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1 Introduction

In this contribution we treat a special class of recently developed unfitted finite ele-
ment methods for the discretization of mass and surfactant transport equations in in-
compressible two-phase flow problems. For the two-phase flow problem we restrict
to a sharp interface model for the fluid dynamics, which consists of the Navier-
Stokes equations for the bulk fluids with an interfacial surface tension force term
in the momentum equation. In case of solute transport this Navier-Stokes equa-
tion is coupled with a convection-diffusion equation. If surfactants are present, a
convection-diffusion equation on the (evolving) interface is used for modeling the
surfactant transport. We refer to, e.g., [19] for a derivation and discussion of these
models. In this contribution we do not consider the Navier-Stokes equations for
the fluid dynamics and restrict to the transport equations for solute and surfactants
which will are introduced below.
A key difficulty in the numerical simulation of two-phase flow problems is an ac-
curate numerical approximation of the interface. For this different techniques have
been developed in the literature, e.g., volume of fluid (VOF) and level set meth-
ods. In this contribution we restrict to the level set (LS) method. Furthermore, as
discretization method for the mass and surfactant equations we restrict to finite el-
ement methods (FEM). In such a setting with a (standard) LS method for interface
capturing, the underlying computational grids are typically not fitted to the (evolv-
ing) interface and thus one needs special finite element methods that can deal with
such unfitted triangulations. Recently, significant progress has been made in the
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construction, analysis and application of methods of this kind, see for instance the
papers [6, 7, 13, 18, 20, 40] and the references therein. In the literature different
names for such unfitted FEM for the discretization of the solute transport equa-
tion are also used, namely extended FEM (XFEM) and CutFEM. Unfitted FEM are
also used for the discretization of PDEs on (evolving) manifolds, e.g., [39] and the
references therein. While most of the work on unfitted discretizations has been on
piecewise linear (unfitted) finite elements, many unfitted discretizations have a nat-
ural extension to higher order finite element spaces, see for instance [1, 23, 35, 44].
Nevertheless, new techniques are required to obtain also higher order accuracy when
errors due to the geometry approximation are also considered.

In this contribution we present the main results on unfitted FEM obtained in the
Priority Program 1506. More detailed treatments of these results are given in the
papers [26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 41] and [14]. We outline our main new
results at the end of this chapter, cf. section 5.

The structure of the paper is as follows. In section 2 we treat higher order un-
fitted FEM for elliptic interface problems. In section 3 higher order unfitted FEM
for elliptic partial differential equations on (evolving) surfaces are discussed. These
general techniques have rather straightforward applications to the mass and surfac-
tant equations that occur in two-phase flows. This is addressed in section 4. Finally,
in section 5 we outline our main nuew results and discuss some topics which we
consider to be of interest for further study.

2 Unfitted FEM for interface problems

Below, in section 2.1 we first restrict to a model interface problem with a stationary
interface and then in section 2.2 extend the approach to evolving interfaces. The
discretizations of the interface problems are based on the unfitted Nitsche method
from the seminal paper [20] and extend it to higher order methods and evolving
domains. The key ideas of the new finite element method are explained, optimal
theoretical error bounds are discussed and results of a numerical example, which
illustrates the behavior of the method, are included. The results in this section are
based on [28, 29, 32, 33, 34].

2.1 Model elliptic problem with a stationary interface

On a bounded connected polygonal domain Ω ⊂Rd , d = 2,3, we consider the model
interface problem
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−div(αi∇u) = fi in Ωi, i = 1,2, (1a)
[[−α∇u]]Γ ·nΓ = 0, [[u]]Γ = 0 on Γ , (1b)

u = 0 on ∂Ω . (1c)

Here, Ω1 ∪Ω2 = Ω is a nonoverlapping partitioning of the domain, Γ = Ω 1 ∩Ω 2
is the interface, [[·]]Γ denotes the usual jump operator across Γ and nΓ denotes the
unit normal at Γ pointing from Ω1 into Ω2. fi, i = 1,2 are domain-wise described
sources. In the remainder we will also use the source term f on Ω which we define as
f |Ωi = fi, i = 1,2. The diffusion coefficient α is assumed to be piecewise constant,
i.e. it has a constant value αi > 0 on each sub-domain Ωi. In the following we use
the notation ui = u|Ωi , i = 1,2.

The first interface condition in (1b) results from the conservation of mass prin-
ciple while the second condition ensures continuity of the solution across the inter-
face. Later, in section 2.2 we replace the second condition [[u]] = 0 with the more
general – and in the context of two-phase flow applications more relevant – Henry
jump condition [[βu]] = 0 where β is strictly positive and piecewise constant. In con-
trast to the problem considered in section 2.2, a problem as in (1) with the condition
[[u]]Γ = 0 replaced by the Henry condition [[βu]] = 0, β1 6= β2 (which has a jump
discontinuity in the solution u), can be transformed to a problem of the form of (1)
using the variable w = βu. As the problem with the interface condition [[u]] = 0 is
a standard model problem in the literature we consider only this condition in the
remainder of this section. We however note that the methods presented in the fol-
lowing can also be applied to the more general Henry condition, cf. [29, 48].

The weak formulation of the problem (1) is as follows: determine u ∈ H1
0 (Ω)

such that ∫
Ω

α∇u ·∇vdx =
∫

Ω

f vdx for all v ∈ H1
0 (Ω). (2)

We assume simplicial triangulations of Ω which are not fitted to Γ . Furthermore,
the interface is characterized as the zero level of a given level set function φ . The
numerically challenging aspect of the problem in (1) stems from the fact that the
diffusion coefficient α can be discontinuous across the unfitted interface. Hence, the
solution can have discontinuities in the gradient which are located inside individual
elements. This lack of regularity of the solution introduces difficulties in the accurate
approximation. Standard piecewise polynomial finite element spaces are no longer
appropriate and lead to sub-optimal results, especially when aiming at higher order
convergence. To overcome the approximation problem special finite element spaces
are typically designed. Below, in section 2.1.1 we consider an established choice,
an unfitted finite element space as it is used in XFEM or CutFEM discretizations.
One drawback of the application of this kind of finite element space is that none
of the interface conditions in (1b) can easily be implemented in the finite element
space as a n essential condition. A suitable finite element method with these adapted
finite element spaces needs a variational formulation which includes the interface
conditions at least in a weak sense. Another important difficulty in the numerical
treatment of (1) is in the accurate handling of geometries, which are only implicitly
defined through level set functions. Especially the realization of integrals which
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have discontinuous integrands is difficult, for instance the weak Laplacian in (2).
Especially for higher order methods solving this task with sufficient accuracy is a
challenging task. In the next section we introduce an unfitted finite element methods
which addresses all the aforementioned problems. Afterwards, in sections 2.1.2 and
2.1.3 we give a priori error bounds and numerical results. We restrict to the pure
diffusion problem (1). In [29] a variant of the unfitted FEM, based on a streamline
diffusion stabilization technique, is treated which is suitable for the discretization of
elliptic convection dominated interface problems.

