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Abstract. We present a new high order finite element method for the discretization of partial
differential equations on stationary smooth surfaces which are implicitly described as the zero level
of a level set function. The discretization is based on a trace finite element technique. The higher
discretization accuracy is obtained by using an isoparametric mapping of the volume mesh, based
on the level set function, as introduced in [C. Lehrenfeld, High order unfitted finite element methods
on level set domains using isoparametric mappings, Comp. Meth. Appl. Mech. Engrg. 2016]. The
resulting trace finite element method is easy to implement. We present an error analysis of this
method and derive optimal order H1(Γ)-norm error bounds. A second main topic of this paper is
a unified analysis of several stabilization methods for trace finite element methods. Three methods
known from the literature and one new method are analyzed in a general framework. Only the new
stabilization method, which is based on adding an anisotropic diffusion in the volume mesh, is able to
control the condition number of the stiffness matrix also for the case of higher order discretizations.
Results of numerical experiments are included which confirm the theoretical findings on optimal
order discretization errors and uniformly bounded condition numbers.
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1. Introduction. Recently there has been an increasing interest in unfitted finite
element methods. These methods offer the possibility to handle complex geometries
which are not aligned with a computational (background) mesh. Also the development
and analysis of numerical methods for PDEs on (evolving) surfaces is a rapidly growing
research area.

The trace finite element method (TraceFEM) [20] is an unfitted FEM for PDEs
on implicit domains which are described via a level set function. In this paper we
introduce and analyze a higher order TraceFEM for surface PDEs. Furthermore,
several stabilization methods are studied. The aim of these methods is to obtain
condition numbers which are uniformly bounded with respect to the location of the
surface in the underlying volume triangulation.

Literature. The TraceFEM was introduced in [20] for elliptic PDEs on smooth
stationary surfaces. For piecewise linears, the method has been studied extensively.
For stationary surfaces, the conditioning properties of the resulting stiffness matrices
are discussed in [18]. Convection dominated problems are considered in [22, 4]. In [22]
a streamline diffusion stabilization is treated, whereas in [4] a Discontinuous Galerkin
formulation is studied. For PDEs on evolving surfaces, space-time formulations of the
TraceFEM were first considered in [9]. A space-time formulation of the TraceFEM is
analyzed in [10, 21, 19] . In all these publications, only piecewise linears are considered.

One major issue in the design and realization of high order methods in the context
of unfitted finite element methods is the problem of numerical integration on domains
which are represented implicitly. Different approaches to deal with this issue exist,
cf. the literature overview in [15].
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For surface PDEs on implicit domains, higher order FE methods have first been
considered in [7]. In that paper it is crucial that the surface is given as the zero
level of a smooth signed distance function d which is explicitly known. Based on d
a parametric mapping of a shape regular piecewise triangular surface approximation
to the zero level of the distance function is constructed which results in a higher
order surface representation. In that method the finite element space is explicitly
defined with respect to this triangular surface approximation. Hence, it is not a
TraceFEM. In [11] a higher order TraceFEM discretization is introduced for PDEs
on surfaces which are represented as the zero level of a level set function, which is
not necessarily a signed distance function. To this end, a parametric mapping of a
piecewise planar interface approximation is constructed based on quasi-normal fields.
Both in [7] and [11] optimal a-priori error bounds are derived. An approach, similar
to the one in [11], to enhance the geometry approximation of a piecewise planar
interface approximation has recently been introduced in [15]. In the latter paper,
however, a parametric mapping of the underlying mesh is used. The construction
of such a mapping is presented in [15], and optimal approximation properties have
been derived in [16] for an elliptic interface model problem. The parametric mapping
of the underlying mesh allows for a high order approximation of both bulk domains
and implicitly defined surfaces/interfaces. Hence this approach can be used to obtain
higher order discretizations for interface problems (as in [16]) as well as for surface-
bulk coupled problems with Trace FEM (as considered in [12]).

Different aspects, which are less relevant for the topic of this paper, of high order
discretizations on triangulated surface are treated in [7, 14, 1].

Related to the conditioning of stiffness matrices in TraceFEM we note the fol-
lowing. To improve the conditioning of the stiffness matrices in the TraceFEM the
“full gradient volume stabilization” has been considered in [5, 23]. Other techniques
known in the literature are the “ghost penalty stabilization” [2, 3] and the “full gradi-
ent surface stabilization” [6, 23]. A comparison of these methods is given in section 6.

Main contributions of this paper. We use the approach presented in [15] to
obtain a higher order isoparametric TraceFEM for surface PDEs. The method needs
as input only a (high order) finite element approximation of the level set function
and is easy to implement (in particular, easier as the method treated in [11]). In this
TraceFEM a finite element space is defined on a transformed background mesh and
a discretization is obtained by restricting the corresponding functions to an (approx-
imated) surface and applying a Galerkin formulation. The isoparametric mapping of
the background mesh is the key ingredient for obtaining a higher order discretization,
very similar to the standard finite element isoparametric technique for higher order
boundary approximation. We present an error analysis for this method and derive
optimal order H1-norm discretization error bounds. A second main contribution of
this paper is concerned with stabilization methods for obtaining condition numbers
which are uniformly bounded with respect to the location of the surface in the un-
derlying volume triangulation. We present a unified framework for analyzing such
methods and introduce a new stabilization technique. The analysis reveals that none
of the known methods yields satisfactory results for higher order discretizations. The
new stabilization method, however, is applicable also to higher order discretizations.

Structure of the paper. In section 2 we recall the weak formulation of the
Laplace–Beltrami equation and introduce our assumptions concerning the geometry
description based on a level set function. The parametric mapping used to obtain a
high order accurate geometry description is introduced in section 3. The isoparametric
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trace FEM is given in section 4. In that section we introduce a generic stabilization
sh(·, ·). In section 5 we derive an optimal a-priori discretization error bound in the
H1-norm. For this we need two conditions on the stabilization bilinear form sh(·, ·) to
hold. In section 6 we derive condition number bounds for the stiffness matrix which
are robust with respect to the position of the surface in the computational mesh. In
this analysis a third condition for the stabilization bilinear form sh(·, ·) is introduced.
It is shown that the three conditions on sh(·, ·) that arise in the analysis are satisfied
for certain known stabilization methods applied to linear FE discretizations. We
furthermore introduce a new stabilization technique which is suitable not only for the
linear but also for the higher order case. An analysis of this new stabilization is given
in section 7. Numerical experiments which illustrate the (optimal) higher order of
convergence and the conditioning of the corresponding stiffness matrices are provided
in section 8. A summary and outlook are given in section 9.

2. Problem formulation. Let Ω ⊆ R3 be a polygonal domain and Γ ⊂ Ω a
smooth, closed, connected 2D surface. Given f ∈ H−1(Γ), with f(1) = 0 we consider
the following Laplace–Beltrami equation: Find u ∈ H1

∗ (Γ) := { v ∈ H1(Γ) |
∫

Γ
v ds =

0 } such that

a(u, v) = f(v) for all v ∈ H1
∗ (Γ) (2.1)

with

a(u, v) =

∫
Γ

∇Γu · ∇Γv ds.

2.1. Geometry description through a level set function. We assume that
the smooth surface Γ is the zero level of a smooth level set function φ, i.e., Γ = {x ∈
Ω | φ(x) = 0 }. This level set function is not necessarily close to a distance function,
but has the usual properties of a level set function:

‖∇φ(x)‖ ∼ 1 , ‖D2φ(x)‖ ≤ c for all x in a neighborhood U of Γ. (2.2)

We assume that the level set function has the smoothness property φ ∈ Ck+2(U),
where k denotes the polynomial degree of the finite element space introduced below.
The assumptions on the level set function (2.2) imply the following relation, which is
fundamental in the analysis below:

|φ(x+ ε∇φ(x))− φ(x+ ε̃∇φ(x))| ∼ |ε− ε̃|, x ∈ U, (2.3)

for |ε|, |ε̃| sufficiently small.
We assume a simplicial triangulation of Ω, denoted by T ∈ {Th}h>0, and the

standard finite element space of continuous piecewise polynomials up to degree k by
V kh . The nodal interpolation operator in V kh is denoted by Ik.

For ease of presentation we assume quasi-uniformity of the mesh, and h denotes
a characteristic mesh size with h ∼ hT := diam(T ), T ∈ T .

As input for the parametric mapping we need an approximation φh ∈ V kh of φ, and
in the error analysis we assume that this approximation satisfies the error estimate

max
T∈T
|φh − φ|m,∞,T∩U . hk+1−m, 0 ≤ m ≤ k + 1. (2.4)

Here | · |m,∞,T∩U denotes the usual semi-norm on the Sobolev space Hm,∞(T ∩ U)
and the constant used in . depends on φ but is independent of h. Note that (2.4)

3



implies the estimate

‖φh − φ‖∞,U + h‖∇(φh − φ)‖∞,U . hk+1. (2.5)

The zero level of the finite element function φh (implicitly) characterizes an approxi-
mation of the interface. The piecewise linear nodal interpolation of φh is denoted by
φ̂h = I1φh. Hence, φ̂h(xi) = φh(xi) at all vertices xi in the triangulation T . The low
order geometry approximation of the interface, which is needed in our discretization
method, is the zero level of this function:

Γlin := {x ∈ Ω | φ̂h(x) = 0}.

All elements in the triangulation T which are cut by Γlin are collected in the set T Γ :=
{T ∈ T | T ∩ Γlin 6= ∅}. The corresponding domain is ΩΓ := {x ∈ T | T ∈ T Γ}. We
define the set of facets inside ΩΓ, FΓ := {F = T a∩T b;Ta, Tb ∈ T Γ,measd−1(F ) > 0}.

3. The isoparametric mapping. We use the mesh transformation introduced
in [15] and [16]. We only outline the important ingredients in the construction of the
mapping. For details we refer to the thorough discussion in [16, Section 3].

We first introduce a mapping Ψ on ΩΓ with the property Ψ(Γlin) = Γ. Using
G := ∇φ a function d : ΩΓ → R is defined as follows: d(x) is the (in absolute value)
smallest number such that

φ(x+ d(x)G(x)) = φ̂h(x) for x ∈ ΩΓ. (3.1)

Let Cl(T Γ) := {v | v|T ∈ Cl(T ), T ∈ T Γ}, l ∈ N0, be the space of element-wise
Cl-continuous functions that can be discontinuous across element faces. In [16] it
is shown that for h sufficiently small the relation in (3.1) defines a unique d(x) and
d ∈ C(ΩΓ)∩H1,∞(ΩΓ)∩Ck+1(T Γ). Given the function dG ∈ [C(ΩΓ)]3∩ [H1,∞(ΩΓ)]3

we define:

Ψ(x) := x+ d(x)G(x), x ∈ ΩΓ. (3.2)

In general, e.g., if φ is not explicitly known, the mapping Ψ is not computable. We
introduce an easy to construct accurate approximation of Ψ as follows.

