling for the concentration
inside and outside the bubble. The scaling is chosen such that a continuous line in
the plot corresponds to a concentration field fulfilling the Henry interface condition.
We observe in the plot that this condition is fulfilled very accurately. We consid-
ered the data given in [15, Figure 9.35] for a comparison. The results are in good
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Fig. 8.2. Concentration along lines for angles 0◦, 90◦ and 135◦ computed with DROPS (lines)
and comparison data from [15] (triangles).

agreement.

The two-phase flow problem considered in this section has a dynamically evolving
and deforming interface with a complex flow structure and a convection-dominated
transport of the solute. The finite element techniques used in the simulation of the
fluid dynamics and the solute transport provide an efficient solution strategy which
has been proven to be robust with respect to the interface position an the moving
discontinuities. This can be concluded from the results presented above and from other
simulation studies with the DROPS package, cf. [7]. The techniques are flexible, in
the sense that these can be combined with adaptivity concepts (local grid refinement
close to the interface) and with higher order discretizations. This flexibility and the
fact that for the space-time Nitsche-XFEM for the mass transport problem there is a
rigorous second order error bound available, are advantages of this approach compared
to the finite volume based method used in [15].

9. Conclusion and outlook. In this paper we outlined important numerical
challenges in the numerical simulation of sharp interface models for two-phase incom-
pressible flows. Three important and relatively new finite element techniques (XFEM,
Nitsche, space-time FEM) are explained and combined for the discretization of the
mass transport equation. As far as we know, the resulting space-time Nitsche-XFE
method is the only Eulerian discretization method for this type of solute transport
equation which has a proven second order accuracy.
In our opinion the development of satisfactory numerical simulation tools for two-
phase incompressible flows is still in its infancy. Hence an outlook discussion can
be very extensive. Here we restrict ourselves to a few brief comments on topics for
further research.
We applied the space-time XFEM approach to the solute transport equation. The
application of the space-time technique for the simulation of the fluid dynamics prob-
lem (Navier-Stokes model) appears to be a promising approach. This, however, has
not been studied in the literature so far and is a topic of current research.
Almost nothing is known concerning accurate simulation of two-phase flows with more
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complex interfacial rheology, for example, Newtonian bulk fluids with interfaces that
have (due to surfactants on nano-particles) viscous or visco-elastic behavior. Such
systems are very important in applications, cf. [24, 25].
We are not aware of any literature in which numerical methods for a realistic model
of solute transport combined with reaction processes are studied.
A general key difficulty in this field is the validation of numerical methods. Only
very few papers are available, cf. [19], in which benchmark results for two-phase flow
simulations are presented.
For laminar one-phase incompressible flows there is an extensive literature on error
analyses of finite element discretization methods. For two-phase incompressible flows
(almost) no rigorous discretization error analysis is known.
Time and space discretization results in a very large and strongly nonlinear system
of equations for the discrete unknowns. If one applies standard (black box) itera-
tive solvers, the computing times, even on modern architectures, are unacceptable.
Hence, special solution methods, that make use of problem specific structures are
needed. Such solvers are not avaible, yet.
Discrete linear systems arising from discretizations of two-phase flows are already chal-
lenging due to high contrasts in material parameters (density, viscosity, diffusivity).
If additionally non-standard components such as extended finite element or space-
time finite element spaces come into play, the iterative solution of linear systems gets
extremely difficult. Only for special cases satisfying solution strategies are known in
the litature, e.g. [5, 12, 18].
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Science Foundation (DFG) within the Priority Program (SPP) 1506 “Transport Pro-
cesses at Fluidic Interfaces”.
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