2.1.1 An unfitted finite element method

In [28] a new approach has been introduced to obtain higher order accurate approx-
imations of domain and surface integrals of implicitly described geometries. The
fundamental idea is the introduction of a parametric mapping Θh of the underlying
mesh from a geometrical reference configuration to a final configuration.

Let T denote the simplicial triangulation of Ω and V k
h denote the standard fi-

nite element space of continuous piecewise polynomials up to degree k. The nodal
interpolation operator in V k

h is denoted by Ik. It is assumed that a high order ac-
curate finite element approximation φh of the level set funcion φ is known. Based
on its piecewise linear interpolation φ̂h = I1φh the reference configuration with the
subdomains Ω lin

i = {φ̂h ≶ 0}, i = 1,2 and the interface Γ lin = {φ̂h = 0} is defined.
For this reference configuration a robust and accurate realization of numerical inte-
gration is fairly simple. Inside each element the interface and the subdomains are
convex polytopes for which quadrature rules can easily be obtained, cf. (among oth-
ers) [27, Chapter 4], [36], [37, Chapter 5]. This kind of strategy is used in many
simulation codes that are based on unfitted finite elements, e.g. [6, 8, 11, 17, 45].
Note that this piecewise planar approximation of the geometry is only second order
accurate and thus its application is limited to low order methods. However, with a
suitable choice of the parametric mapping Θh this approximation can be improved to
a higher order accurate one. In [28] we introduced such a mapping which is easy to
construct and realizes the mapping from the reference geometries to a higher order
accurate approximation. A sketch is given in Fig. 1.

Fig. 1 Basic idea of the
method in [28]: The zero level
Γ lin of the piecewise linear
interpolation φ̂h is mapped
approximately to the implicit
interface {φh = 0} using a
mesh transformation Θh.

Ωlin
1

Ωlin
2

Γlin
Θh−→

Ω1,h

Ω2,h

Γh

The discretization approach consists of two steps. First, a (higher order) finite
element discretization is constructed with respect to the reference configuration.
Afterwards, applying the transformation Θh to this space and the geometries in the
variational formulation results in a new unfitted finite element discretization with
an accurate treatment of the geometries. The mapping renders the finite element
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spaces isoparametric finite element spaces. As usual in isoparametric finite element
discretizations, volume and interface integrals that occur in the implementation of
the method can be formulated in terms of integrals on the reference configuration,
i.e. on convex polytopes. This allows to reuse the established strategy for numerical
integration discussed before.

We outline the construction of Θh, cf. [28] for more details. For ease of presen-
tation we assume quasi-uniformity of the mesh, s.t. h denotes a characteristic mesh
size with h∼ hT := diam(T ), T ∈T . All elements in the triangulation T which are
cut by Γ lin are collected in the set T Γ := {T ∈T ,T ∩Γ lin 6= /0}. The corresponding
domain is ΩΓ := {x ∈ T,T ∈ T Γ } and the restriction of the finite element space
to ΩΓ is V k

h (Ω
Γ ) =V k

h |ΩΓ . The extended set which includes all direct neighbors to
elements in T Γ is T Γ

+ := {T ∈T ,measd−1(T ∩ΩΓ ) 6= 0} with the corresponding
domain ΩΓ

+ := {x ∈ T,T ∈T Γ }.
For the isoparametric mapping Θh we first introduce a mapping Ψh on ΩΓ which

may be discontinuous, Ψh ∈ C(T Γ )d with C(T Γ ) =
⊕

T∈T Γ C(T ). Then, we use
a projection Ph : C(T Γ )d → (V k

h )
d to obtain a globally continuous mapping Θh :=

PhΨh. Note that this ensures that Θh is a finite element (vector) function.
For the construction of Ψh we use the “search direction” Gh(x) = ∇φh(x), x ∈

T ∈ T Γ which is a good approximation to ∇φ . Note that the latter coincides with
the normal direction at the interface Γ . Other options for the search direction Gh are
discussed in [28].

Let ET φh be the polynomial extension of φh|T . We define a function dh as follows:
dh(x) is the (in absolute value) smallest number such that

ET φh(x+dh(x)Gh(x)) = φ̂h(x), for x ∈ T ∈T Γ . (3)

Hence, at x ∈ T , the scalar function dh(x) is a steplength in the direction Gh(x) such
that the value of ET φh at x+ dh(x)Gh(x) coincides with φ̂h(x). This function has
the property dh(xi) = 0 for all vertices xi of T ∈ T Γ . Given the function dhGh ∈
C(T Γ )d we define

Ψh(x) := x+dh(x)Gh(x) for x ∈Ω
Γ , Θh := PhΨh = id+Qh(dhGh). (4)

Here Qh :=Q2
hQ1

h where Q1
h ensures continuity in ΩΓ , Q1

h : C(T Γ )d→V k
h (Ω

Γ )d

and Q2
h : C(ΩΓ )d →C(Ω)d realizes the continuous transition to zero in ΩΓ

+ \ΩΓ ,
cf. the sketch in Fig. 2. Note that since Ψh(xi) = Θh(xi) = xi for all vertices xi,
we have Ψh = Θh = id for k = 1 in which case the mesh remains unchanged. For
the projection operator Q1

h we consider a simple quasi-interpolation which averages
function values across element interfaces, cf. also [43, Eqs.(25)-(26)] and [12]. For
Q2

h we consider an operator which keeps the degrees of freedom in T Γ unchanged
and sets the remaining degrees of freedom to zero. For details on the projection Ph
we refer to [28] and [32].

Remark 1. The mapping Θh should be a bijection on Ω and the transformed sim-
plices Θh(T ), T ∈ T , should have some shape regularity property. One important
result in [32] is that ‖DΘh− id‖∞,T . h, i.e. for sufficiently small mesh sizes the
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T ∈ T Γ
+

T ∈ T Γ

T ∈ T Γ

T ∈ T Γ
+

id Ψh = id+dhGh id+Q1
h(dhGh) Θh = id+Qh(dhGh)

Fig. 2 Construction steps of the transformation Θh. In the first step, Ψh (only in ΩΓ , pointwise,
discontinuous across element interfaces) is constructed. In a second step, the discontinuities are
removed through averaging (only in ΩΓ ). Finally, a continuous extension to the exterior is realized.

transformation becomes an arbitrary small perturbation to the identity and shape
regularity of Θ(T ) is inherited from the shape regularity of T , cf. [32] for details.
In cases where h is not sufficiently small to guarantee shape regularity the transfor-
mation has to be adapted. We refer to [28] for a possible way to achieve this.