We define the polynomial extension ET : P(T ) → P(R3) so that for v ∈ V kh we
have (ET v)|T = v|T , T ∈ T Γ. For a search direction Gh we need a sufficiently accurate
approximation of ∇φ. In this paper we take

Gh = ∇φh,

but there are other options. Given Gh we define a function dh : T Γ → [−δ, δ], with
δ > 0 sufficiently small, as follows: dh(x) is the (in absolute value) smallest number
such that

ETφh(x+ dh(x)Gh(x)) = φ̂h(x), for x ∈ T ∈ T Γ. (3.3)

In the same spirit as above, corresponding to dh we define

Ψh(x) := x+ dh(x)Gh(x), for x ∈ T ∈ T Γ, (3.4)

which is an approximation of the mapping Ψ in (3.2). The mapping may be discon-
tinuous across facets. Using a simple projection Ph we map this transformation into
the continuous finite element space, resulting in

Θh := PhΨh ∈ [V kh ]3, (3.5)
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cf. [16, Section 2.2] for details. Based on this transformation we define

Γh := Θh(Γlin) = {x | φ̂h
(
Θ−1
h (x)

)
= 0}. (3.6)

Γlin

ΩΓ

nlin

Γ

ΩΓ
Ψ

n

Γh

ΩΓ
Θ

nh

Θh

Ψ Fh

Fig. 3.1. Sketch of different transformations. Ψ maps the interface approximation Γlin onto
the exact interface Γ; Θh is the discrete approximation of Ψ. The transformation Fh := Θh ◦Ψ−1

has the property Fh(Γ) = Γh.

Remark 1. The polynomial extension ET used in (3.4) ensures that the com-
putation of dh|T only depends on φh|T , i.e. element-local quantities. This avoids
searches in a neighborhood of the element, which enhances the computational effi-
ciency, especially in case of a parallel implementation.

A key result of the error analysis in [16] is summarized in the following lemma.

Lemma 3.1. The following estimates hold:

‖Θh −Ψ‖∞,ΩΓ + h‖D(Θh −Ψ)‖∞,ΩΓ . hk+1, (3.7)

‖I −Ψ‖∞,ΩΓ + ‖I −DΨ‖∞,ΩΓ . h. (3.8)

Proof. [16, Lemma 5.5 and (5.28)].

We emphasize that the constants hidden in the . notation in (3.7), (3.8), and
also in the estimates in the remainder, do not depend on how Γlin intersects the
triangulation T Γ. We define the transformed cut mesh domains ΩΓ

Θ := Θh(ΩΓ),
ΩΓ

Ψ := Ψ(ΩΓ), cf. Fig. 3.1. The results in Lemma 3.1 imply that, for h sufficiently
small, both Θh : ΩΓ → ΩΓ

Θ and Ψ : ΩΓ → ΩΓ
Ψ are homeomorphisms. Furthermore,

using (3.7) one easily derives ([16, Lemma 5.6]):

dist(Γh,Γ) . hk+1. (3.9)

For the analysis we also need a result on the approximation of normals in a neighbor-
hood of Γ. Let n(x), x ∈ Γ be the unit normal to Γ (in the direction of φ > 0). In
a (sufficiently small) neighborhood of Γ we define n(x) := ∇φ/‖∇φ‖2. In case that φ
is a signed distance function this coincides with n(x) = n(p(x)) where p is the closest
point projection on Γ. In the following lemma we consider a computable accurate
approximation of n(x).

Lemma 3.2. For x ∈ T ∈ T Γ define

nlin = nlin(T ) :=
∇φ̂h(x)

‖∇φ̂h(x)‖2
=
∇φ̂h|T
‖∇φ̂h|T ‖2

, nh(Θh(x)) :=
DΘh(x)−Tnlin

‖DΘh(x)−Tnlin‖2
.

5



Let nΓh(x), x ∈ Γh a.e., be the unit normal on Γh (in the direction of φh > 0). The
following holds

‖nh − n‖∞,ΩΓ
Θ
. hk (3.10)

‖nΓh − n‖∞,Γh . hk. (3.11)

Proof. Define the isosurface Γlin
c := {x ∈ ΩΓ | φ̂h(x) = c } (not necessarily

connected) and its image Γh,c := {Θh(x) | x ∈ Γlin
c }. Note that Γh = Γh,0. Take

x ∈ T ∈ T Γ and c such that x ∈ Γlin
c . The unit normal on Γlin

c at x is given by nlin.
The unit normal on Γh,c at Θh(x) is given by nh(Θh(x)). Hence, for y = Θh(x) ∈ Γh
we have nΓh(y)− n(y) = nh(Θh(x))− n(Θh(x)), and thus (3.11) follows from (3.10).
Let Γc := {x ∈ ΩΓ

Ψ | φ(x) = c } be the c-isosurface of Γ. The definition of Ψ implies
that Γc = {Ψ(x) | x ∈ Γlin

c }. Thus we get

n(Ψ(x)) =
DΨ(x)−Tnlin

‖DΨ(x)−Tnlin‖2
.

Using this and the result in Lemma 3.1 we get (uniformly in x and T ):

‖nh(Θh(x))− n(Θh(x))‖2 ≤ ‖nh(Θh(x))− n(Ψ(x))‖2 + ‖n(Θh(x))− n(Ψ(x))‖2

.

∥∥∥∥ DΘh(x)−Tnlin

‖DΘh(x)−Tnlin‖2
− DΨ(x)−Tnlin

‖DΨ(x)−Tnlin‖2

∥∥∥∥
2

+ hk+1

.
‖
(
DΘh(x)−T −DΨ(x)−T

)
nlin‖2

‖DΨ(x)−Tnlin‖2
+ hk+1 . hk.

In the last inequality we used (3.8) and (3.7). This proves (3.10).
One further property that we need in the analysis is the uniform local regularity

of the mapping Θh that we will show in Lemma 3.4. As a preliminary we give the
following lemma.

Lemma 3.3. For h sufficiently small, T ∈ T Γ, and F ∈ FΓ, the functions dh and
Ψh defined in (3.3) and (3.4) have the properties

max
T∈T Γ

‖dh‖Hl,∞(T ) . 1, max
T∈T Γ

‖Ψh‖Hl,∞(T ) . 1, l ≤ k + 1, (3.12a)

max
F∈FΓ

‖[[dh]]F ‖∞,F . hk+1, max
F∈FΓ

‖[[Ψh]]F ‖∞,F . hk+1, (3.12b)

where [[·]]F denotes the usual jump operator across the facet F .
Proof. The proof of the first bound in (3.12a) follows similar lines as the proof of

[16, Lemma 5.3]. The proof of the second bound is similar to the proof of [16, Lemma
5.4]. For completeness we include a proof in Appendix A.

Lemma 3.4. The following holds: maxT∈T Γ ‖Θh‖Hl,∞(T ) . 1, l ≤ k + 1.

Proof. Recall that Θh = PhΨh, cf. (3.5). We fix an element T ∈ T Γ and set
ΨT = Ψh|T ∈ Ck+1(T ). We have

‖Θh‖Hl,∞(T ) ≤ ‖ΨT ‖Hl,∞(T ) + ‖PhΨh −ΠΨT ‖Hl,∞(T ) + ‖ΠΨT −ΨT ‖Hl,∞(T ),

where Π is the nodal interpolation operator into Pk(T ). For the latter interpolation
error we have

‖ΠΨT −ΨT ‖Hl,∞(T ) . ‖ΨT ‖Hl,∞(T ).
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With Lemma 3.3 we have ‖ΨT ‖Hl,∞(T ) . 1 uniformly in T and hence can bound the
first and the last term with O(1). It remains to show the estimate for PhΨh −ΠΨT .
Let {ψi}i∈IT , be the nodal basis in P(T ), as also used in the definition of Ph (cf. [16,
Section 2.2]), and {xi}i∈IT the corresponding nodes, we can write (on T )

PhΨh −ΠΨT =
∑
i∈IT

(Axi(Ψh)−ΨT (xi))ψi,

where Axi(Ψh) is an average of values of Ψh on different elements that share the node
xi. For finite element nodes which lie inside an element T , i.e. xi 6∈ ∂T , we have
Axi(Ψh) = ΨT (xi). For xi ∈ ∂T we can use Lemma 3.3 and thus obtain:

|Axi(Ψh)−ΨT (xi)| = |Axi(Ψh − ETΨT )| .
∑

F∈FΓ∩T

‖[[Ψh]]‖∞,F . hk+1. (3.13)

In this estimate we used that the number of facets that share a point is uniformly
bounded on shape regular meshes. With the bound in (3.13) we get

‖PhΨh −ΠΨT ‖Hl,∞(T ) .
∑
i∈IT

|Axi(Ψh)−ΨT (xi)|︸ ︷︷ ︸
. hk+1

‖ψi‖Hl,∞(T )︸ ︷︷ ︸
. h−l

. 1, l ≤ k + 1.

which completes the proof.

We note that Lemma 3.4 implies that for u ∈ H l(T ), T ∈ T Γ, l ≤ k + 1, we have
‖u ◦Θ−1

h ‖Hl(Θh(T )) . ‖u‖Hl(T ).

4. The isoparametric trace FEM. We start by introducing the space used in
the isoparametric trace FEM. We consider the local volume triangulation T Γ and the
standard affine polynomial finite element space V kh restricted to T Γ, i.e., (V kh )|ΩΓ . To
this space we apply the transformation Θh resulting in the isoparametric space

V kh,Θ := { vh ◦Θ−1
h | vh ∈ (V kh )|ΩΓ },

V k,0h,Θ := {vh ∈ V kh,Θ |
∫

Γh

vh dsh = 0}.
(4.1)

The latter space will be used in our finite element discretization (4.4) below. In the
error analysis of the method we also use the following larger (infinite dimensional)
space:

Vreg,h := {v ∈ H1(ΩΓ
Θ) | tr |Γhv ∈ H1(Γh)} ⊃ V kh,Θ,

on which the bilinear forms introduced below are well-defined. Besides the bilinear
form related to the Laplace–Beltrami operator, we also use a stabilization sh(·, ·)
which we assume to be symmetric positive semi-definite and well-defined on the space
Vreg,h. We allow sh(·, ·) ≡ 0. The error analysis will reveal that for sh(·, ·) ≡ 0 we
have optimal order discretization error bounds. For sh(·, ·) ≡ 0, however, the stiffness
matrix can be very ill-conditioned, depending on how the interface cuts the outer
triangulation. The stabilization is used to obtain the usual O(h−2)-bound for the
condition number of the stiffness matrix, uniformly w.r.t. the cut geometry. In the
analysis below we derive conditions on sh(·, ·) such that the latter property holds and
we still have optimal order discretization error bounds. Specific choices for sh(·, ·) are
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discussed in Section 6. We introduce the bilinear form

Ah(u, v) := ah(u, v) + sh(u, v), u, v ∈ Vreg,h, (4.2)

ah(u, v) :=

∫
Γh

∇Γhu · ∇Γhv dsh. (4.3)

For the discrete problem we need a suitable extension of the data f to Γh, which
is denoted by fh. Specific choices for fh are discussed in Remark 5. The discrete
problem is as follows: Find uh ∈ V k,0h,Θ such that

Ah(uh, vh) =

∫
Γh

fhvh dsh for all vh ∈ V k,0h,Θ. (4.4)

Remark 2. Because we take the trace of outer finite element functions on the
surface approximation Γh it is natural to introduce the following trace spaces:

V Γ
h,Θ := tr|Γh(V kh,Θ),

V Γ,0
h,Θ := { vh ∈ V Γ

h,Θ |
∫

Γh

vh dsh = 0 }.
(4.5)

Concerning (4.4), there is the issue that there may be different wh, w̃h ∈ V k,0h,Θ with

the same trace vΓ
h ∈ V

Γ,0
h,Θ. In the case sh(·, ·) ≡ 0 only trace values on Γh are used

in (4.4), an thus we can replace the trial and test space V k,0h,Θ in (4.4) by V Γ,0
h,Θ. The

latter formulation then has a unique solution uΓ
h ∈ V

Γ,0
h,Θ, whereas the one in (4.4) may

have more solutions, which however, all have the same trace uΓ
h. This non-uniqueness

issue is directly related to the fact that the set of traces of the outer finite element
nodal basis functions form only a frame (in general not a basis) of the trace space
V Γ
h,Θ. In some of the stabilization approaches introduced further on, the bilinear form

sh(uh, vh) will depend also on function values uh(x), vh(x) with x ∈ Θh(ΩΓ) \ Γh.

