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Abstract. We consider a stationary Stokes interface problem. In the discretization the interface
is not aligned with the triangulation. For the discretization we use the P1 extended finite element
space (P1-XFEM) for the pressure and the standard conforming P2 finite element space for the
velocity. Since this pair is not necessarily LBB stable, a consistent stabilization term, known from
the literature, is added. For the discrete bilinear form an inf-sup stability result is derived, which
is uniform with respect to h (mesh size parameter), the viscosity quotient µ1/µ2 and the position
of the interface in the triangulation. Based on this, discretization error bounds are derived. An
optimal preconditioner for the stiffness matrix corresponding to this pair P1-XFE for pressure and
P2-FE for velocity is presented. The preconditioner has block diagonal form, with a multigrid
preconditioner for the velocity block and a new Schur complement preconditioner. Optimality of
this block preconditioner is proved. Results of numerical experiments illustrate properties of the
discretization method and of a preconditioned MINRES solver.
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1. Introduction. In this paper we treat the following Stokes problem on a
bounded polygonal domain Ω in d-dimensional Euclidean space (d = 2, 3): Find a
velocity u and a pressure p such that

−div (µ(x)D(u)) +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

with D(u) := ∇u + (∇u)T and a piecewise constant viscosity µ = µi > 0 in Ωi. The
subdomains Ω1, Ω2 are assumed to be Lipschitz domains such that Ω1 ∩ Ω2 = ∅ and
Ω = Ω1 ∪Ω2. By Γ we denote the interface between the subdomains, Γ = ∂Ω1 ∩ ∂Ω2.
For a corresponding weak formulation we introduce the spaces V := H1

0 (Ω)d and

L2
µ(Ω) := { p ∈ L2(Ω) |

∫
Ω

µ−1p(x) dx = 0 }. (1.2)

The scaling with µ in the Gauge condition in (1.2) is convenient for obtaining estimates
that are uniform w.r.t. the jump in the viscosity, cf. [16]. The variational problem
reads as follows: given f ∈ V ′ find (u, p) ∈ V × L2

µ(Ω) such that{
1
2 (µD(u), D(v))0,Ω − (div v, p)0,Ω = f(v) for all v ∈ V,

(div u, q)0,Ω = 0 for all q ∈ L2
µ(Ω).

(1.3)

Here (·, ·)0,Ω denotes the L2 scalar product on Ω. This is a well-posed weak formula-
tion [9].
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An important motivation for considering this type of Stokes equations comes from
two-phase incompressible flows. Often such problems are modeled by Navier–Stokes
equations with discontinuous density and viscosity coefficients. The effect of interface
tension can be taken into account by using a special localized force term at the inter-
face [12]. If in such a setting one has highly viscous flows then the Stokes equations
with discontinuous viscosity are a reasonable model problem for method development
and analysis. A well-known technique for capturing the unknown interface is based on
the level set method, cf. [22, 5, 17] and the references therein. If the level set method
is used, then typically in the discretization of the flow equations the interface is not
aligned with the grid. This causes difficulties with respect to an accurate discretiza-
tion of the flow variables. Recently, extended finite element techniques (XFEM; also
called cut finite element methods) have been developed to obtain accurate finite el-
ement discretizations, cf. for example [8, 13, 12]. Concerning theoretical analysis of
XFEM applied to such Stokes interface problems little is known. In fact, the only
two papers with rigorous analysis of XFEM applied to Stokes interface problems we
know of are [13, 4]. In these papers XFE-spaces are used for both the pressure and
velocity spaces; weak continuity of the velocity across the interface is enforced using
a Nitsche method. Zahedi et al. [13] use the isoP2-P1 pair as underlying spaces, and
to avoid instabilities due to “small cuts” the ghost penalty stabilization [3] is applied
in a neighborhood of the interface. Cattaneo et al. [4] consider the P1bubble-P1 pair,
and apply the Brezzi-Pitkäranta stabilization [2] in the vicinity of the interface. They
also consider the case of an underlying unstable P1-P1 pair and apply the Brezzi-
Pitkäranta stabilization on the entire domain. Both in [13] and [4], for the discrete
bilinear forms inf-sup stability results are derived which are uniform with respect to
h (mesh size parameter), the position of the interface in the triangulation and, in the
case of [13], also with respect to the viscosity quotient µ1/µ2. Based on this, optimal
discretization error bounds are derived. Furthermore, in [13] a uniform (w.r.t. the lo-
cation of the interface) condition number bound for the stiffness matrix is derived with
the help of a further stabilization of the velocity space. In [4] results on conditioning
of the Schur complement are given.

In this paper we analyze an XFEM that differs from the ones considered in [13, 4].
In the discretization that we consider, the pressure variable is approximated in a
conforming P1-XFE space (as in [13, 4]), but the velocity is approximated in the
standard conforming P2-FE space. In the discretization we use the same ghost penalty
stabilization technique as in [13]. For the discrete bilinear form we derive an inf-sup
stability result. Similar to [13], a key property of this result is that the stability
constant is uniform with respect to h, the viscosity quotient µ1/µ2 and the position
of the interface in the triangulation. Based on this result and interpolation error
estimates, discretization error bounds are derived. Due to the use of the standard P2-
FE velocity space the error bound is not optimal if the normal derivative of the velocity
is discontinuous across the interface (which typically occurs if µ1 6= µ2). However, the
uniform stability result also holds if the P2-FE velocity space is replaced by a larger
conforming P2-XFE space with better approximation properties, cf. Remark 1 below.
The reason why we consider the standard P2-FE velocity space is that in realistic
two-phase flow applications, with small viscosity jumps, the pair P1-XFE for pressure
and P2-FE for the velocity has shown to work satisfactory [19, 7]. It turns out that
the poor asymptotic approximation quality of the velocity in the P2-FE space does
not dominate the total error on the meshes used in practice. We will illustrate this in
a numerical experiment in section 8.
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Apart from the different spaces considered in this paper (compared to [13, 4]) we
mention the following other two main new contributions of this paper. The first one
is related to the linear algebra part. In [13] a condition number bound of the form
c(µmax/µmin)2h−2 is derived for the stiffness matrix. In [4] an h-independent bound
on the condition number of the Schur complement is derived. The dependence of this
bound on the viscosity ratio is not studied. In both papers the topic of how to con-
struct a good preconditioner for the stiffness matrix is not addressed. In this paper
we derive an optimal preconditioner for the stiffness matrix corresponding to the pair
P1-XFE for pressure and P2-FE for velocity. The preconditioner has block diagonal
form, with a multigrid preconditioner for the velocity block and a new Schur com-
plement preconditioner. Optimality of this Schur complement preconditioner w.r.t.
h, µ and how the interface intersects the triangulation is proved. This optimality
is illustrated with results of numerical experiments with a preconditioned MINRES
solver.

The other new contribution is a certain uniform LBB stability result. In our
analysis, and also in the papers [13, 4], an LBB stability result is needed that has
a certain uniformity property with respect to the varying (for h ↓ 0) subdomain
consisting of the triangulations that are strictly contained in a physical subdomain
(cf. section 4 for precise explanation). In [13, 4] such a uniform LBB stability result
is introduced as an assumption. In this paper, for the P2-P1 Hood-Taylor pair, we
prove such a uniform LBB stability result. We expect that the analysis that we use
can be extended to other LBB stable pairs, in particular the ones used in [13, 4].

2. The XFEM space of piecewise linears. We assume a family {Th}h>0 of
shape regular quasi-uniform triangulations of the domain Ω, consisting of simplices.
The triangulations are not fitted to the interface Γ. We assume that the triangulation
is sufficiently fine such that the interface is resolved. In particular the following generic
intersection assumption should be satisfied: if Γ ∩ T 6= ∅ for a T ∈ Th, then Γ ∩ ∂T
consists of exactly two points (if d = 2) or of a closed curve (if d = 3). We introduce
the subdomains Ωi,h := {T ∈ Th | T ⊂ Ωi or measd−1(T ∩ Γ) > 0 }, i = 1, 2, and
the corresponding standard linear finite element spaces

Qi,h := { vh ∈ C(Ωi,h) | vh|T ∈ P1 ∀ T ∈ Ωi,h }, i = 1, 2.

We use the same notation Ωi,h for the set of tetrahedra as well as for the subdomain of
Ω which is formed by these tetrahedra, as its meaning is clear from the context. For the
stabilization procedure that is introduced below we need a further partitioning of Ωi,h.
Define ωi,h := {T ∈ Ωi,h |measd−1(T∩Γ) = 0 }, i = 1, 2 and T Γ

h := Th\(ω1,h∪ω2,h) =
{T ∈ Th | measd−1(T ∩ Γ) > 0 }. Note that Th = ω1,h ∪ ω2,h ∪ T Γ

h holds and forms
a disjoint union. Corresponding sets of faces (needed in the stabilization procedure)
are given by Fi = {F ⊂ ∂T | T ∈ T Γ

h , F 6⊂ ∂Ωi,h }, i = 1, 2, and Fh := F1 ∪ F2.
For each F ∈ Fh a fixed orientation of its normal is chosen and the unit normal with
that orientation is denoted by nF . These definitions are illustrated in Fig. 2.1.

A given ph = (p1,h, p2,h) ∈ Q1,h × Q2,h has two values, p1,h(x) and p2,h(x), for
x ∈ T Γ

h . We define a uni-valued function pΓ
h ∈ C(Ω1 ∪ Ω2) by

pΓ
h(x) = pi,h(x) for x ∈ Ωi.

Using the generic intersection assumption we obtain that the mapping ph 7→ pΓ
h is

bijective. On Q1,h ×Q2,h we use a norm denoted by ‖ph‖20,Ω1,h∪Ω2,h
:= ‖p1,h‖20,Ω1,h

+
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Fig. 2.1. Set of faces F1 (in red) and subdomains ω1,h (light-blue) and Ω1,h (light- and darker
blue triangles) for a 2D example.