We now define the isoparametric Nitsche unfitted FEM as a transformed version
of the original Nitsche unfitted FE discretization [20] with respect to the interface
approximation Γh =Θh(Γ

lin). We introduce some further notation. The standard un-
fitted space w.r.t. Γ lin is denoted by

VΓ
h :=V k

h |Ω lin
1
⊕V k

h |Ω lin
2
. (5)

In the literature, a finite element method based on such a space is often called Cut-
FEM, cf. [6] or extended FEM (XFEM), cf. [2, 13, 46]. To simplify the notation we
do not explicitly express the polynomial degree k in VΓ

h . The isoparametric unfitted
FE space is defined as

VΓ
h,Θ := {vh ◦Θ

−1
h | vh ∈VΓ

h }= { ṽh | ṽh ◦Θh ∈VΓ
h }. (6)

Based on this space we formulate a discretization of (1) using the unfitted Nitsche
technique [20] with Γh = Θh(Γ

lin) and Ωi,h = Θh(Ω
lin
i ) as numerical approximation

of the geometries: determine uh ∈VΓ
h,Θ such that

Ah(uh,vh) := ah(uh,vh)+Nh(uh,vh) = fh(vh) for all vh ∈VΓ
h,Θ (7)

with the bilinear forms
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ah(u,v) :=
2

∑
i=1

αi

∫
Ωi,h

∇u ·∇vdx, (8a)

Nh(u,v) := Nc
h(u,v)+Nc

h(v,u)+Ns
h(u,v), (8b)

Nc
h(u,v) :=

∫
Γh

{{−α∇v}} ·nΓh [[u]]ds, Ns
h(u,v) := ᾱ

λ

h

∫
Γh

[[u]][[v]]ds, (8c)

for u,v ∈VΓ
h,Θ +Vreg,h with Vreg,h := H1(Ω)∩H2(Ω1,h∪Ω1,h).

Here, nΓh denotes the outer normal of Ω1,h and ᾱ = 1
2 (α1 +α2) the mean dif-

fusion coefficient. For the averaging operator {{·}} there are different possibilities.
We use {{w}} := κ1w|Ω1,h

+ κ2w|Ω2,h
with a “Heaviside” choice where κ1 = 1 if

|T1| > 1
2 |T | and κ1 = 0 if |T1| ≤ 1

2 |T |, κ2 = 1− κ1 . Here, Ti = T ∩Ω lin
i , i.e. the

cut configuration on the undeformed mesh is used. This choice in the averaging
renders the scheme in (7) stable (for sufficiently large λ ) for arbitrary polynomial
degrees k, independent of the cut position of Γ , cf. [32, Lemma 5.1]. A different
choice for the averaging which also results in a stable scheme is κi = |Ti|/|T |.

In order to define the right-hand side functional fh we first assume that the source
term fi : Ωi → R in (1a) is (smoothly) extended to Ωi,h, such that fi = fi,h on Ωi
holds. This extension is denoted by fi,h. We define

fh(v) := ∑
i=1,2

∫
Ωi,h

fi,hvdx, v ∈VΓ
h,Θ +Vreg,h. (9)

We define fh on Ω by fh|Ωi,h
:= fi,h, i = 1,2.

For the implementation of this method, in the integrals we apply a transformation
of variables y :=Θ

−1
h (x). For example, the bilinear form ah(u,v) then results in

ah(u,v) := ∑
i=1,2

αi

∫
Ω lin

i

DΘ
−T
h ∇u ·DΘ

−T
h ∇v det(DΘh)dy. (10)

Based on this transformation the implementation of integrals is carried out as for
the case of the piecewise planar interface Γ lin. The additional variable coefficients
DΘ

−T
h , det(DΘh) are easily and efficiently computable using the property that Θh is

a finite element (vector) function.

2.1.2 Optimal order error bound

Optimal discretization error bounds, both in the H1- and L2-norm, for the isopara-
metric unfitted FEM presented above are derived in [32, 33]. We only present the
H1-norm error bound. We assume that the approximation φh ∈ V k

h of the level set
function φ satisfies the error estimate

max
T∈T
|φh−φ |m,∞,T∩U . hk+1−m, 0≤ m≤ k+1. (11)
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Here | · |m,∞,T∩U denotes the usual semi-norm on the Sobolev space W m,∞(T ∩U).
Here and in the remainder we use the notation ., which denotes an inequality with a
constant that is independent of h and of how the interface Γ intersects the triangula-
tion T . This constant may depend on φ and on the diffusion coefficient α , cf. (1a).
A main theorem proved in [32] is the following. In the theorem we use a certain
piecewise smooth function ue, which is smooth on the subdomain approximations
Ωi,h, i = 1,2, and defined by a smooth extension of u|Ωi (cf. [32] for details).

Theorem 1. Let u be the solution of (1) and uh ∈VΓ
h,Θ the solution of (7). We assume

that u ∈ H3,∞(Ω1 ∪Ω2) if k = 2, u ∈ Hk+1(Ω1 ∪Ω2) if k ≥ 3, and f ∈ H1,∞(Ω1 ∪
Ω2). Furthermore the data extension fh satisfies the condition ‖ fh‖H1,∞(Ω1,h∪Ω2,h)

.

‖ f‖H1,∞(Ω1∪Ω2)
. Then the following holds:

|ue−uh|H1(Ωi,h∪Ωi,h)
. hk(S(u)+‖ f‖H1,∞(Ω1∪Ω2)

)

with

S(u) :=

{
‖u‖H3,∞(Ω1∪Ω2)

if k = 2,
‖u‖Hk+1(Ω1∪Ω2)

if k ≥ 3.

Hence, the method has the optimal hk error bound in the H1-norm, under almost
optimal smoothness assumptions on u.

2.1.3 Results of numerical experiments

We give a numerical example to illustrate the performance of the previously intro-
duced method. On the domain Ω = [−1.5,1.5]2 we prescribe the interface Γ by
the level set function φ(x) = ‖x‖4−1 where ‖x‖4 denotes the usual 4-norm on Rd ,
Γ = {φ(x) = 0}. The interface is a smoothed square, c.f. the sketch in Fig. 3, the
level set function φ is equivalent to a signed distance function. The diffusion param-
eters are taken as (α1,α2) = (1,2), Dirichlet boundary data and right-hand side term
f are chosen such that the solution is u(x) = u1(x) = 1+ π

2 −
√

2 · cos(π

4 ‖x‖4
4) for

x ∈Ω1 and u(x) = u2(x) = π

2 ‖x‖4 for x ∈Ω2. The solution is continuous across the
interface, but has a kink at the interface, u1|Γ = u2|Γ and α1∇u1 ·nΓ = α2∇u2 ·nΓ .

Based on a finite element approximation φh of φ which is obtained by higher
order interpolation and the search direction Gh = ∇φh, we construct the mapping
Θh as in (4). Starting from an initial simplicial mesh which resolves the interface
sufficiently well such that we have shape regularity of the mesh after transformation
with Θh, we repeatedly apply uniform refinements. The stabilization parameter in
Nitsche’s method is chosen as λ = 20 · k2.