This is the reason why we use V k,0h,Θ (instead of V Γ,0
h,Θ) in (4.4). Adding an appropriate

stabilization term sh will remove the above-mentioned non-uniqueness issue.
Remark 3 (Implementational aspects). The integrals in (4.4) can be imple-

mented based on numerical integration rules with respect to Γlin and the trans-
formation Θh. We illustrate this for the bilinear form ah(·, ·), cf. (4.3). With
ũh = uh ◦Θh, ṽh = vh ◦Θh ∈ V Γ

h , there holds∫
Γh

∇Γhuh · ∇Γhvh dsh =

∫
Γlin

JΓ · Ph(DΘh)−T∇ũh · Ph(DΘh)−T∇ṽh ds′h,

with Ph = I − nhnTh the tangential projection, nh = N/ ‖N‖ the unit-normal on Γh
with N = (DΘh)−T n̂h where n̂h = ∇φ̂h/‖∇φ̂h‖ is the normal with respect to Γlin,
and JΓ = det(DΦh)·‖N‖. This means that we only need an accurate integration with
respect to the low order geometry Γlin and the explicitly available mesh transformation
Θh ∈ [V kh ]3.

5. Discretization error analysis. The discretization error analysis that we
present is along similar lines as in most papers on finite elements for surface PDEs.
We use a Strang Lemma which bounds the discretization error in terms of an ap-
proximation error and a consistency error (due to the geometric error). For bounding
these two error terms we use results known from the literature. The only essential
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difference between the analysis below and the analyses known in the literature is that
we allow for a generic stabilization sh(·, ·) and introduce conditions on this bilinear
form which are sufficient for deriving optimal order discetization error bounds.

We need an extension of the solution u of (2.1) to a neighborhood of the interface.
Let Ur = {x ∈ R3 | |d(x)| ≤ r} , with ΩΓ

Θ ⊂ Ur be a tubular neighborhood of Γ. The
closest-point projector onto Γ is denoted as p : Ur → Γ. We define the extension we

of w ∈ H1(Γ) by we(x) := w(p(x)) for all x ∈ Ur. We then have n · ∇we = 0 on Ur.
In the error analysis we use the natural (semi-)norms

‖u‖2h := ‖u‖2a + sh(u, u), ‖u‖2a := ah(u, u), u ∈ Vreg,h. (5.1)

Remark 4. On V Γ,0
h,Θ the semi-norm ‖ · ‖a defines a norm. This follows from a

Poincaré inequality in V Γ,0
h,Θ. This implies that, for a solution uh ∈ V k,0h,Θ of the discrete

problem (4.4), the trace uh|Γh ∈ V
Γ,0
h,Θ is unique. The uniqueness of uh ∈ V k,0h,Θ depends

on the stabilization term and will addressed in Remark 6 below.
The error analysis is based on a Strang Lemma:
Lemma 5.1. Let u ∈ H1

∗ (Γ) be the unique solutions of (2.1) with the extension

ue ∈ Vreg,h and uh ∈ V k,0h,Θ be a solution of (4.4). Then we have the discretization
error bound

‖ue − uh‖h ≤ 2 min
vh∈V k,0h,Θ

‖ue − vh‖h + sup
wh∈V k,0h,Θ

|Ah(ue, wh)−
∫

Γh
fhwh dsh|

‖wh‖h
. (5.2)

Proof. For vh ∈ V k,0h,Θ and wh = uh − vh ∈ V k,0h,Θ we have

‖uh − vh‖h ≤
Ah(uh − vh, uh − vh)

‖wh‖h
≤ ‖ue − vh‖h +

Ah(uh − ue, wh)

‖wh‖h
.

Together with (4.4) and the triangle inequality ‖ue−uh‖h ≤ ‖ue− vh‖h + ‖uh− vh‖h
the claim follows.

In the following two subsections we analyze the terms in the Strang error bound.

5.1. Approximation error. We first recall some known approximation results
from the literature. The isoparametric interpolation IkΘ : C(ΩΓ

Θ)→ V kh,Θ is defined by

(IkΘv)◦Θh = Ik(v◦Θh). Using the property in Lemma 3.4, the theory on isoparametric
finite elements, cf. [17], yields the following optimal interpolation error bound for
0 ≤ l ≤ k + 1:

‖v− IkΘv‖Hl(Θh(T )) . hk+1−l‖v‖Hk+1(Θh(T )) for all v ∈ Hk+1(Θh(T )), T ∈ T . (5.3)

We will also need the following trace estimate [13]:

‖v‖2L2(ΓT ) . h−1‖v‖2L2(Θh(T )) + h‖∇v‖2L2(Θh(T )), v ∈ H1(Θh(T )), (5.4)

with ΓT := Γh ∩Θh(T ). To obtain an interpolation in V k,0h,Θ, we define

Ik,0Θ v := IkΘv − |Γh|−1

∫
Γh

IkΘv dsh.

For this interpolation operator we have the following error estimate.
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Lemma 5.2. The following holds for all v ∈ Hk+1(ΩΓ
Θ)), l = 0, 1, 2:

‖v − Ik,0Θ v‖Hl(ΩΓ
Θ) . hk+1−l‖v‖Hk+1(ΩΓ

Θ) + h
1
2

∣∣∣∣∫
Γh

v dsh

∣∣∣∣ .
Proof. From a triangle inequality and |ΩΓ

Θ| . |Γh|h we get:

‖v − Ik,0Θ v‖Hl(ΩΓ
Θ) . ‖v − IkΘv‖Hl(ΩΓ

Θ) + h
1
2

∣∣∣∣∫
Γh

IkΘv dsh

∣∣∣∣ , l = 0, 1, 2.

The first term on the right-hand side can be bounded by chk+1−l‖v‖Hk+1(ΩΓ
Θ) using

the result in (5.3). For the second term we have, using (5.4),

h
1
2

∣∣∣∣∫
Γh

IkΘv dsh

∣∣∣∣ ≤ h 1
2

∣∣∣∣∫
Γh

v − IkΘv dsh

∣∣∣∣+ h
1
2

∣∣∣∣∫
Γh

v dsh

∣∣∣∣ . h
1
2 ‖v − IkΘv‖L2(Γh)

+ h
1
2

∣∣∣∣∫
Γh

v dsh

∣∣∣∣ . ‖v − IkΘv‖L2(ΩΓ
Θ) + h‖v − IkΘv‖H1(ΩΓ

Θ) + h
1
2

∣∣∣∣∫
Γh

v dsh

∣∣∣∣ .
Together with (5.3) this completes the proof.

Lemma 5.3. For the space V k,0h,Θ we have the approximation error estimate

min
vh∈V k,0h,Θ

(
‖ve − vh‖L2(Γh) + h‖∇(ve − vh)‖L2(Γh)

)
≤ ‖ve − Ik,0Θ ve‖L2(Γh) + h‖∇(ve − Ik,0Θ ve)‖L2(Γh) . hk+1‖v‖Hk+1(Γ)

(5.5)

for all v ∈ Hk+1(Γ) ∩H1
∗ (Γ). (Recall that ve is a normal extension of v.)

Proof. Take v ∈ Hk+1(Γ) ∩ H1
∗ (Γ), hence

∫
Γ
v ds = 0 holds. From (5.4) and

Lemma 5.2 we obtain

‖ve − Ik,0Θ ve‖L2(Γh) + h‖∇(ve − Ik,0Θ ve)‖L2(Γh)

. h−
1
2 ‖ve − Ik,0Θ ve‖L2(ΩΓ

Θ) + h
1
2 ‖ve − Ik,0Θ ve‖H1(ΩΓ

Θ) + h
3
2 ‖ve − Ik,0Θ ve‖H2(ΩΓ

Θ)

. hk+ 1
2 ‖ve‖Hk+1(ΩΓ

Θ) +

∣∣∣∣∫
Γh

ve dsh

∣∣∣∣ . (5.6)

Now note that

‖Dµue‖L2(ΩΓ
Θ) . h

1
2 ‖u‖Hm(Γ) for all u ∈ Hm(Γ), |µ| ≤ m, (5.7)

holds, cf. [23, Lemma 3.1]. Using this we get

‖ve‖Hk+1(ΩΓ
Θ) . h

1
2 ‖v‖Hk+1(Γ). (5.8)

We now treat the term |
∫

Γh
ve dsh| in (5.6). Recall that p is the closest point projection

on Γ. We use standard results from the literature. For the transformation of the
surface measure the relation

µhdsh(x) = ds(p(x)), for x ∈ Γh, (5.9)

holds. The function µh satisfies

‖1− µh‖∞,Γh . hk+1, (5.10)
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cf. [8, 23]. Using this and v ∈ H1
∗ (Γ) we get∣∣∣∣∫

Γh

ve dsh

∣∣∣∣ =
∣∣∣ ∫

Γh

ve dsh −
∫

Γ

v ds
∣∣∣ =

∣∣∣ ∫
Γh

ve(1− µh) dsh

∣∣∣
. hk+1‖ve‖L2(Γh) . hk+1‖v‖L2(Γ).

(5.11)

Combining this with the results in (5.6), (5.8) completes the proof.
Using this interpolation bound one easily obtains a bound for the approximation

term in the Strang Lemma.
Lemma 5.4. Assume that the stabilization satisfies

sh(w,w) . h−3‖w‖2L2(ΩΓ
Θ) + h−1‖∇w‖2L2(ΩΓ

Θ) for all w ∈ Vreg,h. (5.12)

Then

min
vh∈V k,0h,Θ

‖ue − vh‖h . hk‖u‖Hk+1(Γ) holds for all u ∈ Hk+1(Γ) ∩H1
∗ (Ω).

Proof. Take u ∈ Hk+1(Γ) ∩ H1
∗ (Γ) and vh := Ik,0Θ ue. From Lemma 5.3 we get

‖ue − vh‖a . hk‖u‖Hk+1(Γ). From the assumption (5.12) combined with the results

in Lemma 5.2 and the estimates (5.8) and (5.11) we get sh(ue − vh, u
e − vh)

1
2 .

hk‖u‖Hk+1(Γ), which completes the proof.