‖p2,h‖20,Ω2,h
. The XFEM space of piecewise linears is defined by

QΓ
h := (Q1,h ×Q2,h)/R = { ph ∈ Q1,h ×Q2,h | (µ−1pΓ

h, 1)0,Ω = 0 }. (2.1)

The space { pΓ
h | ph ∈ QΓ

h } is a subspace of the pressure space L2
µ(Ω), cf. (1.2). Note

the subtle, but important, notational difference between ph ∈ QΓ
h and pΓ

h. The former
is a pair which corresponds to a multi-valued function in T Γ

h , whereas the latter is
a uni-valued function. In the analysis we need the following decomposition of this
XFEM space into two orthogonal subspaces. We introduce the piecewise constant
function p̄µ ∈ QΓ

h:

p̄µ :=

{
µ1|Ω1|−1 in Ω1,

−µ2|Ω2|−1 in Ω2.
(2.2)

Using the one-dimensional subspace M0 := span{p̄µ} ⊂ QΓ
h, the XFEM space is

decomposed as QΓ
h = M0⊕M⊥0 , with M⊥0 := { ph ∈ QΓ

h | (pΓ
h, p̄

Γ
µ)0,Ω = 0 }. We derive

an elementary property:
Lemma 2.1. ph ∈M⊥0 has the property (pi,h, 1)0,Ωi

= 0 for i = 1, 2.
Proof. From ph ∈ QΓ

h it follows that (µ−1pΓ
h, 1)0,Ω = 0, hence µ−1

1 (p1,h, 1)0,Ω1
+

µ−1
2 (p2,h, 1)0,Ω2

= 0 holds. From (pΓ
h, p̄

Γ
µ)0,Ω = 0 we get µ1|Ω1|−1(p1,h, 1)0,Ω1

−
µ2|Ω2|−1(p2,h, 1)0,Ω2 = 0. These two relations imply (pi,h, 1)0,Ωi = 0 for i = 1, 2.

For the stabilization we introduce the bilinear form

j(ph, qh) :=

2∑
i=1

ji(pi,h, qi,h), ph, qh ∈ Q1,h ×Q2,h,

with ji(pi,h, qi,h) := µ−1
i

∑
F∈Fi

h3
F ([∇pi,h · nF ], [∇qi,h · nF ])0,F ,

(2.3)

which is also referred to as a ghost penalty term, cf. [3]. Here [∇pi,h ·nF ] denotes the
jump of the normal component of the piecewise constant function ∇pi,h across the
face F . All constants used in the results below are independent of h and µ, and of
how the interface Γ intersects the triangulation Th.

Lemma 2.2. The following holds (Lemma 3.8 in [13]):

µ−1
i ‖pi,h‖20,Ωi,h

≤ c
(
µ−1
i ‖pi,h‖20,ωi,h

+ ji(pi,h, pi,h)
)

for all pi,h ∈ Qi,h, i = 1, 2.
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Proof. Note that

‖pi,h‖20,Ωi,h
= ‖pi,h‖20,ωi,h

+
∑

T∈Ωi,h\ωi,h

‖pi,h‖20,T ,

hence, we only have to treat ‖pi,h‖0,T , T ∈ Ωi,h \ ωi,h. We write p = pi,h, which is
a piecewise linear function on Ωi,h. Take T0 = T ∈ Ωi,h \ ωi,h, and x ∈ T0. There is
a sequence of simplices T1, . . . , Tk with faces Fj = T̄j ∩ T̄j−1 ∈ Fi, j = 1, . . . , k, and
Tk ∈ ωi,h. The number k is uniformly bounded (often, k = 1 holds). The barycenter
of Fj is denoted by mj . With an appropriate orientation of the jump operator [·]F
we have the relations

∑k
j=1[∇p]Fj

= ∇p|Tk
−∇p|T0

,

k∑
j=1

[∇p]Fj ·mj = p(m1)− p(mk) +∇p|Tk
·mk −∇p|T0

·m1.

Using these, for x ∈ T0 one obtains

p(x) = p(m1) +∇p|T0
· (x−m1) = p(mk) +∇p|Tk

· (x−mk) +

k∑
j=1

[∇p]Fj · (mj − x).

Because the tangential component of∇p is continuous along the faces we have [∇p]Fj
=

[∇p · nFj
]Fj
nFj

. Using an inverse inequality ‖∇p‖0,Tk
≤ ch−1

Fk
‖p‖0,Tk

, the estimate
‖x−mj‖ ≤ chFj

and |T0| ∼ |Tj |, j = 1, . . . , k, we get

‖p‖20,T0
≤ c
(
‖p‖20,Tk

+

k∑
j=1

h2
Fj

|T0|
|Fj |
‖[∇p · nFj ]‖20,Fj

)
≤ c
(
‖p‖20,Tk

+

k∑
j=1

h3
Fj
‖[∇p · nFj

]‖20,Fj

)
.

We sum over T0 = T ∈ Ωi,h \ ωi,h and use a finite overlap argument, resulting in∑
T∈Ωi,h\ωi,h

‖pi,h‖20,T ≤ c
(
‖pi,h‖20,ωi,h

+
∑
F∈Fi

h3
F ‖[∇pi,h · nF ]‖20,F

)
≤ c
(
‖pi,h‖20,ωi,h

+ µiji(pi,h, pi,h)
)
,

which completes the proof.

3. Discrete problem. We introduce the usual bilinear forms

a(u, v) :=
1

2

∫
Ω

µD(u) : D(v) dx, b(v, p) = −(div v, p)0,Ω,

with D(v) := ∇v+ (∇v)T . For discretization of the pressure we use the XFEM space
QΓ
h. Note that for ph ∈ QΓ

h we have pΓ
h ∈ L2

µ(Ω). For the velocity discretization we
use the standard conforming P2-space

Vh := { vh ∈ C(Ω)d | vh|T ∈ Pd2 ∀ T ∈ Th, v|∂Ω = 0 } ⊂ H1
0 (Ω)d.
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The discretization of (1.3) that we consider is as follows: determine (uh, ph) ∈ Vh×QΓ
h

such that

k
(
(uh, ph), (vh, qh)

)
= f(vh) for all (vh, qh) ∈ Vh ×QΓ

h,

k
(
(uh, ph), (vh, qh)

)
:= a(uh, vh) + b(vh, p

Γ
h)− b(uh, qΓ

h) + εpj(ph, qh),
(3.1)

with a (sufficiently large) stabilization parameter εp ≥ 0. Note that the XFEM space

QΓ
h, which is used in the analysis below, will be replaced by QΓh

h for the numerical
experiments in section 8 due to implementation reasons, where Γh is a piecewise planar
approximation of Γ.

4. A uniform inf-sup. In this section we prove an inf-sup result for the P2-
P1 Hood-Taylor pair that is uniform with respect to a variation of the domain (as
explained below). We need such a result in our stability analysis in section 5. Closely
related uniform inf-sup results are used in other recent analyses of unfitted finite
element methods. For example, in [4] (Theorem 1) a uniform (w.r.t. domain variation)
inf-sup assumption for the P1bubble-P1 pair is used. A similar assumption (for the
isoP2-P1 pair) is used in [13]. We expect that the technique that we use for the P2-P1

pair in this section is also applicable to other LBB-stable mixed FE pairs.
We start with formulating this uniform inf-sup result. For this we consider a

situation with a subdomain Ωi, i = 1, 2, as in the previous section, where part of
its boundary (or the whole boundary), which is denoted by Γ, is not aligned with
the finite element triangulation. The results derived in this section hold for both Ω1

and Ω2. To simplify notation, we will consequently drop the subdomain index i for
the remainder of this section and write Ω, Ωh, and ωh instead of Ωi, Ωi,h, and ωi,h,
respectively. Note that the domain ωh varies with h. In this section we do not assume
that the family {Th}h>0 is quasi-uniform, but will use its shape regularity. We assume
that each T ∈ ωh has at least one vertex in the interior of ωh.

Let Vh,0(ωh) ⊂ Vh be the space of continuous piecewise quadratics on ωh that
are zero on ∂ωh and let Qh(ωh) be the space of continuous piecewise linears on ωh.
On the subdomain ωh, which is Lipschitz, the following LBB inf-sup property holds:
there exists cLBB(ωh) > 0 such that

sup
v∈Vh,0(ωh)

(div v, p)0,ωh

‖v‖1,ωh

≥ cLBB(ωh)‖p‖0,ωh
∀ p ∈ Qh(ωh) with (p, 1)0,ωh

= 0. (4.1)

Here and in the remainder, ‖ · ‖1,ω denotes the Sobolev H1-norm on the Lipschitz
domain ω. The main result of this section is formulated in the following theorem.

Theorem 4.1. For cLBB(ωh) as in (4.1) the following holds:

inf
h>0

cLBB(ωh) > 0. (4.2)

We outline the main idea of the proof. We need the inf-sup property for the pair
H1

0 (Ω)d × L2
0(Ω),

∃β > 0 : sup
v∈H1

0 (Ω)d

(div v, p)0,Ω

‖v‖1,Ω
≥ β ‖p‖0,Ω ∀ p ∈ L2(Ω) with (p, 1)0,Ω = 0. (4.3)

In the analysis we need the following scaled norms for qh ∈ Qh(τ), with τ ⊂ Th a
subset of simplices:

‖qh‖20,h−1,τ :=
∑
T∈τ

h−2
T ‖qh‖20,T , |qh|21,h,τ :=

∑
T∈τ

h2
T ‖∇qh‖20,T .
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We use the so-called weak inf-sup property for the P2-P1 pair on ωh. There exists a
constant β̂ > 0, depending only on the shape-regularity of {Th}h>0, such that

sup
vh∈Vh,0(ωh)

(div vh, qh)0,ωh

‖vh‖1,ωh

≥ β̂ |qh|1,h,ωh
∀ qh ∈ Qh(ωh). (4.4)

This result is proved in Lemma 4.23 in [6] (the result is essentially Proposition 1
in [1]). Take qh ∈ Qh(ωh) with (qh, 1)0,ωh

= 0. We introduce a suitable extension
(Lemma 4.2 below) qeh ∈ Qh(Ωh) such that certain norms of qeh can be controlled by
the corresponding norms of qh. We shift qeh by a constant and apply the result (4.3),
which yields a “suitable” v ∈ H1

0 (Ω1)d. Of this v, extended by zero, we take the Scott-
Zhang interpolation wh = ISZv ∈ Qh,0(Ωh)d. Finally we use a unique decomposition
wh = vh + rh, with vh ∈ Qh,0(ωh)d ⊂ Vh,0(ωh) and a rh ∈ Qh,0(Ωh)d which has
nonzero nodal values only on ∂ωh. It turns out that norms of both vh and rh can be
controlled by the corresponding norm of wh. This vh can be used in a perturbation
argument as in [23] (“Verfürth’s trick”), where we use (4.4). All details are given in
the proof of Theorem 4.1 below.