In Fig. 3 the convergence results of the error ue− uh in the H1 semi-norm for
polynomial degrees k = 1,2, ..,5 are shown. Here, ue is the natural extension of the
solution to the discrete domains Ωi,h. We observe optimal order of convergence. For
details on this numerical example we refer to [32]. We note that optimal order, i.e.
O(hk+1) convergence for the error is also observed in the L2 norm. These results
confirm the error analyses in [32] (H1 norm) and [33] (L2 norm).
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Fig. 3 Geometrical configuration and convergence results for the example in section 2.1.3.

Remark 2 (Dominating convection). In many applications, especially in two-phase
flows, problems of the form (1) with an additional dominating convection term
w ·∇u are relevant where w is the convecting flow field. In this case additional
stabilization becomes necessary for the unfitted discretization introduced before. In
[29] we derived and analysed a discretization which combines Streamline Diffusion
stabilization with an unfitted finite element formulation for piecewise linears for the
case of an elliptic interface problem with dominating convection.

Remark 3 (Conditioning stiffness matrix). A disadvantage of the type of unfitted
finite element method presented above is the fact that the stiffness matrix can be
extremely ill-conditioned. In particular this condition number depends not only on
the mesh size h, but also on how the interface intersects the triangulation T . This
topic is addressed in [34] for the case of linear finite elements. An additive sub-
space preconditioner is introduced which is optimal in the sense that the resulting
condition number is independent of both the mesh size h and the interface position.
Furthermore it is shown that already the simple diagonal scaling of the stiffness ma-
trix results in a condition number that is bounded by ch−2, with a constant c that
does not depend on the location of the interface.

2.2 Model parabolic problem with an evolving interface

We consider a mass transport problem with an evolving interface Γ (t) which extends
the previously considered model problem by adding convection and a temporal evo-
lution of the concentration and the interface. We assume a given sufficiently smooth
velocity field w, with divw = 0, and assume that the transport of the interface is
determined by this velocity field, in the sense that VΓ = w ·nΓ holds. Here VΓ is the
normal velocity of the interface. We consider a standard model which describes the
transport of a solute in a two-phase flow problem. In strong formulation this model
is as follows:



10 Christoph Lehrenfeld and Arnold Reusken

∂u
∂ t

+w ·∇u−div(α∇u) = f in Ωi(t), i = 1,2, t ∈ [0,T ], (12a)

[[−α∇u]]Γ ·nΓ = 0, [[βu]]Γ = 0 on Γ , (12b)
u(·,0) = u0 in Ωi(0), i = 1,2, (12c)
u(·, t) = 0 on ∂Ω , t ∈ [0,T ]. (12d)

In (12a) we have standard parabolic convection-diffusion equations in the two sub-
domains Ω1 and Ω2. The coefficients α , β are assumed to be piecewise constant.
We note that in contrast to the problem treated in section 2.1.1 we now consider
the general case α1 6= α2 and β1 6= β2. The second relation is the so-called Henry
condition, cf. [21, 51, 50, 5, 4] and describes a jump discontinuity at the interface
due to different solubilities within the respective fluid phases. Hence, the solution
u is discontinuous across the evolving interface. In this section we treat an unfit-
ted finite element method for this problem, introduced and analyzed in [30]. The
method is based on a well-posed space-time weak formulation of (12) (which we
do not present here). Compared to the unfitted finite element method presented in
section 2.1.1 there are two important differences. Firstly, we restrict to linear finite
elements and a linear interface reconstruction, i.e., we do not use an isoparamet-
ric mapping (for getting a higher order approximation). Hence, the best we can
obtain is a second order method. Secondly, we treat the evolution by using a space-
time finite element approach. We will introduce an unfitted space-time FEM and
combine this with a space-time Nitsche technique. The method and results that we
present are from [30]. From the error analysis, cf. section 2.2.2, it follows that the
method is second order is space and time. We are not aware of any other Eulerian
type discretization method for this class of parabolic interface problems which has
a guaranteed (i.e., based on a-priori error bounds) second order convergence.

2.2.1 An unfitted FEM

The space-time unfitted FEM that we introduce in this section has the form of a
variational problem in a certain space-time finite element space. The same space is
used for both trial and test functions. We introduce the method for the case of piece-
wise bilinear space-time functions (linear in space and linear in time). In Remark 5
we comment on generalizations. We introduce notation. The space-time domain is
denoted by Q = Ω × (0,T ] ⊂ Rd+1. A partitioning of the time interval is given by
0 = t0 < t1 < .. . < tN = T , with a uniform time step ∆ t = T/N. This assumption
of a uniform time step is made to simplify the presentation, but is not essential for
the method. Corresponding to each time interval In := (tn−1, tn] we assume a given
shape regular simplicial triangulation Tn of the spatial domain Ω . In general this
triangulation is not fitted to the interface Γ (t). In this section we assume that the im-
plicit geometries can be handled without introducing additional errors, cf. remark
4 below for the general case where geometries have to be approximated in order to
obtain a realization of the discretization.
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The triangulation Tn may vary with n. Let Vn be the finite element space of
continuous piecewise linear functions on Tn with zero boundary values on ∂Ω . The
spatial mesh size parameter corresponding to Vn is denoted by hn. Corresponding
space-time finite element spaces on the time slab Qn := Ω × In are given by

Wn := {v : Qn→ R | v(x, t) = φ0(x)+ tφ1(x), φ0,φ1 ∈Vn } (13a)
W := {v : Q→ R | v|Qn ∈Wn }. (13b)

In the time slab Qn we define the subdomains Qn
i := ∪t∈InΩi(t), i = 1,2, and also

Qi := ∪1≤n≤NQn
i = ∪0<t≤T Ωi(t), i = 1,2. We will also use the notation vi := v|Qi .

The space-time unfitted FE spaces are given by

WΓ
n := Wn|Qn

1
⊕Wn|Qn

2
(14a)

WΓ∗ := {v : Q→ R | v|Qn ∈WΓ
n }=W |Q1 ⊕W |Q2 . (14b)

The symbol Γ n
∗ denotes the space-time interface in Qn, i.e., Γ n

∗ := ∪t∈InΓ (t), and
Γ∗ := ∪1≤n≤NΓ n

∗ . The finite element spaces defined in (14) are natural space-
time generalizations of the “cut” finite element space defined in (5). We treat
the Henry condition [[βu]]Γ = 0 using a natural space-time generalization of the
Nitsche technique used in section 2.1.1. For this we need a suitable average across
Γ (t), denoted by {{v}}Γ(t) = κ1(t)v|Ω1(t) + κ2(t)v|Ω2(t). Take t ∈ In and T ∈ Tn
with Ti := T ∩Ωi(t) 6= /0. We define the weights κi(t) := |Ti|/|T |. Note that those
weights only depend on the spatial configuration at a given time t and there holds
κ1(t) + κ2(t) = 1. Other choices for the averaging are possible, for instance the
“Heaviside” choice that we also used in section 2.1.1 for the stationary case.