5.2. Consistency error. We derive a bound for the consistency error term on
the right-hand side in the Strang estimate (5.2). We have to quantify the accuracy of
the data extension fh. We recall the definition of µh, cf. (5.9), and define

δf := fh − µhfe on Γh.

Lemma 5.5. Let u ∈ H1
∗ (Γ) be the solution of (2.1). Assume that the data error

satisfies ‖δf‖L2(Γh) . hk+1‖f‖L2(Γ) and the stabilization satisfies

sup
wh∈V k,0h,Θ

sh(ue, wh)

‖wh‖h
. hl‖f‖L2(Γ), with l = k or l = k + 1. (5.13)

Then the following holds:

sup
wh∈V k,0h,Θ

|Ah(ue, wh)−
∫

Γh
fhwh dsh|

‖wh‖h
. hl‖f‖L2(Γ).

Proof. We use the splitting

|Ah(ue, wh)−
∫

Γh

fhwh dsh| ≤ |ah(ue, wh)−
∫

Γh

fhwh dsh|+ sh(ue, wh).

The first term has been analyzed in [23], Lemma 5.5. In the analysis one essentially
only needs the closeness properties in (3.9), (3.11) and the bound on the data error.
The analysis yields

sup
wh∈V k,0h,Θ

|ah(ue, wh)−
∫

Γh
fhwh dsh|

‖wh‖h
. hk+1‖f‖L2(Γ).

We use assumption (5.13) to bound the second term.
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5.3. Optimal H1-error bound. As an immediate consequence of the previous
results we obtain the following main theorem.

Theorem 5.6. Let u ∈ Hk+1(Γ) ∩H1
∗ (Γ) be the solution of (2.1) and uh ∈ V k,0h,Θ

a solution of (4.4). Assume that the data error satisfies ‖δf‖L2(Γh) . hk+1‖f‖L2(Γ)

and the stabilization satisfies the conditions (5.12), (5.13). Then the following holds:

‖ue − uh‖h . hk‖u‖Hk+1(Γ) + hl‖f‖L2(Γ). (5.14)

Remark 5. We comment on the data error ‖δf‖L2(Γh), with δf = fh−µhfe. For

the choice fh = fe − 1
|Γh|

∫
Γh
fe dsh, which in practice often can not be realized, we

obtain, using (5.10), the data error bound ‖δf‖L2(Γh) ≤ chk+1‖f‖L2(Γ) (as in Lemma
5.3). For this data error bound we only need f ∈ L2(Γ), i.e., we avoid higher order
regularity assumptions on f . Another, more feasible, possibility arises if we assume
f to be defined in a neighborhood Uδ0 of Γ. As extension one can then use

fh(x) = f(x)− cf , cf :=
1

|Γh|

∫
Γh

f dsh. (5.15)

Using
∫

Γ
f ds = 0, (3.9), (5.10) and a Taylor expansion we get |cf | ≤ chk+1‖f‖H1,∞(Uδ0 )

and ‖f − µhfe‖L2(Γh) ≤ chk+1‖f‖H1,∞(Uδ0 ). Hence, we obtain a data error bound

‖δf‖L2(Γh) ≤ ĉhk+1‖f‖L2(Γ) with ĉ = ĉ(f) = c‖f‖H1,∞(Uδ0 )‖f‖−1
L2(Γ) and a constant c

independent of f . Thus in problems with smooth data, f ∈ H1,∞(Uδ0), the extension
defined in (5.15) satisfies the condition on the data error in Theorem 5.6.

Corollary 5.7. As a trivial consequence of the theorem above we obtain optimal
H1-error bounds for the case without stabilization, i.e., sh(·, ·) ≡ 0.

6. Condition number analysis. In this section, we derive condition number
bounds for the stiffness matrix resulting from the discretization (4.4). It is well-known
that in the case sh(·, ·) = 0 already for k = 1 the stiffness matrix of the discrete
problem may have a condition number that does not scale like h−2. This is due to the
fact that the condition number depends on the position of the interface with respect
to the volume triangulation. Remedies were proposed in [3, 5, 23] for the case k = 1.
Below we formulate an assumption on the generic stabilization sh(·, ·) that, together
with (5.12) and (5.13), is sufficient to guarantee a stiffness matrix condition number
of O(h−2), while still preserving optimal order a-priori discretization error bounds.
We thus have a general framework for comparing and analyzing different stabilization
techniques. In Sections 6.2–6.4, for k = 1 we discuss three stabilizations known from
the literature. In Section 6.5, we introduce a fourth stabilization which is easy to
implement and satisfies the aforementioned conditions also in the higher order case
k ≥ 1.

Let u ∈ RN be the representation of uh ∈ V kh,Θ with respect to the standard

nodal basis in V kh,Θ, i.e., uh =
∑N
i=1 uiφi, and similarly v ∈ RN is the representation

of vh ∈ V kh,Θ. The volume mass matrix is defined by

〈Mu,v〉 =

∫
ΩΓ

Θ

uhvh dx for all uh, vh ∈ V kh,Θ.

This matrix is symmetric positive definite and from standard finite element theory it
follows that there are positive constants cL and cU , depending only on k and on the
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shape regularity of the outer triangulation T , such that

cL ≤
〈Mu,u〉
〈u,u〉

≤ cU for all u ∈ RN , u 6= 0. (6.1)

The stiffness matrix S ∈ RN×N is defined by

〈Su,v〉 = Ah(uh, vh) for all uh, vh ∈ V kh,Θ.

This matrix is symmetric positive semi-definite. In the discretization we search for
uh ∈ V kh,Θ with

∫
Γh
uh dsh = 0. For the vector representation of the latter constraint

we introduce c ∈ RN with ci :=
∫

Γh
φi dsh, 1 ≤ i ≤ N , and define

RN∗ := {u ∈ RN | u · c = 0 }. (6.2)

Hence uh ∈ V k,0h,Θ iff u ∈ RN∗ . Let qL > 0, qU > 0 be such that

qL ≤
Ah(uh, uh)

‖uh‖2L2(ΩΓ
Θ)

≤ qU for all uh ∈ V k,0h,Θ, uh 6= 0. (6.3)

The estimates in (6.1) and (6.3) imply

maxu∈RN∗ ,‖u‖2=1〈Su,u〉
minu∈RN∗ ,‖u‖2=1〈Su,u〉

=: cond∗(S) ≤ cUqU
cLqL

. (6.4)

Hence, we want to obtain (sharp) estimates for the bounds in (6.3). We are interested
in the dependence of qL, qU on h. Recall that in the inequalities . (also used below)
the constant is independent of h and of how the surface cuts the volume triangulation.
Concerning the upper bound in (6.3) we have the following result.

Lemma 6.1. Assume that the stabilization satisfies (5.12). The following holds:

Ah(uh, uh)

‖uh‖2L2(ΩΓ
Θ)

. h−3 for all uh ∈ V kh,Θ, uh 6= 0. (6.5)

Proof. We use Lemma 3.1 and finite element inverse inequalities which we apply
to ûh := uh ◦Θh|T , T ∈ T Γ, so that for all uh ∈ V kh,Θ there holds

‖∇uh‖2Γh∩Θh(T ).‖∇ûh‖
2
Γlin∩T .h

−1‖∇ûh‖2L2(T ).h
−3‖ûh‖2L2(T ).h

−3‖uh‖2L2(Θh(T )).

Summing over T ∈ T Γ we get

ah(uh, uh) = ‖∇Γhuh‖2L2(Γh) ≤ ‖∇uh‖
2
L2(Γh) . h−3‖uh‖2L2(ΩΓ

Θ).

The assumption (5.12) and an inverse inequality yield the same bound for sh(·, ·)

sh(uh, uh) . h−3‖uh‖2L2(ΩΓ
Θ) + h−1‖∇uh‖2L2(ΩΓ

Θ) . h−3‖uh‖2L2(ΩΓ
Θ).

From Lemma 6.1 and the result in (6.4), we obtain as a corollary the following
main result.
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Theorem 6.2. Assume that the stabilization satisfies (5.12) and that

ah(uh, uh) + sh(uh, uh) & h−1‖uh‖2L2(ΩΓ
Θ) for all uh ∈ V k,0h,Θ. (6.6)

Then, the spectral condition number satisfies

cond∗(S) . h−2. (6.7)

Remark 6. From the previous theorem it follows that if the stabilization satisfies
(5.12) and (6.6) then the stiffness matrix is regular and thus the discrete problem (4.4)
has a unique solution, cf. Remark 2.

6.1. Assumptions on the stabilization term. We summarize the assump-
tions on the stabilization term sh used to derive Theorem 5.6 (optimal discretization
error bound) and Theorem 6.2 (condition number bound):

sh(w,w) . h−3‖w‖2L2(ΩΓ
Θ) + h−1‖∇w‖2L2(ΩΓ

Θ) for all w ∈ Vreg,h, (6.8a)

sup
wh∈V k,0h,Θ

sh(ue, wh)

‖wh‖h
. hl‖f‖L2(Γ), with l = k or l = k + 1, (6.8b)

ah(uh, uh) + sh(uh, uh) & h−1‖uh‖2L2(ΩΓ
Θ) for all uh ∈ V k,0h,Θ. (6.8c)

The first two are needed for optimal discretization error bounds, and the first and
third one are needed for the uniform O(h−2) condition number bound. We note that
we only need l = k in (6.8b) to obtain optimal H1 error bounds. Having (6.8b) with
l = k + 1 may be useful in order to derive L2 error bounds. The latter has not been
studied, yet.

6.2. Ghost penalty stabilization. The “ghost penalty” stabilization is intro-
duced in [2] as a stabilization mechanism for unfitted finite element discretizations.
In [3], it is applied to a trace finite element discretization of the Laplace–Beltrami
equation with piecewise linear finite elements (k = 1). This stabilization is defined by
the facet-based bilinear form

sh(uh, vh) = ρs
∑
F∈Fh

∫
F

[[∇uh · nh]][[∇vh · nh]] ds,

with a stabilization parameter ρs > 0, ρs ' 1, and with nh the normal to the facet.
For k = 1, the assumptions in (6.8) are satisfied due to results in [3]: Assumption(6.8a)
follows from [3, Lemma 4.6], (6.8b) follows from [[∇ue ·nh]] = 0 for the smooth solution
u, and (6.8c) follows from [3, Lemma 4.5].

A less nice property of the ghost-penalty method is that the jump of the deriva-
tives on the element-facets changes the sparsity pattern of the stiffness matrix. The
facet-based terms enlarge the discretization stencils.

To our knowledge, there is no higher order version of the ghost penalty method
for surface PDEs which provides a uniform bound on the condition number.