All constants hidden in the . and ∼ notation below depend only on the shape
regularity of {Th}h>0.
Define Γ̂h := ∂ωh and V(Γ̂h) the set of its vertices. We need suitable extension
operators, which are treated in the next lemma.

Lemma 4.2. There exists a linear extension operator Eh : Qh(ωh) → Qh(Ωh),
with (Eh qh)|ωh

= qh|ωh
such that

‖Eh qh‖0,Ωh
. ‖qh‖0,ωh

,

|Eh qh|1,h,Ωh
. |qh|1,h,ωh

,

for all qh ∈ Qh(ωh).
Proof. For T ∈ Th let V(T ) denote the set of its d+ 1 vertices and define

ΩT := {T̃ ∈ Th : V(T̃ ) ∩ V(T ) 6= ∅}.

For T ∈ T Γ
h let γT ⊂ Γ̂h be the smallest set of connected (d− 1)-simplices such that

ΩT ∩ Γ̂h ⊂ γT . For each vertex vj ∈ T Γ
h we define a connected vertex vcj ∈ Γ̂h by

vcj := vj if vj ∈ Γ̂h, otherwise vcj := vk for a fixed vertex vk ∈ Γ̂h with vj , vk ∈ V(T̃ )

for some T̃ ∈ T Γ
h . Note that vcj ∈ γT holds for all vj ∈ V(T ).

Let qh ∈ Qh(ωh) and define (Eh qh)|ωh
:= qh|ωh

. On T ∈ T Γ
h = Ωh \ ωh the

extension Eh is defined by (Ehqh)(vj) := qh(vcj) for all vj ∈ V(T ). Then

‖∇(Eh qh)‖20,T ∼
∑

vj ,vk∈V(T )

(
(Ehqh)(vj)− (Ehqh)(vk)

hT

)2

hdT

=
∑

vj ,vk∈V(T )

(
qh(vcj)− qh(vck)

hT

)2

hdT

. hT ‖∇qh‖20,γT . ‖∇qh‖20,ωT
,

where ωT ⊂ ωh is the set of all T̃ ∈ ωh which have a face in γT . With the finite
overlap property we conclude |Eh qh|1,h,Ωh

. |qh|1,h,ωh
. A similar argument can be

applied for the estimate w.r.t. the scaled L2 norm.
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Let T Γ,e
h ⊂ Ωh be the set of all T ∈ Ωh with at least one vertex in V(Γ̂h). Note that

T Γ
h ⊂ T Γ,e

h . Furthermore, we define

Qh,0(T Γ
h ) := {p ∈ C(T Γ

h ) : p|T ∈ P1 for all T ∈ T Γ
h , p = 0 on ∂Ωh},

Qh,0(T Γ,e
h ) := {p ∈ C(T Γ,e

h ) : p|T ∈ P1 for all T ∈ T Γ,e
h , p = 0 on ∂T Γ,e

h }.

Note that ph ∈ Qh,0(T Γ
h ) as well as ph ∈ Qh,0(T Γ,e

h ) is completely determined by its

values at the vertices on Γ̂h. The following lemma and corollary give norm equivalences
for such functions.

Lemma 4.3. The following holds for all qh ∈ Qh,0(T Γ
h ):

‖qh‖20,h−1,T Γ
h
∼

∑
T∈T Γ

h

hd−2
T

∑
xi∈V(T )∩V(Γ̂h)

qh(xi)
2 ∼ |qh|21,T Γ

h
. (4.5)

Proof. Take qh ∈ Qh,0(T Γ
h ). Then

‖qh‖20,h−1,T Γ
h

=
∑
T∈T Γ

h

h−2
T

∫
T

q2
h dx

∼
∑
T∈T Γ

h

h−2
T |T |

∑
xi∈V(T )

qh(xi)
2 =

∑
T∈T Γ

h

hd−2
T

∑
xi∈V(T )∩V(Γ̂h)

qh(xi)
2.

For each vertex xi ∈ V(T ) ∩ V(Γ̂h) there exists another vertex x̃i ∈ V(T ) with x̃i /∈
V(Γ̂h), i.e., qh(x̃i) = 0. Hence,

(∇qh|T )2 &

(
qh(xi)− qh(x̃i)

hT

)2

= h−2
T qh(xi)

2,

and thus ∑
T∈T Γ

h

hd−2
T

∑
xi∈V(T )∩V(Γ̂h)

qh(xi)
2 .

∑
T∈T Γ

h

hdT (∇qh|T )2

∼
∑
T∈T Γ

h

∫
T

(∇qh)2 dx = |qh|21,T Γ
h
.

From the inverse inequality ‖∇qh‖20,T . h−2
T ‖qh‖20,T we obtain |qh|21,T Γ

h
. ‖qh‖20,h−1,T Γ

h
.

This completes the proof.
Corollary 4.4. From Lemma 4.3 it follows that the results in (4.5) also hold

for qh ∈ Qh,0(T Γ,e
h ) with T Γ

h replaced by T Γ,e
h . Furthermore it follows that for qh ∈

Qh,0(T Γ,e
h ) we have

‖qh‖0,h−1,T Γ,e
h
∼ ‖qh‖0,h−1,T Γ

h
∼ |qh|1,T Γ

h
∼ |qh|1,T Γ,e

h
. (4.6)

Proof of Theorem 4.1. For the inf-sup constant cLBB(ωh) in (4.1) we have to study
lim infh→0 cLBB(ωh).
Take 0 < h ≤ h0 (with h0 specified below) and qh ∈ Qh(ωh) with (qh, 1)0,ωh

= 0,
‖qh‖0,ωh

= 1. Define qeh := Eh qh ∈ Qh(Ωh) and let ch ∈ R such that (qeh + ch, 1)0,Ω =
0. Note that ch = −|Ω|−1(qeh, 1)0,Ω\ωh

and, hence,

|ch| ≤ |Ω|−1 |Ω \ ωh|
1
2 ‖qeh‖0,Ωh

≤ ch 1
2 ‖qh‖0,ωh

= ch
1
2 ,
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where the constant c > 0 depends only on Ω and the shape-regularity of {Th}h>0.

Take h0 > 0 sufficiently small such that ch
1
2
0 ≤ 1

2 |Ω|−
1
2 . Thus we get

‖qeh + ch‖0,Ω ≥ ‖qeh‖0,Ω − |ch||Ω|
1
2 ≥ ‖qh‖0,ωh

− |ch||Ω|
1
2 ≥ 1− ch 1

2 |Ω| 12 ≥ 1

2
. (4.7)

Using (4.3) for p = qeh + ch ∈ L2(Ω)/R, it follows that there exists v ∈ H1
0 (Ω)d with

‖v‖1,Ω = 1 such that

(div v, qeh + ch)0,Ω = (div v, qeh)0,Ω ≥
1

2
β‖qeh + ch‖0,Ω ≥

1

4
β. (4.8)

Extending v by zero outside Ω we obtain v ∈ H1
0 (Ωh)d. Let wh = ISZ v ∈ Qh,0(Ωh)d

be the component-wise Scott-Zhang interpolation of v ∈ H1
0 (Ωh)d, cf. [20]. Here

Qh,0(Ωh) denotes the set of all functions from Qh(Ωh) which are vanishing on the
boundary. For the Scott-Zhang interpolation wh the following holds,

‖v − wh‖0,h−1,Ωh
≤ ĉ1‖v‖1,Ωh

= ĉ1‖v‖1,Ω = ĉ1, (4.9)

‖wh‖1,Ωh
≤ ĉ2‖v‖1,Ωh

= ĉ2‖v‖1,Ω = ĉ2, (4.10)

with constants ĉ1, ĉ2 > 0 only depending on the shape regularity of {Th}h>0. We
can uniquely decompose wh = vh + rh with vh ∈ Qh,0(ωh)d ⊂ Vh,0(ωh) and rh ∈
Qh,0(T Γ,e

h )d. Note that wh and rh coincide on T Γ
h . Using this, (4.10) and Corollary 4.4

we get

‖vh‖1,ωh
≤ ‖wh‖1,ωh

+ ‖rh‖1,ωh
≤ ĉ2 + ‖rh‖1,ωh∩T Γ,e

h

. ĉ2 + ‖rh‖0,h−1,T Γ,e
h
∼ ĉ2 + |rh|1,T Γ

h
= ĉ2 + |wh|1,T Γ

h

≤ ĉ2 + ‖wh‖1,Ωh
. ĉ2. (4.11)

Furthermore, again with Corollary 4.4, we have

‖rh‖0,h−1,T Γ,e
h
∼ |rh|1,T Γ

h
= |wh|1,T Γ

h
≤ ĉ2. (4.12)

We introduce the notation ξh := cLBB(ωh) = supv̂∈Vh,0(ωh)
(div v̂h,qh)0,ωh

‖v̂h‖1,ωh
. From (4.4)

we have |qh|1,h,ωh
≤ ξh

β̂
. Using (4.11) and vh = 0 on Ωh \ ωh we get

ξh ≥
(div vh, qh)0,ωh

‖vh‖1,ωh

& (div vh, qh)0,ωh

= (div vh, q
e
h)0,Ωh

≥ 1

4
β + (div (vh − v), qeh)0,Ωh

, (4.13)

where in the last inequality we used (4.8). Since vh − v = 0 on ∂Ωh we have

|(div (vh − v), qeh)0,Ωh
| = |(vh − v,∇qeh)0,Ωh

|
≤ |qeh|1,h,Ωh

‖vh − v‖0,h−1,Ωh

. |qh|1,h,ωh

(
‖vh − wh‖0,h−1,Ωh

+ ‖wh − v‖0,h−1,Ωh

)
,

using Lemma 4.2 in the last inequality. Due to (4.9) and (4.12) we conclude

|(div (vh − v), qeh)0,Ωh
| . ξh

β̂

(
‖rh‖0,h−1,Ωh

+ ĉ1
)
.
ξh

β̂
(ĉ2 + ĉ1).
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Hence, in (4.13) we get