In the discontinuous Galerkin method we need jump terms across the end points
of the time intervals In = (tn−1, tn]. We define un−1

+ (·) := limε↓0 u(·, tn−1 + ε) and
introduce the notation

vn(x) := v(x, tn), [v]n(x) := vn
+(x)− vn(x), 0≤ n≤ N−1, with v0(x) := 0.

On the cross sections Ω×{tn}, 0≤ n≤N, of Q we use a weighted L2 scalar product

(u,v)0,tn :=
∫

Ω

β (·, tn)uvdx =
2

∑
i=1

βi

∫
Ωi(tn)

uvdx.

This scalar product is uniformly (w.r.t. n and N) equivalent to the standard scalar
product in L2(Ω). Note that we use a weighting with β in this scalar product, which
is not reflected in the notation.

The notation introduced above is used to define a bilinear form B(·, ·), which
consists of three parts, namely a term a(·, ·) that directly corresponds to the partial
differential equation, a term d(·, ·) which weakly enforces continuity with respect
to t at the time interval end points tk, and a term NΓ∗(·, ·) which enforces in a weak
sense the Henry condition [[βu]]Γ∗ = 0. These terms are defined per time slab Qn, i.e.
a(·, ·) is of the form a(u,v) = ∑N

n=1 an(u,v) and similarly for the other two terms.
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Fig. 4 Sketch of bilinear form
contributions to space-time
formulation for one time slab:
1. an: PDE (interior part),
2. dn: temporal consistency,
3. Nn

Γ∗ : interface conditions.

tn

tn−1

Qn

3

1 1 1

u+(tn−1)
u−(tn−1) 2

We now define the bilinear forms corresponding to each time slab Qn, see also
Fig. 4 for a sketch of these contributions. For sufficiently smooth u,v and 1≤ n≤ N
we define

an(u,v) :=
2

∑
i=1

∫
Qn

i

(∂ui

∂ t
+w ·∇ui

)
βivi +αiβi∇ui ·∇vi dxdt, (15a)

dn(u,v) := ([u]n−1,vn−1
+ )0,tn−1 , (15b)

Nn
Γ∗(u,v) :=

∫ tn

tn−1

Nh(t;u,v)dt, (15c)

with the spatial Nitsche bilinear form Nh(t;u,v) for a fixed time t defined analo-
gously to (8b) and (8c) as

Nh(t;u,v) := Nc
h(t;u,v)+Nc

h(t;v,u)+Ns
h(t;u,v) (15d)

Nc
h(t;u,v) :=

∫
Γ(t)
{{−α∇u}}Γ(t) ·nΓ(t) [[βv]]Γ(t) ds, (15e)

Ns
h(t;u,v) := ᾱ

λ

h

∫
Γ(t)

[[βu]]Γ(t)[[βv]]Γ(t) ds, λ ≥ 0. (15f)

Finally, we introduce a right-hand side functional given by

f 1(v) = (u0,v0
+)0,t0 +

∫
Q1

f β vdxdt, f n(v) =
∫

Qn
f β vdxdt, 2≤ n≤ N,

where u0 is the initial condition from (12c) and f the source term in (12a). Corre-
sponding global (bi)linear forms are obtained by summing over the time slabs:

q(u,v) =
N

∑
n=1

qn(u,v), for q ∈ {a,d,NΓ∗}, f (v) =
N

∑
n=1

f n(v).

These bilinear forms and the functional f are well-defined on the space-time un-
fitted space WΓ∗ . The space-time unfitted FE discretization is defined as follows.
Determine uh ∈WΓ∗ such that

B(uh,vh) = f (vh) for all vh ∈WΓ∗ ,

B(uh,vh) := a(uh,vh)+d(uh,vh)+NΓ∗(uh,vh).
(16)

Note that this formulation still allows to solve the space-time problem time slab by
time slab.
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Remark 4 (Quadrature in space-time). We assumed that no geometry errors are in-
troduced in the discretization which implies the assumption that integration on the
space-time subdomains Qn

i and on the space-time interface Γ∗ can be done exactly.
In practice this assumption is not realistic and an approximation of the geometries
is necessary to construct quadrature rules. While piecewise linear interface approxi-
mations, which have second order accuracy, are standard in up to three dimensions,
cf. (among others) [27, Chapter 4], [36], [37, Chapter 5], the numerical integration
on geometries resulting from piecewise linear interface reconstructions in four di-
mensions (three space and one time dimension) required new strategies. In [26] we
presented decomposition rules which allow to extend the previously known strate-
gies from lower dimensions to four dimensional geometries.

Remark 5 (Higher order methods). We comment on a generalization to a higher
order method. On Q, instead of the bilinear space W as in (13), a higher order
space-time finite element space can be defined in an obvious manner, cf. [53]. A
corresponding higher order unfitted finite element space is then defined as in (14)
and the higher order discretization is obtained by the variational problem (16) with
WΓ∗ replaced by this higher order unfitted finite element space. We conclude that the
method (16) has a straightforward generalization to a higher order method. From an
implementation point of view there is an important difference between the bilin-
ear method introduced above and a higher order method. In order to benefit from
the higher order accuracy, one needs sufficiently accurate quadrature rules. For the
case with an evolving interface such accurate approximations of the space-time in-
tegrals are difficult to realize. So far only second order quadrature rules have been
dev eloped for implicitly described geometries in space-time, cf. Remark 4. An ex-
tension of the higher order accurate geometry handling as in section 2.1.1 to the
space-time setting is a topic of current research.

2.2.2 Second order error bounds

Below in Theorem 2 we present a main result of the a priori error analysis of the
unfitted space-time method. For this we first introduce some preliminaries. We need
anisotropic Sobolev spaces. By Hk,l(Qn

1∪Qn
2) we denote the Sobolov space of func-

tions on the domain Qn
1∪Qn

2 with spatial partial derivatives up to degree k and tem-
poral derivatives up to degree l in L2(Qn

1 ∪Qn
2). The subscript 0 is used for the

subspace of functions in Hk,l(Qn
1∪Qn

2) with zero value on ∂Ω × (0,T ) (in the trace
sense), cf. [30] for details.