6.3. Full gradient surface stabilization. The “full gradient” stabilization is a
method which does not rely on facet-based terms and keeps the sparsity pattern intact.
It was introduced in [6, 23]. The bilinear form which describes this stabilization is

sh(uh, vh) :=

∫
Γh

∇uh · nh∇vh · nh dsh, (6.9)
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where nh denotes the normal to Γh. Thus, we get Ah(uh, vh) =
∫

Γh
∇uh · ∇vh dsh,

which explains the name of the method. The stabilization is very easy to implement.
The conditions (6.8a) and (6.8b) hold for any k with l = k, cf. [23, Lemma 5.5].

For the case k = 1, it is shown in [23] that one has a uniform condition number
bound as in (6.7). The proof in [23] relies on estimates similar to (6.8a) and (6.8c),
see [23, Lemma 6.3]. For the case k > 1, full gradient stabilization does not result in
a uniform bound on the condition number, cf. [23, Remark 6.5]. This can be traced
back to a failure to satisfy (6.8c).

6.4. Full gradient volume stabilization. Another “full gradient” stabiliza-
tion was introduced in [5]. It uses the full gradient in the volume instead of (only) on
the surface. The stabilization bilinear form is

sh(uh, vh) = ρs

∫
ΩΓ

Θ

∇uh · ∇vh dx,

with a stabilization parameter ρs > 0, ρs ' h. Again, it is easy to implement this
stabilization as its bilinear form is provided by most finite element codes.

Condition (6.8a) is satisfied as sh(w,w) ' h‖∇w‖2
L2(ΩΓ

Θ)
. In [5, Lemma 4.2], the

condition (6.8c) is shown to hold. Hence, the bound (6.7) for the spectral condition
number holds for arbitrary k ≥ 1. The consistency condition (6.8b), however, is
satisfied only in the case l = k = 1, cf. [5, Lemma 6.2, Term III].

6.5. Normal derivative volume stabilization. In the lowest-order case k =
1, the stabilization methods discussed in Section 6.2, 6.3, and 6.4 satisfy the conditions
(6.8a), (6.8b), and (6.8c). For k > 1, however, for all of these methods at least one
of the three conditions in (6.8) is violated. We now introduce a new stabilization
method which fulfills (6.8) for arbitrary k ≥ 1. Its bilinear form is given by

sh(uh, vh) := ρs

∫
ΩΓ

Θ

nh · ∇uh nh · ∇vh dx (6.10)

with nh as in Lemma 3.2 and ρs > 0. This is a (natural) variant of the stabilizations
treated in Section 6.3 and 6.4. As in the full gradient surface stabilization only normal
derivatives are added, but this time (as in the full gradient volume stabilization) in
the volume ΩΓ

Θ. The implementation of this stabilization term is fairly simple as it fits
well into the structure of many finite element codes. The scaling of the stabilization
parameter ρs is assumed to satisfy

h . ρs . h−1. (6.11)

In the next section we prove that this stabilization satisfies all three conditions in
(6.8), for arbitrary k ≥ 1.

7. Analysis of the normal derivative volume stabilization. In this section
we analyze the normal derivative volume stabilization (6.10). We will prove that this
method satisfies the conditions in (6.8). The structure of this section is as follows. In
section 7.1 we consider the, relatively easy to prove, conditions (6.8a) and (6.8b). It
turns out that condition (6.8c) is more difficult to prove and requires more analysis,
which is given in section 7.2.
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7.1. The conditions (6.8) for the normal derivative volume stabilization.
Lemma 7.1. If the scaling assumption (6.11) holds, the normal derivative volume
stabilization satisfies condition (6.8a).

Proof. Using the scaling assumption we get

sh(w,w) = ρs‖nh · ∇w‖2L2(ΩΓ
Θ) . h−1‖∇w‖2L2(ΩΓ

Θ),

and thus (6.8a) holds.
Lemma 7.2. If the scaling assumption (6.11) holds, the normal derivative volume

stabilization satisfies condition (6.8b) with l = k.
Proof. Using the Cauchy–Schwarz inequality and (5.1), we obtain

sup
wh∈V k,0h,Θ

sh(ue, wh)

‖wh‖h
≤ ρ

1
2
s ‖nh · ∇ue‖L2(ΩΓ

Θ) .

From n · ∇ue ≡ 0, (3.10) and (5.7) we get

‖nh · ∇ue‖L2(ΩΓ
Θ) ≤ h

k ‖∇ue‖L2(ΩΓ
Θ) ≤ h

k+ 1
2 ‖∇Γu‖L2(Γ) .

Together with the well-posedness of (2.1), this yields

sup
wh∈V k,0h,Θ

sh(ue, wh)

‖wh‖h
≤ ρ

1
2
s h

k+ 1
2 ‖∇Γu‖L2(Γ) ≤ ρ

1
2
s h

k+ 1
2 ‖f‖L2(Γ) .

The assertion follows from the upper bound for ρs in (6.11).
Remark 7. From the proof above it follows that if ρs ∼ h the normal derivative

volume stabilization satisfies condition (6.8b) with l = k + 1.
Lemma 7.3. If the scaling assumption (6.11) holds, the normal derivative volume

stabilization satisfies (6.8c) for h sufficiently small.
Proof. The analysis is given in the next section, cf. Corollary 7.9.

7.2. Proof of Lemma 7.3. In a neighborhood of Γ we introduce the following
local coordinate system. We write x = (ξ, s), with ξ ∈ Γ and s ∈ (−ε, ε) (with ε > 0
suffciently small) iff x = ξ + sn(ξ), with n = nΓ.

Let γ ⊂ Γ be a simply connected subdomain of Γ with meas2(γ) > 0 (e.g., γ = Γ).
Below, we consider neighborhoods Uγ of Γ which have the form

Uγ = {(ξ, s) | ξ ∈ γ,−g(ξ)h ≤ s ≤ G(ξ)h}, (7.1)

with scalar Lipschitz functions g ≥ 0, G ≥ 0. This means that Uγ is bounded by the
graphs of g and G over Γ (when mapped in the normal direction), cf. the sketch in
Figure 7.2 below.

The following lemma is of fundamental importance in our analysis.
Lemma 7.4. Let Uγ be a set as in (7.1) and assume ‖g + G‖L∞(γ) . 1. The

following holds:

‖u‖2L2(Uγ) . h‖u‖2L2(γ) + h2‖nΓ · ∇u‖2L2(Uγ) for all u ∈ H1(Uγ). (7.2)

Proof. Let u ∈ C∞(Uγ). For each ξ ∈ γ, let Fξ denote the line-segment {ξ+sn(ξ) |
−g(ξ)h ≤ s ≤ G(ξ)h} ⊆ Uγ . From the fundamental theorem of integration, we get
for each x = ξ + sn(ξ) ∈ Fξ that

u(x)2 = u(ξ)2 + 2

∫ s

0

u(ξ + tn(ξ))n(ξ) · ∇u(ξ + tn(ξ)) dt.
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The Cauchy–Schwarz inequality implies

u(x)2 ≤ u(ξ)2 + 2 ‖u‖L2(Fξ)
‖n · ∇u‖L2(Fξ)

.

We integrate over x ∈ Fξ and apply the inequality 2ab ≤ r−1
ξ a2 + rξb

2 with rξ =
meas1(Fξ) to obtain

‖u‖2L2(Fξ)
≤ 2rξu(ξ)2 + r2

ξ ‖n · ∇u‖
2
L2(Fξ)

.

The coarea formula for the retract p : Uγ → γ ⊂ Γ along n and a function f ∈
C∞(Uγ) is ∫

Uγ

f dx =

∫
γ

∫
Fξ

f dtdσ(ξ).

For f=u2, we get ‖u‖2L2(Uγ)≤2
∫
γ
rξu

2+
∫
γ
r2
ξ ‖n · ∇u‖

2
L2(Fξ)

. Using ‖g +G‖L∞(γ) . 1

gives rξ . h and thus the result in (7.2). A density argument completes the proof.
This lemma shows that one can control the L2-norm in the volume Uγ with the

normal derivative in the same volume (as used in the stabilization) and the L2-norm
on the surface. The result in (7.2) can be interpreted as a “local version” of (6.8c).
Below we will use this in combination with a localization argument to obtain a result
as in (6.8c) up to a geometric error (ΩΓ

Ψ vs. ΩΓ
Θ). This geometric error can be dealt

with as shown in Lemma 7.8.

ΩΓ
Ψ

Γ

Fig. 7.1. Depending on the shape of the T ∈ T , ΩΓ
Ψ is not a graph over Γ as in (7.1).

7.2.1. Localization argument. In general, we cannot expect ΩΓ
Ψ = UΓ for

some UΓ as in (7.1), cf. Figure 7.1. Therefore, we present a localization argument
which is based on the following observation (lemma 7.5 below): On the finite element
space (as opposed to H1(Uγ) used in (7.2)), it suffices to control the L2-norm on suit-
able subsets in order to get a bound on the L2(ΩΓ

Ψ)-norm. We apply the localization
argument to the triangulation T Γ

Ψ = {Ψ(T ) | T ∈ T Γ } because this triangulation
corresponds to the globally smooth surface Γ, cf. Fig. 3.1. On T Γ

Ψ we define the finite
element space

V kh,Ψ := { ũh = uh ◦ Fh | uh ∈ V kh,Θ }.

Let {BT | T ∈ T Γ
Ψ } be a collection of balls with BT ⊂ T and radius(BT ) =: rT & h

for all T ∈ T Γ
Ψ . Let

‖u‖2B =
∑
T∈T Γ

Ψ

‖u‖2L2(BT ) . (7.3)
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ξ

diam(γT ) . h

& h

‖gT +GT ‖L∞(γT ) · h . h

Γ
γT

UγT

BT

T

Fig. 7.2. Sketch of the domains involved in Assumption 1.

Lemma 7.5. On V kh,Ψ the uniform norm equivalence ‖ · ‖B ∼ ‖ · ‖L2(ΩΓ
Ψ) holds.

Proof. As BT ⊂ T holds for all T ∈ T Γ
Ψ , we immediately find ‖u‖B ≤ ‖u‖L2(ΩΓ

Ψ)

for all u ∈ V kh,Ψ.

To prove the other direction of the estimate, let u ∈ V kh,Ψ and T ∈ T Γ
Ψ be arbitrary.

We can write T = Ψ(S), S ∈ T Γ. Furthermore, u|T = û ◦Ψ−1|T for some polynomial
û of degree k. Using Ψ = I + O(h), cf. (3.8), it follows that there is a ball ST ⊂
Ψ−1(BT ) with radius(ST ) & h. From standard finite element analysis we obtain
‖û‖L2(S) ∼ ‖û‖L2(ST ). Using this and ‖u‖L2(T ) ∼ ‖û‖L2(S), which follows from (3.8),
we get

‖u‖L2(BT ) ∼ ‖û‖L2(ST ) ∼ ‖u‖L2(T ) ,

and summing over T ∈ T Γ
Ψ completes the proof.

The following assumption specifies quantitatively that each T ∈ T Γ
Ψ contains a

sufficiently big ball which is “locally visible” from Γ in a set as in (7.1).
Assumption 1. For each T ∈ T Γ

Ψ there exists a set UγT as in (7.1) with the fol-
lowing properties. The graph functions gT ≥ 0, GT ≥ 0 on γT satisfy ‖gT +GT ‖L∞(γT ) .