ξh &
1

4
β − ξh

β̂
,

which implies ξh ≥ ξ0 > 0 with ξ0 only depending on β, β̂ and the shape regularity
of {Th}h>0. This completes the proof. 2

5. Stability analysis. In this section we derive a discrete inf-sup result for the
bilinear form k(·, ·) w.r.t. the space Vh × QΓ

h, cf. Theorem 5.4. Such a result also

holds if we replace Vh by a larger H1-conforming space Ṽh ⊃ Vh, cf. Remark 1. The
analysis is along the same lines as in [13, 16].
We will use the fact that the Taylor-Hood P2-P1 pair is uniformly stable on the
subdomains ωi,h, cf. Theorem 4.1. In the next three lemmas we derive lower bounds

for supvh∈Vh

b(vh,p
Γ
h)

‖µ
1
2∇vh‖0

. We first consider p̂h ∈ M0 (Lemma 5.1), then p̃h ∈ M⊥0

(Lemma 5.2), and then combine these results to obtain an estimate for ph ∈ QΓ
h

(Lemma 5.3). The constants used in the estimates are independent of h, µ and of
how the interface Γ intersects the triangulation.

Lemma 5.1. There exist h0 > 0 and c > 0 such that for all h ≤ h0:

sup
vh∈Vh

b(vh, p̂
Γ
h)

‖µ 1
2∇vh‖0

≥ c‖µ− 1
2 p̂h‖0,Ω1,h∪Ω2,h

for all p̂h ∈M0.

Proof. It suffices to consider p̂h = p̄µ as in (2.2). Define p̄ := µ−1p̄µ =

(|Ω1|−1,−|Ω2|−1) ∈ Q1,h ×Q2,h. The relation ‖µ− 1
2 p̄Γ
µ‖0,Ω = C(µ,Ω)

1
2 ‖p̄Γ‖0,Ω holds,

with

C(µ,Ω) =
µ1|Ω1|−1 + µ2|Ω2|−1

|Ω1|−1 + |Ω2|−1
≥ µmax min

i=1,2

|Ωi|−1

|Ω1|−1 + |Ω2|−1
= c µmax,

with µmax = max{µ1, µ2}. For vh ∈ Vh we have 0 =
∫

Ω
div vh dx =

∫
Ω1

div vh dx +∫
Ω2

div vh dx, and using this one derives the relation

b(vh, p̄
Γ
µ) = C(µ,Ω)b(vh, p̄

Γ), vh ∈ Vh. (5.1)

Let qh ∈ C(Ω) be the continuous piecewise linear nodal interpolation of p̄Γ. Then

‖qh−p̄Γ‖0,Ω ≤ ch
1
2 holds. Define α = 1

|Ω| (qh, 1)0,Ω and q∗h = qh−α, hence, (q∗h, 1)0,Ω =

0. Note that |α| = 1
|Ω| |(qh, 1)0,Ω| = 1

|Ω| |(qh − p̄Γ, 1)0,Ω| ≤ c‖qh − p̄Γ‖0,Ω ≤ ch
1
2 holds.

This implies ‖q∗h − p̄Γ‖0,Ω ≤ ch
1
2 . From the LBB stability of the standard P2-P1

Taylor-Hood pair on Ω it follows that there exists v̂h ∈ Vh with ‖v̂h‖1 = 1 and c > 0
such that b(v̂h, q

∗
h) ≥ c‖q∗h‖0,Ω holds. Using this we obtain, with suitable constants

c > 0:

b(v̂h, p̄
Γ) ≥ b(v̂h, q∗h)− d 1

2 ‖v̂h‖1‖q∗h − p̄Γ‖0,Ω
≥ c‖q∗h‖0,Ω − ch

1
2 ≥ c‖p̄Γ‖0,Ω − ch

1
2 ≥ c‖p̄Γ‖0,Ω,

provided h is sufficiently small. Combining this with the result in (5.1) yields

b(v̂h, p̄
Γ
µ) = C(µ,Ω)b(vh, p̄

Γ) ≥ cC(µ,Ω)‖p̄Γ‖0,Ω
= cC(µ,Ω)

1
2 ‖µ− 1

2 p̄Γ
µ‖0,Ω ≥ cµ

1
2
max‖µ−

1
2 p̄Γ
µ‖0,Ω.
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Finally note that ‖µ− 1
2 p̄µ‖0,Ω1,h∪Ω2,h

≤ (1 + ch)‖µ− 1
2 p̄Γ
µ‖0,Ω ≤ c‖µ− 1

2 p̄Γ
µ‖0,Ω and

‖µ 1
2∇v̂h‖0 ≤ µ

1
2
max‖v̂h‖1 = µ

1
2
max hold.

Lemma 5.2. There exist h0 > 0 and c1, c2 > 0 such that for all h ≤ h0:

sup
vh∈Vh(ω1,h∪ω2,h)

b(vh, p̃
Γ
h)

‖µ 1
2∇vh‖0

≥ c1‖µ−
1
2 p̃h‖0,Ω1,h∪Ω2,h

− c2
j(p̃h, p̃h)

‖µ− 1
2 p̃h‖0,Ω1,h∪Ω2,h

for all p̃h ∈M⊥0 \ {0}, with Vh(ω1,h ∪ ω2,h) := { vh ∈ Vh | supp(vh) ⊂ ω̄1,h ∪ ω̄2,h }.
Proof. Take p̃h = (p̃1,h, p̃2,h) ∈ M⊥0 , p̃h 6= 0. Define αi = 1

|ωi,h| (p̃i,h, 1)0,ωi,h

and p∗i,h = p̃i,h − αi, hence, (p∗i,h, 1)0,ωi,h
= 0. Using (4.2) it follows that there exist

ṽi,h ∈ Vh with supp(ṽi,h) ⊂ ω̄i,h, ‖ṽi,h‖1 = ‖p∗i,h‖0,ωi,h
, and a constant c > 0 such

that b(ṽi,h, p
∗
i,h) ≥ c‖p∗i,h‖20,ωi,h

(with p∗i,h extended by zero outside Ωi,h). Using that

ṽi,h = 0 on ∂ωi,h and p̃i,h−p∗i,h = αi is constant we get that b(ṽi,h, p
∗
i,h) = b(ṽi,h, p̃i,h)

holds. Since p∗h = (p∗1,h, p
∗
2,h) ∈ Q1,h × Q2,h we can apply Lemma 2.2 and thus get,

with constant c1, c2 > 0:

b(µ−1
i ṽi,h, p̃i,h) = b(µ−1

i ṽi,h, p
∗
i,h) ≥ cµ−1

i ‖p∗i,h‖20,ωi,h

≥ c1µ−1
i ‖p∗i,h‖20,Ωi,h

− c2j(p∗h, p∗h).
(5.2)

Since j(p̃h, p̃h) depends only on ∇p̃h we have j(p∗h, p
∗
h) = j(p̃h, p̃h). From Lemma 2.1

we get (p̃i,h, 1)0,Ωi = 0. Using this we obtain

|αi| =
1

|ωi,h|
|(p̃i,h, 1)0,ωi,h

| = 1

|ωi,h|
∣∣ ∫

Ωi\ωi,h

p̃i,h dx
∣∣

≤ 1

|ωi,h|
|Ωi \ ωi,h|

1
2 ‖p̃i,h‖0,Ωi ≤ ch

1
2 ‖p̃i,h‖0,Ωi,h

.

(5.3)

Thus, for h sufficiently small there exists c > 0 such that

‖p∗i,h‖0,Ωi,h
≥ ‖p̃i,h‖0,Ωi,h

− c|αi| ≥ ‖p̃i,h‖0,Ωi,h
(1− ch 1

2 ) ≥ c‖p̃i,h‖0,Ωi,h
.

Using this in (5.2) we get

b(µ−1
i ṽi,h, p̃i,h) ≥ c1‖µ−

1
2

i p̃i,h‖20,Ωi,h
− c2j(p̃h, p̃h),

and thus, with ṽh := µ−1
1 ṽ1,h + µ−1

2 ṽ2,h ∈ Vh(ω1,h ∪ ω2,h):

b(ṽh, p̃
Γ
h) = b(µ−1

1 ṽ1,h, p̃1,h) + b(µ−1
2 ṽ2,h, p̃2,h)

≥ c1‖µ−
1
2 p̃h‖20,Ω1,h∪Ω2,h

− c2j(p̃h, p̃h).
(5.4)

Using (5.3) we get ‖ṽi,h‖1 = ‖p̃∗i,h‖0,ωi,h
≤ ‖p̃i,h‖0,ωi,h

+ c|αi| ≤ c‖p̃i,h‖0,Ωi,h
and thus

‖µ 1
2∇ṽh‖20 =

2∑
i=1

µ−1
i ‖∇ṽi,h‖20 ≤ c

2∑
i=1

‖µ−
1
2

i p̃i,h‖20,Ωi,h
= c‖µ− 1

2 p̃h‖20,Ω1,h∪Ω2,h

holds. Combining this with the estimate in (5.4) completes the proof.
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Lemma 5.3. There exist h0 > 0 and c1, c2 > 0 such that for all h ≤ h0:

sup
vh∈Vh

b(vh, p
Γ
h)

‖µ 1
2∇vh‖0

≥ c1‖µ−
1
2 ph‖0,Ω1,h∪Ω2,h

− c2
j(ph, ph)

‖µ− 1
2 ph‖0,Ω1,h∪Ω2,h

∀ ph ∈ QΓ
h \ {0}.