In order to derive second order bounds in the L2(Ω(T )) norm, we make use of
duality arguments. This require regularity assumptions for the following homogen-
uous backward problem (with data v̂T ):
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−∂ v̂
∂ t
−w ·∇v̂−div(α∇v̂) = 0 in Ωi(t), i = 1,2, t ∈ [0,T ], (17a)

[[−α∇v̂]]Γ ·nΓ = 0, [[β v̂]]Γ = 0 on Γ , (17b)
v̂(·,0) = v̂T in Ωi(0), i = 1,2, (17c)
v̂(·, t) = 0 on ∂Ω , t ∈ [0,T ]. (17d)

The analysis in [30] uses the the assumption that the solution of this homogenu-
ous backward problem has the regularity property ‖v̂‖2,Q1∪Q2 ≤ c‖v̂T‖L2(Ω) where
‖ · ‖2,Q1∪Q2 is the standard (isotropic) Sobolev norm. Based on this one can de-
rive a second order error bound in the L2(Ω) norm. In the analysis in [27] we re-
placed this assumption with the a more realistic regularity assumption ‖v̂‖2,Q1∪Q2 ≤
c‖v̂T‖H1(Ω1(T )∪Ω2(T )) to arrive at the second order estimate given in the next theo-
rem. The estimate gives a bound in a dual norm, the definition of which we repeat
for functions v ∈ L2(Ω):

‖v‖−1,T := sup
w∈H1

0 (Ω1(T )∪Ω2(T ))

(v,w)0,T

‖w‖H1(Ω1(T )∪Ω2(T ))
.

Theorem 2. Assume that (12) has a solution u ∈ H2,1
0 (Q1 ∪Q2) and uh ∈ WΓ∗

is the solution to (16). Under the assumption that the homogeneous backward
problem (17) has a solution v̂ ∈ H2

0 (Q1 ∪Q2) that has the regularity property
‖v̂‖2,Q1∪Q2 ≤ c‖v̂T‖H1(Ω1(T )∪Ω2(T )) with a constant c independent of the initial data
v̂T ∈ H1(Ω1(T )∪Ω2(T )), there holds the following bound for the discretization
error u−uh:

‖(u−uh)(·,T )‖−1,T ≤ c(h2 +∆ t2)‖u‖2,Q1∪Q2 . (18)

Hence, the discretization error of this method is of second order, both with re-
spect to the spatial and time mesh size, under reasonable regularity assumptions. In
numerical experiments, cf. Section 2.2.3 below, we observe that the second order
convergence also holds in the L2-norm. We do not assume any CFL-type conditions
on the mesh sizes. To our knowlegde there are no other Eulerian FE techniques
which for this class of parabolic problems with an evolving discontinuity have a
proven second order error bound.

2.2.3 Results of numerical experiments

We present results for a test problem also considered in [26]. In this problem a
sphere is translated inside a cube with a time-dependent velocity. We give a sum-
mary of the setup and the results and refer to [26] for more details. The time interval
is [0,T ] with T = 0.5 and the domain is the cube Ω = [0,2]3. The sphere is initially
centered around the origin (0,0,0), has a radius R = 1

3 and is translated by the time-
dependent velocity field w. Initial and boundary data are prescribed such that the
solution takes the form
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u(x, t) = sin(kπt) ·Um(‖x−q(t)‖), U1(y) = a+by2 and U2(y) = cos(πy).

where q(t) = ( 1
4π

sin(2πt),0,0) describes the center of the sphere at time t and a and
b are chosen such that the interface conditions hold. We chose (α1,α2) = (10,20)
and (β1,β2) = (2,1).

0 1 2 3

10−2

10−1

temporal refinements

space ref.: 0
space ref.: 1
space ref.: 2
space ref.: 3

O(∆t2)

0 1 2 3

10−2

10−1

spatial refinements

temp. ref.: 0
temp. ref.: 1
temp. ref.: 2
temp. ref.: 3

O(h2)

Fig. 5 Numerical results for the example in section 2.2.3. L2 error at final time after repeated
(uniform) refinements in time (left) and space (right).

In Fig. 5 we present results for the discretization error ‖u(·,T )−uh(·,T )‖L2(Ω).
These results show a second order convergence of the error with respect to tempo-
ral and spatial refinements. We note that in further numerical studies we observed
also third order convergence in time for many test cases as long as the quadrature
error is sufficiently small. From the literature, e.g. [53], it is known that for smooth
parabolic problems (i.e., without discontinuities) and with standard linear space-
time FE spaces (no unfitted spaces, no Nitsche) the L2 discretization error is of third
order w.r.t. the time step.

3 Unfitted FEM for PDEs on surfaces

Below, in section 3.1 we first restrict to a model elliptic PDE, namely the Laplace-
Beltrami equation on a stationary surface and then in section 3.2 extend the problem
class to parabolic PDEs on evolving interfaces. In the past decade several finite ele-
ment techniques for the discretization of (elliptic and parabolic) PDEs on a smooth
(evolving) surface have been developed. For a recent overview we refer to [10].
These methods can be classified as follows. Firstly, the (evolving) surface finite el-
ement method (SFEM), developed by Dziuk and Elliott in a series of papers (cf.
[10]), is based on an explicit triangulation Γh of Γ . On this triangulation one uses
a standard linear finite element space. In case of an evolving surface the vertices of
the triangulation are transported with the surface velocity field. Thus this method is



16 Christoph Lehrenfeld and Arnold Reusken

based on a Lagrangian approach. A second class of methods is based on an exten-
sion of the PDE (given on Γ ) to a neighborhood of the surface. One then obtains a
PDE in the volume, which can be discretized by standard FE techniques. The third
class of methods consists of so-called trace FEM [40, 41, 39] in which one starts
from a standard finite element space on an outer fixed volume mesh and then takes
the trace on Γ of this space for the discretization of the surface PDE. This technique
can also be applied to an evolving surface and results in a purely Eulerian approach.
In this paper we restrict to the latter class of FE trace techniques, which can also be
interpreted as an unfitted FEM: one starts from a standard finite element space on
a (fixed) volume triangulation, which is not fitted to Γ , and differently from (5) or
(14) one takes the trace of this space on Γ instead of on the subdomains (separated
by the surface Γ ).

Below, both for the case of a stationary and an evolving surface, we explain
these unfitted finite element techniques (or trace FEM), discuss optimal theoretical
error bounds and present results of a few numerical experiments, which illustrate the
behavior of the methods. For the case of a stationary interface we briefly address the
issue of the conditioning of the resulting discrete problem (Remark 6). The results
in this section are based on [14, 39, 40, 41].

3.1 Model elliptic PDE on a stationary surface

Let Ω ⊆ R3 be a polygonal domain and Γ ⊂ Ω a smooth, closed, connected 2D
surface. Given f ∈ H−1(Γ ), with f (1) = 0 we consider the following Laplace–
Beltrami equation: Find u ∈ H1

∗ (Γ ) := {v ∈ H1(Γ ) | ∫
Γ

vds = 0} such that

a(u,v) = f (v) for all v ∈ H1
∗ (Γ ) (19)

with
a(u,v) =

∫
Γ

∇Γ u ·∇Γ vds.