1. Furthermore, UγT ⊆ ΩΓ
Ψ, diam(γT ) . h and UγT contains a ball BT ⊂ T with ra-

dius rT & h.
For a sketch of the domains involved in Assumption 1 we refer to Figure 7.2.
Lemma 7.6. If Assumption 1 is satisfied, the following holds:

‖u‖2L2(ΩΓ
Ψ) . h ‖u‖2L2(Γ) + h2 ‖nΓ · ∇u‖2L2(ΩΓ

Ψ) for all u ∈ V kh,Ψ.

Proof. Let u ∈ V kh,Ψ be arbitrary. From Lemma 7.5 and Assumption 1, we get

‖u‖2L2(ΩΓ
Ψ) . ‖u‖

2
B ≤

∑
T∈T Γ

Ψ

‖u‖2UγT .

We apply Lemma 7.4 on each T ∈ T Γ
Ψ ,∑

T∈T Γ
Ψ

‖u‖2UγT .
∑
T∈T Γ

Ψ

(
h ‖u‖2L2(γT ) + h2 ‖nΓ · ∇u‖2L2(UγT )

)
.

Due to diam(γT ) . h, cf. Assumption 1, we can apply a standard finite intersection
argument. Hence the right-hand side of the previous estimate is uniformly bounded
by ∑

T∈T Γ
Ψ

(
h ‖u‖2L2(Γ∩T ) + h2 ‖nΓ · ∇u‖2L2(T )

)
.
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ξ0

ξ Γ
γT

UγT

BT

δ0h

ξ

Γ
γT

UγT

BT

Fig. 7.3. Sketch of the two cases: There either exists ξ0 ∈ Γ, so that dist∗(ξ0, ∂ΩΓ
Ψ) > δ1hmin

(left) or dist∗(Γ, ∂ΩΓ
Ψ) < δ1hmin (right). According to the two cases the sets UγT , γT and BT can

be found. Note that the sketch uses the local coordinates (ξ, s) as in (7.1).

Finally we treat Assumption 1:
Lemma 7.7. On a quasi-uniform family of triangulations, for sufficiently small

h, Assumption 1 holds.
Proof. By hmin we denote the minimal radius of the (maximal) inscribed spheres

over all T ∈ T Γ
Ψ . Due to quasi-uniformity we have h ∼ hmin. The local intersection

is denoted by ΓT := Γ ∩ T , T ∈ T Γ
Ψ . We assume that h is sufficiently small such

that ΓT is “flat” in the following sense. Due to smoothness of Γ we can take h small
such that there is a 2D plane P , which intersects Γ, and ΓT can be represented as the
graph of a function gT : PT → R3, PT ⊂ P . We assume h small enough such that for
some fixed ε with 0 < ε � 1 we have ‖∇pgT ‖L∞(PT ) ≤ εhmin. The idea of the proof
is as follows. We will define sets UγT as in (7.1) based on (parts of) spheres in local
coordinates with radius ∼ h. We distinguish two cases. Either such a sphere can be
put strictly inside T or such a sphere is centered around a vertex. In the former case
all requirements in Assumption 1 are satisfied by taking UγT equal to this sphere,
whereas in the latter case we take UγT equal to a suitably defined intersection of the
sphere with a half-space, which then satisfies all requirements.

First we introduce (small) spheres in local coordinates. In a fixed (sufficiently
small) tubular neighborhood of Γ we define the distance dist∗

(
(ξ, s), (ξ̃, s̃)

)
:=
(
‖ξ −

ξ̃‖22+|s−s̃|2
) 1

2 , where ‖·‖2 is the Euclidean distance and (ξ, s) are the local coordinates.
This distance is equivalent to the Euclidean distance: there are constants d0 > 0 and
d1 such that for all x = (ξ, s) and x̃ = (ξ̃, s̃) from the tubular neigborhood we have

d0‖x− x̃‖2 ≤ dist∗
(
(ξ, s), (ξ̃, s̃)

)
≤ d1‖x− x̃‖2. (7.4)

In this distance the spheres with center ξ0 ∈ Γ are denoted by B∗(ξ0; δ) := { (ξ, s) |
dist∗

(
(ξ0, 0), (ξ, s)

)
≤ δ }. For defining the suitable half-spheres we introduce some

further notation. We define the part of the domain ΩΓ
Ψ with negative (positive) level

set values and the corresponding part of the outer boundary:

ΩΓ
Ψ,∓ := {x ∈ ΩΓ

Ψ | φ(x) ≶ 0 }, Γ± := ∂ΩΓ
Ψ,± \ Γ

For ξ0 ∈ Γ we define the “half-spheres” B±∗ (ξ0; δ) := B∗(ξ0; δ) ∩ ΩΓ
Ψ,±. Using

the quasi-uniformity assumption on the family of triangulations one can show that
dist2(Γ+,Γ−) & h. Hence, also dist∗(Γ+,Γ−) & h holds. Using this we conclude that
there exists a δ0 > 0 (independent of h) such that for all ξ0 ∈ Γ

B+
∗ (ξ0; δ0h) ⊂ ΩΓ

Ψ,+ or B−∗ (ξ0; δ0h) ⊂ ΩΓ
Ψ,− (7.5)
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holds. In the remainder we take such a fixed δ0 > 0. One checks that B∗(ξ0; δ0h) and
also the corresponding half-spheres are of the form Uγ as in (7.1), with γ := { ξ ∈ Γ |
‖ξ − ξ0‖2 ≤ δ0h } and ‖g +G‖L∞(γ) ≤ 2δ0, diam(γ) . h.

We now turn to the construction of sets UγT which satisfy the conditions required
in Assumption 1. For this we introduce the following boundary strip. For fixed δ1
with 0 < δ1 ≤ 1

2δ0 we define

Γδ1 := {x ∈ ΩΓ
Ψ | dist∗(x, ∂ΩΓ

Ψ) ≤ δ1hmin }.

Take T ∈ T Γ
Ψ . Then either ΓT ⊂ Γδ1 or there exists ξ0 ∈ ΓT with dist∗((ξ0, 0), ∂ΩΓ

Ψ) >
δ1hmin. We first consider the latter case. Then we take UγT := B∗(ξ0; δ1hmin) ⊂ ΩΓ

Ψ,
see Figure 7.3 (left) for a sketch. Due to shape regularity of T we have |UγT ∩T | & h3

and thus we can construct a ball with radius rT & h and BT ⊂ T ∩ UγT . Hence, for
this UγT all conditions in Assumption 1 are satisfied.

We now consider the case ΓT ⊂ Γδ1 and take the vertex xV = (ξV , sV ) of T
which is closest to ΓT . We assume (ξV , sV ) ∈ ΩΓ

Ψ,− and thus B+
∗ (ξV ; δ0h) ⊂ ΩΓ

Ψ,+,
cf. (7.5) (the other case can be treated by the same arguments). We define UγT :=
B∗(xV , δ0h)∩ΩΓ

Ψ,+ ⊂ B+
∗ (ξV ; δ0h) and have |UγT ∩T | ≥ |B∗(ξV , δ0h)∩T |− |Γδ1 ∩T |,

see Figure 7.3 (right) for a sketch. Due to shape regularity of the mesh we have that
|B∗(ξV , δ0h) ∩ T | & h3 and |Γδ1 ∩ T | . δ1h

3, so that for sufficiently small δ1 we can
guarantee |UγT ∩ T | & h3 and thus we can construct a ball with radius rT & h and
BT ⊂ T ∩ UγT . Hence, for this UγT all conditions in Assumption 1 are satisfied.

7.2.2. Geometric error. In this section we treat the geometric error (ΩΓ
Ψ vs.

ΩΓ
Θ) by a straightforward perturbation argument. We assume that we have a quasi-

uniform family of triangulations, hence Assumption 1 is satisfied (for h sufficiently
small).

Lemma 7.8. Let ñ be such that ‖ñ−nΓ‖∞,ΩΓ
Θ
. h holds. For h sufficiently small,

the following holds:

‖uh‖2L2(ΩΓ
Θ) . h‖uh‖2L2(Γh) + h2‖ñ · ∇uh‖2L2(ΩΓ

Θ) for all uh ∈ V kh,Θ. (7.6)

Proof. We use the homeomorphism Fh = Θh ◦ Ψ−1 : ΩΓ
Ψ → ΩΓ

Θ (see also Figure
3.1) which satisfies

‖I − Fh‖∞,ΩΓ
Ψ

+ h‖I −DFh‖∞,ΩΓ
Ψ
. hk+1, (7.7)

cf. Lemma 3.1. Take uh ∈ V kh,Θ and define ũh := uh ◦ Fh ∈ V kh,Ψ. Using standard
transformation rules and the result in Lemma 7.6 we obtain

‖uh‖2L2(ΩΓ
Θ) ∼ ‖ũh‖

2
L2(ΩΓ

Ψ) . h‖ũh‖2L2(Γ) + h2‖nΓ · ∇ũh‖2L2(ΩΓ
Ψ)

∼ h‖uh‖2L2(Γh) + h2‖(DFhnΓ) ◦ F−1
h · ∇uh‖2L2(ΩΓ

Θ).

From a triangle-inequality, ‖ñ−nΓ‖∞,ΩΓ
Θ
. h and (7.7) we get, for h sufficiently small:

‖(DFhnΓ) ◦ F−1
h − ñ‖∞,ΩΓ

Θ
. h.

Hence we obtain, using an inverse inequality:

‖uh‖2L2(ΩΓ
Θ) . h‖uh‖2L2(Γh) + h2‖ñ · ∇uh‖2L2(ΩΓ

Θ) + h2‖uh‖2L2(ΩΓ
Θ).
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For h sufficiently small, we can adsorb the last term on the right-hand side in the
term on the left hand-side, and this completes the proof.

On Γ, there holds the Poincaré inequality ‖u‖L2(Γ) . ‖∇Γu‖L2(Γ) for all u ∈
H1
∗ (Γ). Using the properties of the mapping Fh : ΩΓ

Θ → ΩΓ
Ψ in Lemma 3.1, one can

derive a Poincaré inequality on Γh (see e.g. [23, Remark 5.3]),

‖uh‖L2(Γh) . ‖∇Γhuh‖L2(Γh) for all uh ∈ V k,0h,Θ. (7.8)

Corollary 7.9. If the scaling assumption (6.11) holds, the normal derivative
volume stabilization satisfies (6.8c) for h sufficiently small.

Proof. Take ñ = nh as defined in Lemma 3.2, cf. (3.10). Hence, ‖ñ−nΓ‖∞,ΩΓ
Θ
. h

holds. Using this, Lemma 7.8 and h . ρs we get

h−1‖uh‖2L2(ΩΓ
Θ) . ‖uh‖

2
L2(Γh) + sh(uh, uh) for all uh ∈ V kh,Θ.

The assertion follows from the Poincaré inequality (7.8) and ‖∇Γhuh‖
2
L2(Γh) = ah(uh, uh).

8. Numerical example. In this section we present numerical results for the
isoparametric trace FEM explained in section 4 with a stabilization sh(·, ·) as in
section 6.5. We first briefly discuss how we solve the linear systems arising from the
discretization of the Laplace–Beltrami operator on the finite element spaces V kh,Θ. The

linear systems are singular because V kh,Θ contains constant functions.