Proof. Take ph = (p1,h, p2,h) ∈ QΓ
h \ {0}. We use the decomposition ph =

p̂h + p̃h, p̂h ∈ M0, p̃h ∈ M⊥0 . From the lemmas above it follows that there exist

v̂h ∈ Vh, ṽh ∈ Vh(ω1,h ∪ ω1,h), with ‖µ 1
2∇v̂h‖0 = ‖µ− 1

2 p̂h‖0,Ω1,h∪Ω2,h
, ‖µ 1

2∇ṽh‖0 =

‖µ− 1
2 p̃h‖0,Ω1,h∪Ω2,h

such that

b(v̂h, p̂
Γ
h) ≥ c1‖µ−

1
2 p̂h‖20,Ω1,h∪Ω2,h

, b(ṽh, p̃
Γ
h) ≥ c2‖µ−

1
2 p̃h‖20,Ω1,h∪Ω2,h

− c3j(p̃h, p̃h),

with cj > 0, j = 1, 2, 3. Note that ṽh = 0 on ∂ωi,h and p̂Γ
h is constant on ωi,h, hence

b(ṽh, p̂
Γ
h) = −∑2

i=1(div ṽh, p̂
Γ
h)0,ωi,h

= 0 holds. Take vh := v̂h + γṽh ∈ Vh, with γ > 0.
We then get

b(vh, p
Γ
h) = b(v̂h, p̂

Γ
h) + γb(ṽh, p̃

Γ
h) + b(v̂h, p̃

Γ
h)

≥ c1‖µ−
1
2 p̂h‖20,Ω1,h∪Ω2,h

+ γc2‖µ−
1
2 p̃h‖20,Ω1,h∪Ω2,h

− γc3j(p̃h, p̃h) + b(v̂h, p̃
Γ
h).

Since p̂h is constant on Ωi,h we have j(p̃h, p̃h) = j(ph, ph). Furthermore:

|b(v̂h, p̃Γ
h)| ≤ d 1

2 ‖µ 1
2∇v̂h‖0‖µ−

1
2 p̃Γ
h‖0,Ω ≤ d

1
2 ‖µ− 1

2 p̂h‖0,Ω1,h∪Ω2,h
‖µ− 1

2 p̃h‖0,Ω1,h∪Ω2,h

≤ 1

2
c1‖µ−

1
2 p̂h‖20,Ω1,h∪Ω2,h

+
1

2
dc−1

1 ‖µ−
1
2 p̃h‖20,Ω1,h∪Ω2,h

.

For γ =
c21+d
2c1c2

we thus get, with a suitable constant c:

b(vh, p
Γ
h) ≥ 1

2
c1
(
‖µ− 1

2 p̂h‖20,Ω1,h∪Ω2,h
+ ‖µ− 1

2 p̃h‖20,Ω1,h∪Ω2,h
)− cj(ph, ph),

and combining this with ‖µ− 1
2 ph‖20,Ω1,h∪Ω2,h

≤ 2(‖µ− 1
2 p̂h‖20,Ω1,h∪Ω2,h

+‖µ− 1
2 p̃h‖20,Ω1,h∪Ω2,h

)
we obtain

b(vh, p
Γ
h)

‖µ− 1
2 ph‖0,Ω1,h∪Ω2,h

≥ 1

4
c1‖µ−

1
2 ph‖0,Ω1,h∪Ω2,h

− c j(ph, ph)

‖µ− 1
2 ph‖0,Ω1,h∪Ω2,h

. (5.5)

From 0 = (p̂Γ
h, p̃

Γ
h)0,Ω =

∑2
i=1(p̂i,h, p̃i,h)0,Ωi

we obtain

∣∣ 2∑
i=1

(p̂i,h, p̃i,h)0,Ωi,h

∣∣ =
∣∣ 2∑
i=1

(p̂i,h, p̃i,h)0,Ωi,h\Ωi

∣∣ ≤ ch 1
2

2∑
i=1

‖p̂i,h‖0,Ωi,h
‖p̃i,h‖0,Ωi,h

≤ ch 1
2

2∑
i=1

(
‖p̂i,h‖20,Ωi,h

+ ‖p̃i,h‖20,Ωi,h

)
.
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Using this we get

‖µ− 1
2 ph‖20,Ω1,h∪Ω2,h

=

2∑
i=1

µ−1
i ‖p̂i,h + p̃i,h‖20,Ωi,h

=

2∑
i=1

µ−1
i

(
‖p̂i,h‖20,Ωi,h

+ ‖p̃i,h‖20,Ωi,h
+ 2(p̂i,h, p̃i,h)0,Ωi,h

)
≥ (1− ch 1

2 )

2∑
i=1

µ−1
i

(
‖p̂i,h‖20,Ωi,h

+ ‖p̃i,h‖20,Ωi,h

)
= (1− ch 1

2 )
(
‖µ− 1

2 p̂h‖20,Ω1,h∪Ω2,h
+ ‖µ− 1

2 p̃h‖20,Ω1,h∪Ω2,h

)
= (1− ch 1

2 )
(
‖µ 1

2∇v̂h‖20 + ‖µ 1
2∇ṽh‖20

)
.

Hence, for h sufficiently small there exists c > 0 such that

‖µ− 1
2 ph‖0,Ω1,h∪Ω2,h

≥ c
(
‖µ 1

2∇v̂h‖20 + ‖µ 1
2∇ṽh‖20

) 1
2 ≥ 1

2
min{1, γ−1}c‖µ 1

2∇vh‖0,

and combining this with (5.5) completes the proof.

For the main result in the next theorem we introduce a mesh- and µ-dependent norm
on Vh ×QΓ

h:

|||(uh, ph)|||2h := ‖µ 1
2D(uh)‖20 + ‖µ− 1

2 ph‖20,Ω1,h∪Ω2,h
+ j(ph, ph). (5.6)

From Korn’s inequality it follows that this defines a norm on Vh ×QΓ
h.

Theorem 5.4. There exist constants h0 > 0, ε0 > 0 and cs > 0 such that for all
h ≤ h0, εp ≥ ε0 the following holds:

sup
(vh,qh)∈Vh×QΓ

h

k
(
(uh, ph), (vh, qh)

)
|||(vh, qh)|||h

≥ cs|||(uh, ph)|||h for all (uh, ph) ∈ Vh ×QΓ
h.

The constants are independent of µ and of how the interface Γ intersects the triangu-
lation.

Proof. Take (uh, ph) ∈ Vh ×QΓ
h. From Lemma 5.3 it follows that there exists, for

h0 > 0 sufficiently small, wh ∈ Vh with ‖µ 1
2∇wh‖0 = ‖µ− 1

2 ph‖0,Ω1,h∪Ω2,h
and

b(−wh, ph) ≥ c1‖µ−
1
2 ph‖20,Ω1,h∪Ω2,h

− c2j(ph, ph).

Take (vh, qh) = (uh − αwh, ph), with α > 0. Note that ‖µ 1
2D(v)‖0 ≤ c‖µ 1

2∇v‖0 for
v ∈ H1(Ω) holds. We then obtain, with suitable strictly positive constants,

k
(
(uh, ph), (vh, qh)

)
= a(uh, uh)− αa(uh, wh) + αb(−wh, ph) + εpj(ph, ph)

≥ ‖µ 1
2D(uh)‖20 − c̃α‖µ

1
2D(uh)‖0‖µ−

1
2 ph‖0,Ω1,h∪Ω2,h

+ αc1‖µ−
1
2 ph‖20,Ω1,h∪Ω2,h

+ (εp − αc2)j(ph, ph)

≥ 1

2
‖µ 1

2D(uh)‖20 + α(c1 −
1

2
c̃2α)‖µ− 1

2 ph‖20,Ω1,h∪Ω2,h
+ (εp − αc2)j(ph, ph).

We take α such that c1 − 1
2 c̃

2α = 1
2c1 holds, and εp such that εp − αc2 ≥ 1. Thus we

obtain, with suitable c > 0,

k
(
(uh, ph), (vh, qh)

)
≥ c|||(uh, ph)|||2h.
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Combining this with

|||(vh, qh)|||2h = ‖µ 1
2D(uh − αwh)‖20 + ‖µ− 1

2 ph‖20,Ω1,h∪Ω2,h
+ j(ph, ph)

≤ 2‖µ 1
2D(uh)‖20 + (cα2 + 1)‖µ− 1

2 ph‖20,Ω1,h∪Ω2,h
+ j(ph, ph) ≤ c|||(uh, ph)|||2h

completes the proof.

6. Discretization error analysis. We introduce the space Qreg = H2(Ω1,h)×
H2(Ω2,h). The norm in (5.6) is well-defined also for (u, p) ∈ H1(Ω)d × Qreg. Let
Ei : H2(Ωi)→ H2(Ωi,h) be a bounded extension operator. Hence, there is a constant
c, independent of h, such that ‖Eip‖2,Ωi,h

≤ c‖p‖2,Ωi
for all p ∈ H2(Ωi). For p ∈

H2(Ω1 ∪ Ω2) we define Ep := (E1p|Ω1
, E2p|Ω2

) ∈ Qreg. Note that for such extensions
the stabilization term vanishes: j(Ep, qh) = 0 for all p ∈ H2(Ω1∪Ω2) and qh ∈ QΓ

h, i.e.,
we have a consistent stabilization. Based on this observation we obtain the following
Cea-estimate.

Theorem 6.1. Assume that the solution (u, p) of (1.3) has the regularity property
p ∈ H2(Ω1 ∪ Ω2). Let h0 > 0 and εp be as in Theorem 5.4. Take h ≤ h0 and let
(uh, ph) ∈ Vh ×QΓ

h be the solution of the discretization (3.1). There exists a constant
c > 0, independent of h and µ and of how the interface Γ intersects the triangulation,
such that

|||(u− uh, Ep− ph)|||h ≤ c min
(vh,qh)∈Vh×QΓ

h

|||(u− vh, Ep− qh)|||h.