3.1.1 An unfitted FEM

We assume that the smooth interface Γ is the zero level of a smooth level set func-
tion φ , i.e., Γ = {x ∈Ω | φ(x) = 0}. We will use the same isoparametric mapping
Θh as in section 2.1.1. Hence we assume that we have available φh ∈ V k

h (degree k)
and φ̂h = I1φh (degree 1), which are finite element approximations of φ (in a neigh-
borhood of Γ ). These finite element functions are used as input for the isoparametric
mapping Θh. Recall the local volume triangulation T Γ := {T ∈ T ,T ∩Γ lin 6= /0}.
The standard affine polynomial finite element space V k

h is restricted to T Γ , i.e.,
(V k

h )|ΩΓ . To this space we apply the transformation Θh resulting in the isoparamet-
ric space

V k
h,Θ := {vh ◦Θ

−1
h | vh ∈ (V k

h )|ΩΓ }. (20)
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The unfitted finite element space that we use is the trace of this space:

VΓ
h,Θ := tr|Γh(V

k
h,Θ ), VΓ ,0

h,Θ := {vh ∈VΓ
h,Θ |

∫
Γh

vh ds = 0}, (21)

with Γh := Θh(Γ
lin). In the notation, we skip the polynomial degree k, and we use

Γ to indicate that we take the trace of the outer volume isoparametric space. We
introduce the bilinear form

ah(u,v) :=
∫

Γh

∇Γhu ·∇Γh vds. (22)

For the discrete problem we need a suitable extension of the data f to Γh, which is
denoted by fh. Specific choices for fh are discussed in [47]. The discrete problem is
as follows: Find uh ∈VΓ ,0

h,Θ such that

ah(uh,vh) =
∫

Γh

fhvh dx for all vh ∈VΓ ,0
h,Θ . (23)

Similar to the approach in Section 2.1.1, cf. (10), the implementation of the in-
tegrals in (23) is based on numerical integration rules with respect to Γ lin and the
transformation Θh. We illustrate this for the integral in (23). With ũh = uh ◦Θh, ṽh =
vh ◦Θh ∈VΓ

h , there holds∫
Γh

∇Γhuh ·∇Γhvh ds =
∫

Γ lin
JΓ ·PhDΘ

−T
h ∇ũh · PhDΘ

−T
h ∇ṽh ds,

with Ph = I− nhnT
h the tangential projection, nh = N/‖N‖ the unit-normal on Γh

with N = (DΘh)
−T n̂h where n̂h = ∇φ̂h/‖∇φ̂h‖ is the normal with respect to Γ lin,

and JΓ = det(DΦh) · ‖N‖. This means that we only need an accurate integration
with respect to the low order geometry Γ lin and the explicitly available mesh trans-
formation Θh ∈ (V k

h )
d .

3.1.2 Optimal error bound

The following optimal H1-norm error bound is derived in [14]. One part of the dis-
cretization error stems from the approximation of the data f on the discrete surface
Γh. Let µh : Γh→R describe the ratio in measures between integrals on Γ and Γh, so
that there holds

∫
Γh

µh u◦Φ ds =
∫

Γ
u ds for u ∈ L2(Γ ) and Φ : Γh→ Γ the closest

point mapping. One can show that ‖1−µh‖L∞(Γh) . hk+1. With f e(x) = f (Φ(x)) the
constant extension in normal direction, we have for f ∈ L2(Γ ) and v, fh ∈ L2(Γh):∫

Γ

f v◦Φ
−1 ds−

∫
Γh

fh v ds =
∫

Γh

(µh f ◦Φ− fh)v ds =
∫

Γh

(µh f e− fh)v ds,
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which characterizes one part of the consistency error stemming from the geometry
approximation. We introduce the data error quantity δ f := µh f e− fh on Γh.

Theorem 3. Let u ∈ Hk+1(Γ ) be the solution of (19) and uh ∈ VΓ ,0
h,Θ the solution

of (23). Assume that the data error satisfies ‖δ f ‖L2(Γh)
. hk+1‖ f‖L2(Γ ). Then the

following holds:

‖ue−uh‖H1(Γh)
. hk‖u‖Hk+1(Γ )+hk+1‖ f‖L2(Γ ). (24)

Hence this method has the optimal hk error bound in the H1-norm, under optimal
smoothness assumptions on u. An optimal L2-norm error bound has not been de-
rived, yet.

3.1.3 Results of numerical experiments

We consider an example taken from [16] and apply the discretization described
above. The surface is a torus prescribed by the level set function φ , Γ = {x ∈
Ω |φ(x) = 0} with

φ(x) =

(
x2

3 +

((
x2

1 + x2
2
) 1

2 −R
)2
) 1

2

− r, R = 1,r = 0.6.

The solution is given as u(x) = sin(3ϕ)cos(3θ +ϕ) where (φ ,θ) are the angles
describing a surface parametrization, cf. [16] for details. The function f is chosen
accordingly. u and f have mean value zero. We start from an initially mesh with
mesh size h≈ 0.1 and repeatedly apply uniform refinements (at the interface).

In Fig. 6 we observe the convergence of the error L2(Γh) and the H1(Γh) semi
norm. The rates are optimal, as predicted from the error bounds.

Remark 6 (Conditioning stiffness matrix). A disadvantage of the type of unfitted fi-
nite element method presented above is the fact that the stiffness matrix can be sin-
gular or extremely ill-conditioned. In particular this condition number depends not
only on the mesh size h, but also on how the surface intersects the outer fixed trian-
gulation T Γ . Recently, in [14] a general (i.e., applicable also to higher order FEM)
stabilization technique has been introduced. In this method one uses a stabilization
term of the form

sh(uh,vh) = ρs

∫
ΩΓ

Θ

∇uh ·nh ∇vh ·nh ds,

with ρs > 0 a stabilization parameter, ΩΓ
Θ

:=Θh(Ω
Γ ) (recall that ΩΓ is the domain

formed by all simplices that are intersected by Γ lin) and nh an approximation of the
unit normal on Γh = Θh(Γ

lin) (cf. [14] for details). This stabilization term is added
on the left-hand side in (23). It can be shown that with appropriately chosen ρs an
optimal order error bound as in Theorem 3 still holds and the resulting stiffness
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Fig. 6 Convergence history of the L2 error under uniform refinement (left) and solution for a
computation on the discrete surface Γ lin (center) and Γh (right).

matrix has a condition number bounded by ch−2, with a constant c independent of
how the surface intersects the outer fixed triangulation.