Remark 8 (Solution of (singular) linear systems). Let S ∈ Rn×n be the stiffness
matrix arising from the discretization such that Si,j = Ah(ϕj , ϕi) for basis functions
ϕi, ϕj of V kh,Θ, i, j ∈ {1, .., n}, n = dim(V kh,Θ), cf. section 6. We seek a solution of

Su = f with u subject to 〈c,u〉 = 0,

cf. (6.2). Here u ∈ Rn denotes the coefficient vector of the solution such that the
discrete solution is uh =

∑n
i=1 uiϕi, f ∈ Rn denotes the right-hand side functional,

and c ∈ Rn describes the constraint that the solution should be mean value free,
cf. (6.2). We denote the coefficient vector of the discrete function which is (constant)
one on Θh(ΩΓ

h) by e and note that ker(S) = span(e). Note that c represents a
functional (in (V kh,Θ)′) whereas e represents a discrete function (in V kh,Θ). There holds

c = MΓe with the L2(Γh)-mass-matrix MΓ of V kh,Θ.
In order to obtain a solvable linear system the compatibility condition must hold

on the discrete level:
∫

Γh
fh dsh = 〈f , e〉 = 0. Due to geometrical discretization errors

it is not inherited from the corresponding property of the continuous problem (2.1).
We proceed as suggested in Remark 5. Given an initial approximation f̃ on Γh (f̃ with

f̃i =
∫

Γh
f̃ϕi dsh, i ∈ {1, .., n}), we define fh as in (5.15) and let f = f̃ − 〈f̃ ,e〉〈c,e〉c. Note

that we have fh(v) = 0 for every function v which is constant on Γh, i.e. f ∈ range(S).
To solve the constrained linear system we consider the uniquely solvable problem

S̃u = f , with S̃ := S + γccT .

Here, we choose γ = (
∑n
i=1 diag(S)i)/(

∑n
i=1 c

2
i ) to approximately match the scaling of

both terms. S̃ is symmetric positive definite and the solution of this system is unique
and fulfils the equation Su = f and the constraint 〈c,u〉 = 0. To solve the system we
apply a standard conjugate gradient method with diagonal preconditioning.
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Fig. 8.1. Numerical solution on the initial mesh for k = 3 for the example in section 8.1: T Γ

and Γlin (left), Θh(T Γ) and Γh (center), uh ∈ V k,0h,Θ (right).

8.1. Laplace–Beltrami equation on a toroidal surface. We consider an
example from [11] and apply the discretization described above with the normal
derivative stabilization. The surface is a torus prescribed by the level set function
φ, Γ = {x ∈ Ω | φ(x) = 0} with

φ(x) =

(
x2

3 +
((
x2

1 + x2
2

) 1
2 −R

)2
) 1

2

− r, R = 1, r = 0.6.

The surface is embedded in the domain Ω = [−2, 2]3, and the solution is given as
u(x) = sin(3ϕ) cos(3θ+ϕ) where (ϕ, θ) are the angles describing a surface parametriza-
tion, cf. [11] for details. The right-hand side function f is taken consistent with the
solution u and f̃h is chosen as the natural extension of this f . Then fh is constructed
as described above, see remark 8. Note that u and f have mean value zero on Γ while
uh and fh have mean value zero on Γh. We start from a structured 16 × 16 × 16
mesh (h ≈ 1

8 ) and repeatedly apply uniform refinements (at the interface). In Fig-
ure 8.1 the initial mesh is shown along with the surface approximations Γlin, Γh and
the discrete solution for k = 3. We investigate the behavior of the following quanti-
ties under mesh refinement. As a measure of the geometrical approximation quality
we take edist := dist(Γh,Γ). We further investigate the convergence of the errors
eL2 := ‖ue − uh‖L2(Γh), e

t
H1 := ‖∇Γh(ue − uh)‖L2(Γh) and enH1 := ‖∇uh · n‖L2(Γh).

Here ue is the constant extension of u along the normals of Γ. In contrast to the
stabilization term sh(·, ·) the error measure enH1 is evaluated on the (discrete) surface
Γh. Finally, we also collect the number of CG iterations Nits necessary to reduce the
initial residual by a factor of 1· 10−9.

We carry out the numerical experiment for the cases ρs ∼ h−1 and ρs ∼ h, k ∈
{1, .., 5} and apply mesh refinements up to meshes with around a million unknowns.
In the numerical experiments we find that ρs = h−1 gives much better results than
ρs = h in the sense that in the latter case we observe a strong dependence of the
iteration number (Nits & k2) on the polynomial degree k. As a remedy we introduce
a factor independent of h into ρs ∼ h. From a small test series we find that ρs = k4h
gives results which are more robust with respect to variations in k. At this point,
we have no mathematical justification for the choice of the factor k4. Note that in
our analysis the dependence of the constants in the estimates on k has not been
considered. The results of the numerical experiments are displayed in Table 8.1.

As predicted in (3.9) we observe O(hk+1)-convergence for the geometrical error
measure edist. We note that the initial triangulation is sufficiently fine to guarantee
the mesh regularity of the deformed meshes at all refinement levels.

With respect to the error measures etH1 and eL2 we only display the results for ρs =
h−1 in Table 8.1 because the differences between the different stabilization scalings in
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ρs ∼ h−1

edist (eoc) eL2 (eoc) et
H1 (eoc) en

H1 (eoc) Nits

k = 1 (912− 900K unknowns)

2.9· 10−2 7.2· 10−1 7.6· 100 3.0· 100 71
8.0· 10−3 (1.9) 2.2· 10−1(1.7) 3.8· 100 (1.0) 2.0· 100 (0.6) 118
1.8· 10−3 (2.1) 5.1· 10−2(2.1) 1.9· 100 (1.0) 9.9· 10−1(1.0) 229
4.9· 10−4 (1.9) 1.3· 10−2(2.0) 9.5· 10−1(1.0) 5.0· 10−1(1.0) 442
1.2· 10−4 (2.0) 3.3· 10−3(2.0) 4.8· 10−1(1.0) 2.5· 10−1(1.0) 849
3.1· 10−5 (2.0) 9.5· 10−4(1.8) 2.4· 10−1(1.0) 1.2· 10−1(1.0) 1652

k = 2 (5.3K − 5.3M unknowns)

3.9· 10−3 5.4· 10−2 1.4· 100 1.2· 100 130
4.5· 10−4 (3.1) 8.4· 10−3(2.7) 4.3· 10−1(1.7) 3.1· 10−1(2.0) 181
5.9· 10−5 (2.9) 1.1· 10−3(2.9) 1.1· 10−1(2.0) 7.7· 10−2(2.0) 326
8.0· 10−6 (2.9) 1.6· 10−4(2.8) 3.0· 10−2(1.9) 2.1· 10−2(1.9) 623
1.0· 10−6 (3.0) 1.9· 10−5(3.0) 7.3· 10−3(2.0) 5.2· 10−3(2.0) 1178
1.3· 10−7 (3.0) 2.4· 10−6(3.0) 1.8· 10−3(2.0) 1.3· 10−3(2.0) 2275

k = 3 (16K − 4M unknowns)

1.2· 10−3 1.3· 10−2 4.3· 10−1 4.3· 10−1 263
8.2· 10−5 (3.9) 7.3· 10−4(4.2) 5.0· 10−2(3.1) 5.1· 10−2(3.1) 344
5.1· 10−6 (4.0) 4.6· 10−5(4.0) 6.5· 10−3(2.9) 5.6· 10−3(3.2) 429
6.5· 10−7 (3.0) 3.1· 10−6(3.9) 8.7· 10−4(2.9) 7.6· 10−4(2.9) 768
4.4· 10−8 (3.9) 1.9· 10−7(4.1) 1.0· 10−4(3.1) 9.1· 10−5(3.1) 1420

k = 4 (35K − 8.9M unknowns)

6.5· 10−4 1.4· 10−3 6.5· 10−2 1.2· 10−1 528
1.1· 10−5 (5.9) 5.0· 10−5(4.8) 4.9· 10−3(3.8) 6.0· 10−3(4.3) 600
4.3· 10−7 (4.7) 1.8· 10−6(4.8) 3.2· 10−4(3.9) 3.5· 10−4(4.1) 681
1.6· 10−8 (4.8) 8.2· 10−8(4.5) 2.7· 10−5(3.6) 2.5· 10−5(3.8) 945
5.5· 10−10(4.9) 2.6· 10−9(5.0) 1.5· 10−6(4.2) 1.5· 10−6(4.0) 1613

k = 5 (66K − 1M unknowns)

9.7· 10−4 4.4· 10−4 3.3· 10−2 3.6· 10−2 1071
1.2· 10−6 (9.7) 6.0· 10−6(6.2) 6.1· 10−4(5.8) 8.4· 10−4(5.4) 1236
2.5· 10−8 (5.5) 9.1· 10−8(6.1) 1.9· 10−5(5.0) 2.5· 10−5(5.1) 1312
7.3· 10−10(5.1) 2.4· 10−9(5.2) 7.6· 10−7(4.7) 9.9· 10−7(4.6) 1676

ρs ∼ h

en
H1 (eoc) Nits

5.5· 100 69
4.0· 100 (0.5) 121
3.1· 100 (0.4) 248
2.6· 100 (0.3) 473
2.4· 100 (0.1) 937
2.3· 100 (0.0) 1872

1.2· 100 130
4.0· 10−1(1.6) 192
1.3· 10−1(1.6) 378
4.5· 10−2(1.5) 730
1.4· 10−2(1.7) 1543
3.4· 10−3(2.0) 3118

2.5· 10−1 273
4.9· 10−2(2.3) 335
6.7· 10−3(2.9) 530
1.2· 10−3(2.5) 1011
1.7· 10−4(2.8) 2073

8.4· 10−2 482
5.0· 10−3(4.1) 464
3.5· 10−4(3.8) 680
3.2· 10−5(3.4) 1261
2.6· 10−6(3.7) 2582

2.1· 10−2 935
6.9· 10−4(4.9) 1016
2.3· 10−5(4.9) 1098
1.1· 10−6(4.4) 1836

Table 8.1
Results for the example in section 8.1 with ρs = h−1 (left) and ρs = hk4 (right).

those error measures are only marginal. For etH1 we observe O(hk)-convergence which
is in agreement with the prediction of Theorem 5.6. For eL2 , we observe the optimal
rate O(hk+1), but have no a priori analysis for this, yet.

The previous error measures are essentially unaffected by the choice of the sta-
bilization scaling. This is different for the number of iterations Nits and the error
measure enH1 . For k = 1 we observe that enH1 does not convergence for ρs ∼ h
while it converges with order one for ρs ∼ h−1. In the higher order case, k ≥ 1,
the difference in the results is much smaller. For both scalings we observe at least

enH1 . hk−1/2ρ
−1/2
s . The results even indicate a convergence order k in both cases,

although this is more pronounced for ρs ∼ h−1 than for ρs ∼ h.