Proof. For A ∈ Rd×d we have tr(A)2 = 1
4 tr(A+AT )2 ≤ d

4 tr
(
(A+AT )2

)
and thus

for w ∈ C1(Ω)d we get |divw|2 = | tr∇w|2 ≤ d
4 tr

(
(∇w+ (∇w)T )2

)
= d

4D(w) : D(w).
Hence, for (w, q) ∈ H1(Ω)d × (Qreg +QΓ

h) the estimate

|b(w, qΓ)| ≤ ‖µ 1
2 divw‖0‖µ−

1
2 qΓ‖0,Ω ≤

1

2

√
d‖µ 1

2D(w)‖0‖µ−
1
2 q‖0,Ω1,h∪Ω2,h

(6.1)

holds. From this, the definition of the bilinear form k(·, ·) and the Cauchy-Schwarz
inequality one obtains boundedness w.r.t. ||| · |||h:∣∣k((w, r), (v, q))∣∣ ≤ c|||(w, r)|||h|||(v, q)|||h ∀ (w, r), (v, q) ∈ H1(Ω)d × (Qreg +QΓ

h),

with c depending only on εp and d. For p ∈ H2(Ω1 ∪ Ω2) we have j(Ep, qh) = 0 for
all qh ∈ QΓ

h. Using this and the conformity property, i.e. Vh ⊂ H1
0 (Ω)2, qΓ

h ∈ L2
µ(Ω)

for qh ∈ QΓ
h, we obtain consistency,

k
(
(u, Ep), (vh, qh)

)
= k

(
(uh, ph), (vh, qh)

)
for all (vh, qh) ∈ Vh ×QΓ

h,

and, hence, k(U − Wh, Rh) = k(Uh − Wh, Rh) holds for all Rh ∈ Vh × QΓ
h with

U = (u, Ep), Uh = (uh, ph) and Wh ∈ Vh × QΓ
h. The proof is easily completed using

the standard Cea-argument, cf., for example, Lemma 2.28 in [6].

Remark 1. The results in Theorem 5.4 and 6.1 also hold if instead of Vh one
takes a larger velocity space Ṽh ⊃ Vh, which is conforming, i.e, Ṽh ⊂ H1

0 (Ω)d holds.
An obvious possibility is to extend the velocity space by additional basis functions to
account for the kink of u at the interface. In [14] a kink enrichment is presented, which
leads to an XFEM space Ṽh = Vh ⊕ span{vj ·ΨΓ | j ∈ JΓ}. Here vj , j ∈ JΓ, denote
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basis functions with supp vj∩Γ 6= ∅ and ΨΓ is a special enrichment function with a kink
at Γ, and which has a support only on tetrahedra cut by the interface. Theorem 5.4
also holds for the pair Ṽh×QΓ

h. It is clear that Ṽh has better approximation properties
for functions with kinks than the standard space Vh, but it is not known whether an
optimal approximation result infvh∈Ṽh

‖u − vh‖1 ≤ ch2 holds for this space. The

results on conditioning of the stiffness matrix, derived for the pair Vh × QΓ
h in the

next section, do not hold for the pair Ṽh ×QΓ
h.

Bounds for the approximation error

min
(vh,qh)∈Vh×QΓ

h

|||(u− vh, Ep− qh)|||2h (6.2)

= min
(vh,qh)∈Vh×QΓ

h

(
‖µ 1

2D(u− vh)‖20 + ‖µ− 1
2 (Ep− qh)‖20,Ω1,h∪Ω2,h

+ j(Ep− qh, Ep− qh)
)

can be derived using standard interpolation error bounds. We first consider the terms
related to the pressure approximation.

Lemma 6.2. There exists a constant c such that for all p ∈ H2(Ω1 ∪ Ω2) the
following holds:

min
qhQΓ

h

(
‖µ− 1

2 (Ep− qh)‖20,Ω1,h∪Ω2,h
+ j(Ep− qh, Ep− qh)

)
≤ ch4‖µ− 1

2 p‖22,Ω1∪Ω2
. (6.3)

Proof. Take p ∈ H2(Ω1 ∪ Ω2). For Ep = (p̂1, p̂2) ∈ Qreg let Ihp̂i be the standard
nodal interpolation on the vertices of Ωi,h. Hence,

‖p̂i − Ihp̂i‖`,Ωi,h
≤ ch2−`‖p̂i‖2,Ωi,h

≤ ch2−`‖p‖2,Ωi
, ` = 0, 1, (6.4)

holds. For q = (q1, q2) ∈ Qreg +QΓ
h and F ∈ Fi, with F = T1 ∩ T2 and T1, T2 ∈ Ωi,h,

we have

‖[∇qi · nF ]‖2F ≤
2∑
j=1

‖∇qi‖2∂Tj
≤ c

2∑
j=1

(
h−1‖∇qi‖20,Tj

+ h‖∇2qi‖20,Tj

)
.

Using this we get

j(q, q) =

2∑
i=1

∑
F∈Fi

µ−1
i h3

F ‖[∇qi·nF ]‖2F ≤ c
2∑
i=1

µ−1
i

(
h2‖∇qi‖20,Ωi,h

+h4
∑

T∈Ωi,h

‖∇2qi‖20,T
)
.

We take q = Ep − qh, qh = (q1,h, q2,h) ∈ QΓ
h, and noting that ∇2qi,h|T = 0 we thus

obtain

j(Ep− qh, Ep− qh) ≤ c
2∑
i=1

µ−1
i

(
h2‖∇(p̂i − qi,h)‖20,Ωi,h

+ h4‖∇2p̂i‖20,Ωi,h

)
≤ ch2

2∑
i=1

µ−1
i ‖∇(p̂i − qi,h)‖20,Ωi,h

+ ch4‖µ− 1
2 p‖22,Ω1∪Ω2

.

We take qh = (Ihp̂1, Ihp̂2), and using the interpolation error bounds in (6.4) we obtain
the bound in (6.3).

For the velocity term in (6.2) we obviously also have the optimal error bound

min
vh∈Vh

‖µ 1
2D(u− vh)‖20 ≤ cµmaxh

4‖u‖23,Ω for u ∈ H3(Ω), (6.5)
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with µmax = max{µ1, µ2}. In our applications, however, we typically do not have the
regularity property u ∈ H3(Ω). The velocity u is smooth in the interior of Ωi, but has
a discontinuity in its first derivative across the interface Γ. Hence, globally, the best
one can have is an asymptotic error bound of the form ‖u − vh‖21 ≤ ch. To improve
on this one might use an XFEM velocity space, too, for example Ṽh as explained in
Remark 1. It turns out, however, that in many applications the suboptimal velocity
approximation using standard P2 finite elements does not dominate the total error
for realistic mesh sizes. This is illustrated by the numerical example in Section 8.3.
As far as we know, rigorous regularity results for the Stokes interface problem (1.1),
e.g., u ∈ H2(Ω1 ∪ Ω2), p ∈ H1(Ω1 ∪ Ω2) are not known in the literature.
Using a duality argument one can derive an L2 error bound along the same lines as
for the standard Stokes equation.

7. Schur complement preconditioner. We introduce a matrix-vector rep-
resentation of the discrete problem (3.1). In Vh we use the standard nodal basis
denoted by (ψj)1≤j≤m, i.e., Vh 3 uh =

∑m
j=1 xjψj . The vector representation of

uh is denoted by x = (x1, . . . , xm)T ∈ Rm. In Qi,h we have a standard nodal
basis denoted by (φi,j)1≤j≤ni

, i = 1, 2, i.e., Q1,h × Q2,h 3 ph = (p1,h, p2,h) =(∑n1

j=1 y1,jφ1,j ,
∑n2

j=1 y2,jφ2,j

)
. The vector representation of ph is denoted by y =

(y1,1, . . . , y1,n1
, y2,1, . . . , y2,n2

)T ∈ Rn1+n2 . Using the quasi-uniformity of the triangu-
lation we conclude that there are strictly positive constants ci, independent of h, such
that

c1h
d‖y‖2 ≤ ‖p1,h‖20,Ω1,h

+ ‖p2,h‖20,Ω2,h
= ‖ph‖20,Ω1,h∪Ω2,h

≤ c2hd‖y‖2, (7.1)

for all ph ∈ Q1,h ×Q2,h. Here, ‖ · ‖ denotes the Euclidean vector norm. We use 〈·, ·〉
to denote the Euclidean scalar product. The bilinear forms a(·, ·), b(·, ·), j(·, ·) have
corresponding matrix representations, denoted by A ∈ Rm×m, B ∈ R(n1+n2)×m, J ∈
R(n1+n2)×(n1+n2), respectively. The matrix A is symmetric positive definite. The
matrix J is symmetric positive semi-definite. Define 1 := (1, . . . , 1)T ∈ Rn1+n2 . From
b(uh, 1) = 0 for all uh ∈ Vh and j(1, qh) = 0 for all qh ∈ Q1,h × Q2,h it follows that
BT1 = J1 = 0 holds.
Finally we introduce two mass matrices in the pressure space:

M = blockdiag(M1,M2), (Mi)k,l := (µ−1
i φi,k, φi,l)0,Ωi,h

, 1 ≤ k, l ≤ ni, i = 1, 2,

M̂ = blockdiag(M̂1, M̂2), (M̂i)k,l := (µ−1
i φi,k, φi,l)0,Ωi

, 1 ≤ k, l ≤ ni, i = 1, 2.

For these mass matrices we have the relations

〈My,y〉 = ‖µ−
1
2

1 p1,h‖20,Ω1,h
+ ‖µ−

1
2

2 p2,h‖20,Ω2,h
= ‖µ− 1

2 ph‖20,Ω1,h∪Ω2,h
,

〈M̂y,y〉 = ‖µ−
1
2

1 p1,h‖20,Ω1
+ ‖µ−

1
2

2 p2,h‖20,Ω2
=

2∑
i=1

‖µ−
1
2

i pΓ
h‖20,Ωi

= ‖µ− 1
2 pΓ
h‖20,Ω.

The matrix-vector representation of the discrete problem (3.1) is as follows. First note
that (µ−1pΓ

h, 1)0,Ω = 0 iff 〈M̂y,1〉 = 0. The discrete problem is given by: determine

(x,y) with 〈M̂y,1〉 = 0 such that(
A BT

−B εpJ

)(
x
y

)
=

(
b
0

)
, bj = (f, ψj)0,Ω, 1 ≤ j ≤ m.
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For the iterative solution of this system it is convenient to use the following equivalent,
symmetric formulation: determine (x,y) with y ∈ 1⊥M̂ such that

K

(
x
y

)
=

(
b
0

)
, K :=

(
A BT

B −εpJ

)
. (7.2)

Note that K has a one-dimensional kernel, spanned by (0 1)T . The Schur complement
of K is denoted by S = BA−1BT + εpJ . We consider the block diagonal precondi-
tioner,

Q =

(
QA 0
0 QS

)
, QS = M̂ + εpJ, QA symmetric positive definite. (7.3)

In our applications, cf. section 8, we use for QA a symmetric multigrid iteration
applied to A. The symmetric positive definite Schur complement preconditioner QS =
M̂ + εpJ is analyzed in section 7.1.
When solving the linear system (7.2) we have to satisfy the consistency condition
y ∈ 1⊥M̂ . The following lemma shows that for a Krylov subspace method applied
to the preconditioned matrix Q−1K this condition is automatically satisfied. We use
the properties J1 = 0, hence, QS1 = M̂1, i.e., Q−1

S M̂1 = 1.
Lemma 7.1. Define Y = {(x y)T ∈ Rm+n1+n2 | y ∈ 1⊥M̂ }. Then Q−1K : Y →

Y is a bijection.
Proof. The space Y forms a direct sum with the kernel span{(0 1)T } of the matrix

K. Hence, the range of K : Y → Rm+n1+n2 has co-dimension 1. For (x y)T define
(x̃ ỹ)T = Q−1K(x y)T . For ỹ we have

〈M̂ ỹ,1〉 = 〈Bx− εpJy, Q−1
S M̂1〉 = 〈Bx− εpJy,1〉 = 〈x, BT1〉 − εp〈y, J1〉 = 0.

Hence, (x̃ ỹ)T ∈ Y holds.

As we will see in the next section, the matrices M and M̂ +εpJ are spectrally equiva-
lent. If we would use QS = M as the Schur complement preconditioner, it is not clear
how to satisfy the consistency condition y ∈ 1⊥M̂ . This is the reason why besides the
mass matrix M we also need the mass matrix M̂ .

7.1. Analysis of the preconditioner. We analyze the quality of the block
diagonal preconditioner Q given in (7.3).

We start with a main result, which shows that the weighted mass matrix M is
uniformly spectrally equivalent to the Schur complement.

Theorem 7.2. Take εp > 0. There exist constants c1, c2 > 0, independent of h,
µ and of how Γ intersects the triangulation, such that with S = BA−1BT + εpJ we
have:

c1〈My,y〉 ≤ 〈Sy,y〉 ≤ c2〈My,y〉 for all y ∈ 1⊥M̂ . (7.4)

Proof. Take y ∈ 1⊥M̂ . We use the relation

〈BA−1BTy,y〉 1
2 = max

x∈Rm

〈Bx,y〉
〈Ax,x〉 1

2

= max
uh∈Vh

b(uh, p
Γ
h)

a(uh, uh)
1
2

. (7.5)

We use the estimate (6.1) and thus get

max
uh∈Vh

b(uh, p
Γ
h)

a(uh, uh)
1
2

≤ c max
uh∈Vh

‖µ 1
2D(uh)‖0,Ω‖µ−

1
2 pΓ
h‖0,Ω

‖µ 1
2D(uh)‖0,Ω

= c‖µ− 1
2 pΓ
h‖0,Ω ≤ c‖µ−

1
2 ph‖0,Ω1,h∪Ω2,h

= c〈My,y〉 1
2 .

17



Hence 〈BA−1BTy,y〉 ≤ c〈My,y〉 holds. Using an inverse inequality we get

〈Jy,y〉 = j(ph, ph) =

2∑
i=1

µ−1
i

∑
F∈Fi

h3
F ‖[∇pi,h · nF ]‖20,F

≤ c
2∑
i=1

µ−1
i

∑
T∈Ωi,h

h3
T ‖∇pi,h‖20,∂T ≤ c

2∑
i=1

µ−1
i

∑
T∈Ωi,h

h2
T ‖∇pi,h‖20,T (7.6)

≤ c
2∑
i=1

µ−1
i

∑
T∈Ωi,h

‖pi,h‖20,T = c‖µ− 1
2 ph‖20,Ω1,h∪Ω2,h

= c〈My,y〉.

Hence, 〈Sy,y〉 = 〈(BA−1BT + εpJ)y,y〉 ≤ c(1 + εp)〈My,y〉 holds for all εp ≥ 0,
which proves the second inequality in (7.4).
Using (7.5) and Lemma 5.3 we get, with suitable constants c1, c2,

〈BA−1BTy,y〉 1
2 ≥ c1‖µ−

1
2 ph‖0,Ω1,h∪Ω2,h

− c2
j(ph, ph)

‖µ− 1
2 ph‖0,Ω1,h∪Ω2,h

= c1〈My,y〉 1
2 − c2

〈Jy,y〉
〈My,y〉 1

2

.

This yields 〈BA−1BTy,y〉 1
2 〈My,y〉 1

2 + c2〈Jy,y〉 ≥ c1〈My,y〉.
Using 〈BA−1BTy,y〉 1

2 〈My,y〉 1
2 ≤ 1

2c
−1
1 〈BA−1BTy,y〉+ 1

2c1〈My,y〉 we thus get

〈Sy,y〉 ≥ c21 min
{

1,
εp

2c1c2

}
〈My,y〉,

which proves the first inequality in (7.4).

As can be seen from the proof, the constants ci in (7.4) depend on the value of the
stabilization parameter εp.

As noted at the end of the previous section, in view of the consistency condition
y ∈ 1⊥M̂ , it is more convenient to use the matrix QS = M̂ + εpJ instead of M as a
preconditioner for the Schur complement S. In the next lemma we show that these
two are uniformly spectrally equivalent.

Lemma 7.3. Take εp > 0. There exist constants c1, c2 > 0, independent of h, µ
and of how Γ intersects the triangulation, such that

c1〈My,y〉 ≤ 〈(M̂ + εpJ)y,y〉 ≤ c2〈My,y〉 for all y ∈ Rn1+n2 . (7.7)

Proof. From ‖µ− 1
2 pΓ
h‖0,Ω ≤ ‖µ−

1
2 ph‖0,Ω1,h∪Ω2,h

we obtain 〈M̂y,y〉 ≤ 〈My,y〉.
Combining this with the result in (7.6) proves the second inequality in (7.7). Using
Lemma 2.2 we get,

〈My,y〉 = ‖µ− 1
2 ph‖20,Ω1,h∪Ω2,h

≤ c
(
‖µ− 1

2 pΓ
h‖20,ω1,h∪ω2,h

+ j(ph, ph)
)

≤ c
(
‖µ− 1

2 pΓ
h‖20,Ω + εpj(ph, ph)

)
= c
(
(M̂ + εpJ)y,y〉,

and thus the first inequality in (7.7) holds, too.

The results above yield that the spectral condition number of Q−1
S S is uniformly
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bounded on 1⊥M̂ . Finally we show that linear systems with matrix QS can be solved
(approximately) with low computational costs. In [18] it is proved that for µ1 = µ2 = 1
the diagonally scaled matrix D̂−1M̂ , with D̂ := diag(M̂) is uniformly (w.r.t. h and
w.r.t. the position of the interface in the grid) well-conditioned. Due to the possibly
small support of some extended basis functions, without the diagonal scaling the
condition number of the mass matrix M̂ is not uniformly bounded. Here, we have to
study the conditioning of QS = M̂ + εpJ . We benefit from the stabilizing term εpJ ,
and a conditioning result is easily obtained, as shown in the following lemma.

Lemma 7.4. Take εp > 0. Define D := diag(M̂ + εpJ). There exist constants
c1, c2 > 0, independent of h, µ and of how Γ intersects the triangulation, such that

c1〈Dy,y〉 ≤ 〈(M̂ + εpJ)y,y〉 ≤ c2〈Dy,y〉 for all y ∈ Rn1+n2 . (7.8)

Proof. By A ∼ B we denote uniform spectral equivalence of the s.p.d. matrices
A and B. Define DM := diag(M). If in (7.7) for y we take the standard basis vectors
we obtain D ∼ DM . From the definition of M and the result in (7.1) it follows that
DM ∼M . Thus we get D ∼M . Using (7.7) we conclude D ∼ M̂ + εpJ .

As a direct consequence of this Lemma, we can see that the Jacobi method applied to
M̂ + εpJ is a good preconditioner for the Schur coplement. Now we apply a standard
analysis as in e.g. [21, 15], to derive results on the spectrum of the preconditioned
matrix Q−1K. From the results in Theorem 7.2 and Lemma 7.3 it follows that there
are constants γS > 0 and ΓS , independent of h, µ and of how the interface intersects
the triangulation, such that for the Schur complement preconditioner QS as in (7.3),
with a fixed εp > 0, we have the following spectral equivalence:

γS〈QSy,y〉 ≤ 〈Sy,y〉 ≤ ΓS〈QSy,y〉 for all y ∈ 1⊥M̂ . (7.9)

For QA we take a symmetric multigrid preconditioner. Thus there exists γA > 0
independent of h and of how the interface intersects the triangulation such that

γA〈QAx,x〉 ≤ 〈Ax,x〉 ≤ 〈QAx,x〉 for all x ∈ Rm. (7.10)

In the upper bound in (7.10) we have a constant 1, because the iteration matrix of
a symmetric multigrid method for the diffusion equation is positive definite. The
spectral constant γA may depend on the quotient µ1/µ2.

Corollary 7.5. All nonzero eigenvalues of Q−1K lie in the union of the inter-
vals

[γA, 1] ∪
[1
2

(γA +
√
γ2
A + 4γAγS) ,

1

2
(1 +

√
1 + 4ΓS)

]
∪
[1
2

(1−
√

(1 + 4ΓS) ,
1

2
(γA −

√
γ2
A + 4γAγS)

]
.

Proof. Follows from (7.9), (7.10) and the analysis in [15] (Lemma 5.14).