The iteration counts for both scalings increase linearly with the mesh size for
sufficiently fine meshes which is in agreement with the condition number bound in
Theorem 6.2. On coarser grids and for increasing order k the numbers of iterations
stagnate before the asymptotic regime starts and the iteration counts grow linearly.

Remark 9 (No stabilization, sh(·, ·) ≡ 0). It is known that for k = 1 stabilization
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is in general not necessary for satisfactory iteration numbers in the CG method,
provided diagonal preconditioning is applied, cf. [18]. Accordingly, we repeated the
previous numerical experiment with k = 1 and ρs = 0. We obtain similar results
for etH1 and eL2 , whereas enH1 does not converge (with similar errors as for k = 1
and ρs ∼ h). The iteration counts are larger (95, 175, 360, 793, 1470, 2890), but
also increase linearly with h. In our experience, for moderate orders, k = 2, 3, a
discretization with ρs = 0 often yields results for etH1 , eL2 and Nits which are similar
to those obtained with stabilization. However, there is no control on enH1 and, more
importantly, sometimes the linear solver fails to converge or the iteration numbers
are very high (even with diagonal preconditioning). For even higher order, k ≥ 4, in
general the (diagonally preconditioned) CG solver does not converge for ρs = 0.

9. Conclusion and outlook. We introduced and analyzed a higher order iso-
parametric trace FEM. The higher discretization accuracy was obtained by using an
isoparametric mapping of the volume mesh, based on a high order approximation
of the level set function. The resulting trace finite element method was easy to
implement. We presented an error analysis of this method and derived optimal order
H1(Γ)-norm error bounds. A second main topic of this paper was a unified analysis
of several stabilization methods for this class of surface finite element methods. A
new stabilization method, which was based on adding an anisotropic diffusion in the
volume mesh, was introduced. This method was able to control the condition number
of the stiffness matrix also for the case of higher order discretizations.

We mention a few topics which we consider to be of interest for future research.
Firstly, the derivation of an optimal order L2-error bound has not been investigated,
yet. We think that most ingredients needed for such an anlysis are available from
this paper, e.g. the O(hk+1)-consistency-bound in Lemma 5.5. A second, much
more challenging, topic is the extension of the higher trace finite element technique
presented in this paper to the class of PDEs on evolving surfaces. It may be possible
to extend the isoparametric mapping technique to a space-time setting and then
combine it with the trace space-time method for discretization of PDEs on evolving
surfaces given in [21, 19]. As a final topic we mention the extension of the higher order
discretization technique presented in this paper to coupled bulk-surface problems.

Appendix A. Proof of Lemma 3.3.

Proof. First we prove the bound in (3.12a). For T ∈ T Γ we consider the function

F (x, y) = ETφh(x+ yGh(x))− φ̂h(x) for (x, y) ∈ T × (−α0h, α0h), with Gh := ∇φh.
From [16, Lemma 3.2] we know that there exists a h0 > 0 so that for all 0 < h < h0

the function dh(x) = y(x) solves F (x, y(x)) = 0 on T . Since φ̂h, ETφh and Gh are
polynomials and hence F ∈ C∞(T×(−α0h, α0h)) it follows from the implicit function

theorem that y ∈ C∞(T ). Due to Dαφ̂h = 0 for |α| > 1 we have ‖Dαφ̂h‖∞,T .
‖φ‖H2,∞(T ) independent of α. Using the extended element U(T ) := {x + w | x ∈
T, |w| ≤ 2α0h} and the continuity of the polynomial extension operator ET we have
with l = |α| ≤ k + 1:

‖Dα
(x,y)F‖∞,T×(−α0h,α0h) . ‖ETφh‖Hl,∞(U(T ))‖Gh‖Hl,∞(T )

. ‖φh‖Hl,∞(T )‖φh‖Hl+1,∞(T ) . ‖φ‖2Hl+1,∞(T ) . 1.
(A.1)

Differentiating F (x, y(x)) = 0 yields, for |α| = 1:

Dαy(x) = −DyF (x, y(x))−1Dα
xF (x, y(x)) = −A(x)Dα

xF (x, y(x)). (A.2)
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with A(x) = S(x)−1, S(x) = DyF (x, y(x)) = ∇ETφh(x + yGh(x))T∇φh ∈ [c0, c1]
with c0, c1 > 0 independent of h, x, T . Differentiating S(x)A(x) = 1 yields

DαA(x) = −A(x)2DαS(x), |α| = 1. (A.3)

From (A.2) and (A.3) we deduce that |Dαy(x)|, |α| = l, can be bounded in terms
of |A(x)| and |Dα

(x,y)F (x, y(x))|, |α| ≤ l. Combining this with (A.1) gives the first

bound in (3.12a). From ‖Gh‖Hl,∞(T ) . ‖φh‖Hl+1,∞(T ) . ‖φ‖Hl+1,∞(T ) . 1 and the
first bound we obtain the second bound in (3.12a).

For (3.12b) we consider an interior facet F ∈ FΓ with neighboring tetrahedra

denoted by T1, T2 ∈ T Γ. We set dih = dh|Ti and Gih = Gh|Ti for i = 1, 2. As φ̂h is
continuous we have

ET1φh(x+ d1
h(x)G1

h(x))− ET2φh(x+ d2
h(x)G2

h(x)) = 0 for all x ∈ F. (A.4)

Using (2.3) we obtain for x ∈ F and with G := ∇φ,

|d1
h(x)− d2

h(x)| ∼ |φ(x+ d1
h(x)G(x))− φ(x+ d2

h(x)G(x))|
. |φ(x+ d1

h(x)G1
h(x))− φ(x+ d2

h(x)G2
h(x))|

+

2∑
i=1

|φ(x+ dih(x)G(x))− φ(x+ dih(x)Gih(x))|.

For the sum we use the regularity of φ in U , (2.3) and the estimates for Gih −G (cf.
[16, Lemma 3.1]):

|φ(x+ dih(x)G(x))− φ(x+ dih(x)Gih(x))| . |dih(x)|‖Gih(x)−G(x)‖2 . hk+2.

For the other term we use yi := x+ dih(x)Gih(x) and (A.4):

|φ(y1)− φ(y2)| ≤ |φ(y1)− ET1
φh(y1)|+ |φ(y2)− ET2

φh(y2)|.

The two terms on the right-hand side can be bounded by O(hk+1) using Taylor
expansion arguments, cf. [16, Proof of Lemma 3.2], which concludes the proof of the
first bound in (3.12b).

Finally, we consider [[Ψh]] = [[dhGh]] = [[dh]]{{Gh}} + {{dh}}[[Gh]] (with {{a}} :=
a1+a2

2 ). From [16, Lemma 3.1] and the assumed regularity of φ we have (uniform in
x) |{{Gh}}| . 1, |[[Gh]]| . hk and with the first bound in (3.12b) and [16, Lemma 3.2]
we have |[[dh]]| . hk+1 and |{{dh}}| . h2. Together this proves (3.12b).

REFERENCES

[1] P. F. Antonietti, A. Dedner, P. Madhavan, S. Stangalino, B. Stinner, and M. Verani,
High order discontinuous Galerkin methods for elliptic problems on surfaces, SIAM J.
Numer. Anal., 53 (2015), pp. 1145–1171.

[2] E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 1217–1220.
[3] E. Burman, P. Hansbo, and M. G. Larson, A stabilized cut finite element method for partial

differential equations on surfaces: The Laplace–Beltrami operator, Comput. Meth. Appl.
Mech. Eng., 285 (2015), pp. 188–207.

[4] E. Burman, P. Hansbo, M. G. Larson, and A. Massing, A cut discontinuous Galerkin
method for the Laplace–Beltrami operator, IMA J. Numer. Anal., (2016). Advance online
publication, doi:10.1093/imanum/drv068.

[5] E. Burman, P. Hansbo, M. G. Larson, A. Massing, and S. Zahedi, Full gradient stabilized
cut finite element methods for surface partial differential equations, Comput. Meth. Appl.
Mech. Eng., 310 (2016), pp. 278–296.

25

http://dx.doi.org/10.1093/imanum/drv068


[6] K. Deckelnick, C. M. Elliott, and T. Ranner, Unfitted finite element methods using
bulk meshes for surface partial differential equations, SIAM J. Numer. Anal., 52 (2014),
pp. 2137–2162.

[7] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic
problems on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 805–827.

[8] A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace–Beltrami op-
erator on implicitly defined surfaces, SIAM J. Numer. Anal., 45 (2007), pp. 421–442.

[9] J. Grande, Eulerian finite element methods for parabolic equations on moving surfaces, SIAM
J. Sci. Comput., 36 (2014), pp. B248–B271.

[10] J. Grande, M. A. Olshanskii, and A. Reusken, A space-time FEM for PDEs on evolving
surfaces, Tech. Report 386, Institut für Geometrie und Praktische Mathematik, RWTH
Aachen, 2014. In Proceedings of the 11th World Congress on Computational Mechanics,
2014, E. Onate, J. Oliver and A. Huerta (Eds).

[11] J. Grande and A. Reusken, A higher order finite element method for partial differential
equations on surfaces, SIAM J. Numer. Anal., 54 (2016), pp. 388–414.

[12] S. Gross, M. A. Olshanskii, and A. Reusken, A trace finite element method for a class of
coupled bulk-interface transport problems, ESAIM: M2AN, 49 (2015), pp. 1303–1330.

[13] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsches method, for
elliptic interface problems, Comput. Meth. Appl. Mech. Eng., 191 (2002), pp. 5537–5552.

[14] U. Langer and S. E. Moore, Discontinuous Galerkin Isogeometric Analysis of Elliptic PDEs
on Surfaces, vol. 104 of Lecture Notes in Computational Science and Engineering, Springer
International Publishing, Cham, Switzerland, 2016, pp. 319–326.

[15] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isopara-
metric mappings, Comp. Meth. Appl. Mech. Eng., 300 (2016), pp. 716–733.

[16] C. Lehrenfeld and A. Reusken, Analysis of a high order unfitted finite element method
for elliptic interface problems, Tech. Report 445, Institut für Geometrie und Praktische
Mathematik, RWTH Aachen, 2016.

[17] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving
curved boundaries, SIAM J. Numer. Anal., 23 (1986), pp. 562–580.

[18] M. A. Olshanskii and A. Reusken, A finite element method for surface PDEs: matrix prop-
erties, Numer. Math., 114 (2010), pp. 491–520.

[19] M. A. Olshanskii and A. Reusken, Error analysis of a space-time finite element method for
solving PDEs on evolving surfaces, SIAM J. Numer. Anal., 52 (2014), pp. 2092–2120.

[20] M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations
on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 3339–3358.

[21] M. A. Olshanskii, A. Reusken, and X. Xu, An Eulerian space-time finite element method for
diffusion problems on evolving surfaces, SIAM J. Numer. Anal., 52 (2014), pp. 1354–1377.

[22] , A stabilized finite element method for advection-diffusion equations on surfaces, IMA
J. Numer. Anal., 34 (2014), pp. 732–758.

[23] A. Reusken, Analysis of trace finite element methods for surface partial differential equations,
IMA J. Numer. Anal., 35 (2015), pp. 1568–1590.

26