This shows that Q is an optimal preconditioner for K. Systems with the Schur
complement preconditioner QS can be solved (approximately) with acceptable com-
putational costs, cf. Lemma 7.4.

8. Numerical experiments.
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Fig. 8.1. Values of the stability constant Cstab for different values of εp as the interface’s
distance to the x-y-plane is decreased.

8.1. The sliver experiment. In our first experiment we want to investigate
the influence of the parameter εp on the stability of the resulting discretizations.
To this end, we introduce the so-called sliver experiment. Praxis has shown that in
unstabilized discretizations the stability problems seem to arise from those XFEM
functions which have a tiny support. In this experiment we deliberately create such
functions and repeatedly shrink their support by defining a sequence of planar inter-
faces Γk :=

{
(x, y, z) ∈ Ω

∣∣ z = 0.1 · 2−k
}

, k ≥ 0, approaching the x-y-plane. We
choose a uniform grid of the domain Ω = (−1, 1)3, consisting of 4 × 4 × 4 equally
sized cubes. Each of these cubes is then sub-divided into six tetrahedra. We take
µ1 = µ2 = 1. As a measure of stability, we want to estimate

inf
(uh,ph)∈Vh×QΓ

h

sup
(vh,qh)∈Vh×QΓ

h

k
(
(uh, ph), (vh, qh)

)
‖(uh, ph)‖‖(vh, qh)‖ ,

where ‖(uh, ph)‖2 = ‖uh‖21 + ‖ph‖20.
(8.1)

Using Lemma 7.3 and the coercivity of the bilinear form a, it can be shown that this
can be estimated by the smallest non-zero eigenvalue of the following matrix:(

A+Mv 0

0 M̂ + εJ

)−1(
A BT

−B εpJ

)
, (8.2)

where Mv is mass matrix in the velocity space. We denote this smallest non-zero
eigenvalue by Cstab.

Figure 8.1 shows the values of Cstab for the two choices εp = 10−5 and εp = 1.
Even though there are five orders of magnitude between them, the stability results
are almost identical. The same holds for choices of εp in between those values, which
we did not plot here for the sake of a better visualization. For the unstabilized
discretization, we remark that due to numerical instabilities the computed values
for Cstab might be inaccurate. However, the value of Cstab seems to deteriorate
approximately as O(δ3), where δ is the distance of the interface to the x-y-plane. It
appears that already “tiny amounts” of the stabilization suffice to restore the method’s
stability. Furthermore, variation of the parameter εp seems to have a very mild
influence on the stability of the method.

8.2. Experiments with a smooth velocity solution. In this section we want
to investigate the convergence properties of the method. To this end, we prescribe
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Dirichlet boundary conditions and an external force f = fΩ + f̂Γ, f̂Γ(v) := σ
∫

Γ
v ·n ds

with σ := 10 for v ∈ V , such that the analytical solution is:

u(x, y, z) = α(r) e−r
2

−yx
0

 , where r =
√
x2 + y2 + z2,

α(r) =

{
µ−1

1 for r < rΓ,

µ−1
2 + (µ−1

1 − µ−1
2 )er

2−r2
Γ for r ≥ rΓ,

p(x, y, z) = x3 +

{
σ x ∈ Ω1,

0 else,

(8.3)

where the domain is Ω := (−1, 1)3 and Ω1 := S2/3 the sphere of radius rΓ := 2/3
around the origin. Note that the function α(r) is continuous and has a kink at
r = rΓ in case of non-matching viscosities µi. Note also that the velocity vectors are
tangential to the interface, i.e., u · nΓ = 0 with nΓ the outer normal to Ω1, which is
necessary for the assumption of a stationary interface.

For simplicity, as a first test case we choose µ1 = µ2 = 1, while a more realistic
setting will be examined in Section 8.3. For this choice we have α ≡ 1 and thus the
functions u, p can be ideally approximated by the ansatz spaces while not being a
part of them. For the discretization of f̂Γ we use f̂Γh

(vh) := σ
∫

Γh
vn · nh ds, which

is second-order accurate. Here Γh is a piece-wise planar approximation to Γ with
dist(x,Γ) ≤ ch2 for all x ∈ Γh, cf. [11], which is also used in the construction of the
XFEM space QΓh

h .

In a first step, we want to investigate the sensitivity of the discretization error
with respect to εp. We therefore choose a fixed grid of 16× 16× 16 cubes which are
each subsequently subdivided into six tetrahedra. Afterwards we change the value
of εp and compute the discretization error. For the solution of the linear system
of equations a preconditioned MINRES method was used, with the preconditioners
defined as in the previous section. The MINRES iteration was stopped when the
residual fell below the threshold of 10−9.

Table 8.1 shows the resulting iteration counts and discretization errors for var-
ious values of εp. One can clearly see that for εp < 1, its magnitude is virtually
insignificant for the properties of the resulting discretization. Note that the error in
the pressure variable is only about half of the corresponding value for the unstabilized
discretization. For εp = 1 the errors increase only very slightly. Also note that for
εp = 0 the MINRES iteration did not converge to the target residual due to the poor
stability properties. For all other choices of εp, the introduced preconditioners show
to be effective with iteration counts around 100. We can therefore conclude that εp
only has a very mild influence on the properties of the resulting discretization. Note
that without using any Schur complement preconditioner (i.e., QS = I) the residual
did not fall below 10−3 within 1000 MINRES iterations. This shows that the Schur
complement preconditioner is crucial for the iterative solution of the linear systems.

After having established the discretization’s small sensitivity with respect to εp,
we want to inspect the convergence behavior with respect to h. To this end we
choose a fixed value εp = 1 and start with a uniform grid of 4 × 4 × 4 cubes which
are subsequently each divided into six tetrahedra. We then perform uniform mesh
refinements and look at the influence on the discretization error and the iteration
counts.
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εp ‖eΓ
p‖0 ‖eu‖1 Iterations

0 1.82 · 10−2 4.90 · 10−3 > 1000
10−5 9.64 · 10−3 4.87 · 10−3 97
10−3 9.49 · 10−3 4.86 · 10−3 96
10−1 9.76 · 10−3 4.97 · 10−3 102
1 1.33 · 10−2 6.41 · 10−3 95
10 3.01 · 10−2 1.43 · 10−2 102
103 9.34 · 10−2 4.61 · 10−2 97

Table 8.1
Discretization errors and iteration counts for various values of εp. For εp = 0 the residual did

not fall below 10−6.

0 1 2 3
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Fig. 8.2. Discretization errors for different
refinement levels of the mesh for εp = 1 using

an artificial surface force term f̂Γ.
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Fig. 8.3. Discretization errors for different
refinement levels of the mesh for εp = 1 using
a surface tension force term fΓ.

Figure 8.2 shows the discretization errors for the different refinement levels. As
predicted by the analysis, we have a second order convergence behavior. The iteration
counts varied between values of 95 and 102, confirming the optimal behavior of the
preconditioners introduced. Note that for the second order convergence behavior, the
use of the P1-XFE space for the pressure is essential. If one uses the standard P1-FE
space instead, the rate of convergence drops to O(h

1
2 ), cf. [12].

8.3. Experiments with more realistic parameter settings. In two-phase
flows the pressure jump at the interface is induced by surface tension. To incorporate
the effect of surface tension we consider the same test case as in Section 8.2, but we
replace the artificial surface force f̂Γ by the surface tension force fΓ(v) =

∫
Γ
τκv ·

n ds. Here τ > 0 is a constant surface tension coefficient and κ(x) denotes the local
curvature of Γ.

Choosing τ = 10
3 we have τκ = τ 2

rΓ
= 10 = σ, thus for the continuous setting both

surface forces coincide, i.e., fΓ = f̂Γ. This, however, does not hold for the discrete
case, i.e., fΓh

6= f̂Γh
, which is due to the fact that for fΓh

the curvature has to be
evaluated from the approximate interface Γh. For the discretization fΓh

of the surface
tension force we use a Laplace-Beltrami technique described in [11] and analyzed in
[11, 10] which has a discretization order of 1.5. Due to the first Strang lemma the
same convergence order is expected for the sum of the velocity error (in ‖ · ‖1) and
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Fig. 8.4. Exact and discrete velocity and pressure solutions along the x-axis for εp = 1 on grid
refinement level 3 and a realistic parameter setting corresponding to an air bubble in water.
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Fig. 8.5. Discretization errors for different refinement levels of the mesh for εp = 1 and a
realistic parameter setting corresponding to an air bubble in water.

pressure error (in ‖ · ‖0). We take εp = 1 and apply grid refinement as in the previous
experiment. The error plot given in Figure 8.3 shows that the velocity error has an
O(h

3
2 ) behavior and the pressure error converges with second order.

Finally, we consider an experiment which mimics a two-phase flow water/air sys-
tem with non-matching viscosities. The solution is chosen as in (8.3) with µ1 = 10−3,
µ2 = 10−1 and τ = 700. These values for viscosity and surface tension coefficient
τ correspond to the dimensionless formulation of the two-phase Stokes equations for
an air bubble with radius 2

3 mm in ambient water, assuming a characteristic length
L = 10−3m and a characteristic velocity U = 10−2m/s. Figure 8.4 shows a plot
of the velocity and pressure along the x-axis on the finest grid (refinement level 3).
Note the large scaling of the pressure and velocity solution, yielding ‖p‖0 = 2.15 · 103

and ‖u‖1 = 2.97 · 103, whereas in the previous examples both norms are of order 1.
Due to the kink of the velocity at the interface (see u2 in Figure 8.4), which is not
aligned with the triangulation, for the standard velocity space without enrichment one
expects a poor convergence order of 0.5. Figure 8.5 shows the convergence behavior
for different grid refinement levels. We observe a convergence order of 1.5, showing
that the surface tension discretization error dominates the error induced by the ve-
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locity kink. A reduced order of 0.5 is expected on fine enough grids, which, however,
could not be tested in this experiment due to memory limitations. The results in this
experiment are in accordance with our experience that for the simulation of realistic
two-phase flows usually the pressure jump enrichment and the discretization of the
surface tension force are essential, whereas the velocity kink enrichment (often) seems
to be of minor importance. A similar experience is reported in [19].
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