3.2 Model parabolic PDE on an evolving surface

Consider a surface Γ (t) passively advected by a given smooth velocity field w =
w(x, t), i.e. the normal velocity of Γ (t) is given by w · n, with n the unit normal
on Γ (t). We assume that for all t ∈ [0,T ], Γ (t) is a hypersurface that is closed
(∂Γ = /0), connected, oriented, and contained in a fixed domain Ω ⊂ Rd , d = 2,3.
The convection-diffusion equation on the surface that we consider is given by:

u̇+(divΓ w)u−αd∆Γ u = f on Γ (t), t ∈ (0,T ], (25)

with a prescribed source term f = f (x, t) and homogeneous initial condition u(x,0)=
u0(x) = 0 for x ∈ Γ0 := Γ (0). Here u̇ = ∂u

∂ t +w ·∇u denotes the material derivative,
divΓ := tr

(
(I−nnT )∇

)
is the surface divergence and ∆Γ is the Laplace-Beltrami

operator, αd > 0 is the constant diffusion coefficient. If we take f = 0 and an initial
condition u0 6= 0, this surface PDE is obtained from mass conservation of the scalar
quantity u with a diffusive flux on Γ (t) (cf. [22, 19]). A standard transformation to a
homogeneous initial condition, which is convenient for a theoretical analysis, leads
to (25). Several weak formulations of (25) are known in the literature, see [9, 19].
The most appropriate for our purposes is space-time formulation on the space-time
manofold Γ∗ = ∪t∈[0,T ]Γ (t) ⊂ Rd+1 proposed in [41]. This well-posed space-time
weak formulation, which we do not present here, forms the basis for the unfitted
finite element presented in the next section.
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3.2.1 An unfitted FEM

We use the same setting as in section 2.2.1. In particular, in the unfitted FEM that
we present below we restrict ourselves to piecewise bilinear space-time functions
(linear in space and linear in time). The space-time domain is denoted by Q = Ω ×
(0,T ]⊂Rd+1. A partitioning of the time interval is given by 0= t0 < t1 < .. . < tN =
T , with (for simplicity) a uniform time step ∆ t = T/N. Corresponding to each time
interval In := (tn−1, tn] we assume a given shape regular simplicial triangulation Tn
of the spatial domain Ω . In general this triangulation is not fitted to the interface
Γ (t). In the method we only need the local triangulation T Γ

n (elements intersected
by Γ (t), t ∈ In). In this section we assume that the (implicit) geometry Γ (t) can
be handled without introducing additional errors. In practice we need a geometry
approximation, for which we use the same second order accurate approximation as
briefly addressed in Remark 4. We use the same “outer” space-time finite element
spaces Wn, W as in (13) and for the unfitted finite element space we take the trace
on Γ∗:

WΓ∗ :=W |Γ∗ . (26)

For the definition of the finite element method we need some further notation. On
L2(Γ∗) we use the scalar product (v,w)0 =

∫ T
0
∫

Γ (t) vwdsdt. For u∈Wn, the one-sided
limits un

+ = u+(·, tn) (i.e., t ↓ tn) and un
− = u−(·, tn) (i.e., t ↑ tn) are well-defined. At

t0 and tN only u0
+ and uN

− are defined. For v ∈WΓ∗ , a jump operator is defined by
[v]n = vn

+−vn
−, n= 1, . . . ,N−1. For n= 0, we define [v]0 = v0

+. On the cross sections
Γ (tn), 0≤ n≤ N, of Γ∗ the L2 scalar product is denoted by

(ψ,φ)tn :=
∫

Γ (tn)
ψφ ds.

For the finite element discretization (which is based on a space-time weak formula-
tion of (25)) we introduce the following bilinear forms:

a(u,v) = (αd∇Γ u,∇Γ v)0 +(divΓ wu,v)0 (27)

dn(u,v) = ([u]n−1,vn−1
+ )tn−1 , d(u,v) =

N

∑
n=1

dn(u,v), (28)

〈u̇,v〉b =
N

∑
n=1

∫ tn

tn−1

∫
Γ (t)

(
∂u
∂ t

+w ·∇u)vdsdt. (29)

The unfitted finite element discretization of (25) is as follows: Find uh ∈WΓ∗ such
that

〈u̇h,vh〉b +a(uh,vh)+d(uh,vh) = ( f ,vh)0 for all vh ∈WΓ∗ . (30)

Note that we use the same trial and test space WΓ∗ and that this method allows a
time stepping procedure. One easily checks that this discretization is consistent in
the sense that a solution of (25) satisfies the variational equation (30). Finally note
that this method is a Eulerian method, based on a fixed (per time slab) outer triangu-



High Order Unfitted FEM for elliptic and parabolic PDEs 21

lation. For the implementation of the method one has to approximate the geometry
and construct quadrature rules. So far, this has been done only for piecewise planar
geometry approximations, cf. Remark 4.

3.2.2 Second order error bound

An error analysis of this method is presented in [38]. We outline a main result.
Define H = {v ∈ L2(Γ∗) | ‖∇Γ v‖L2(Γ∗) < ∞} endowed with the scalar product
(u,v)H = (u,v)0 + (∇Γ u,∇Γ v)0. Define the average ū(t) :=

∫
Γ (t) uds. In the dis-

cretization error analysis we use a consistent stabilizing term involving the quantity
ūh(t). More precisely, define

aσ (u,v) := a(u,v)+σ

∫ T

0
ū(t)v̄(t)dt, σ ≥ 0. (31)

Instead of (30) we consider the stabilized version: Find uh ∈WΓ∗ such that

〈u̇h,vh〉b +aσ (uh,vh)+d(uh,vh) = ( f ,vh)0 for all vh ∈WΓ∗ . (32)

Taking σ > 0 results in both a stabilizing effect and an improved discrete mass con-
servation property. Ellipticity estimates and error bounds are derived in the mesh-
dependent norm:

|||u|||h :=

(
‖uN
−‖2

T +
N

∑
n=1
‖[u]n−1‖2

tn−1
+‖u‖2

H

) 1
2

.

In the error analysis we need a condition which plays a similar role as the con-
dition “c− 1

2 divb > 0” used in standard analyses of variational formulations of
the convection-diffusion equation −∆u+ b ·∇u+ cu = f in an Euclidean domain
Ω ⊂ Rn, cf. [49]. This condition is as follows: there exists a c0 > 0 such that

divΓ w(x, t)+αdcF(t)≥ c0 for all x ∈ Γ (t), t ∈ [0,T ]. (33)

Here cF(t)> 0 results from the Poincare inequality∫
Γ (t)
|∇Γ u|2 ds≥ cF(t)

∫
Γ (t)

(u− 1
|Γ (t)| ū)

2 ds ∀ t ∈ [0,T ], ∀ u ∈ H. (34)

A main result derived in [38] is given in the following theorem. To simplify the
presentation, we assume that the time step ∆ t and the spatial mesh size parameter h
have comparable size: ∆ t ∼ h.

Theorem 4. Assume (33) and take σ ≥ αd
2 max

t∈[0,T ]
cF (t)
|Γ (t)| , where cF(t) is defined in

(34). Then the ellipticity estimate
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〈u̇h,uh〉b +aσ (uh,uh)+d(uh,uh)≥ cs|||uh|||2h for all u ∈WΓ∗ (35)

holds, with cs =
1
2 min{1,αd ,c0} and c0 from (33). Let u ∈ H2(Γ∗) be the solution

of (25). For the solution uh ∈WΓ∗ of the discrete problem (32) the following error
bound holds:

|||u−uh|||h ≤ ch‖u‖H2(Γ∗).

A further main result derived in [38] is related to second order convergence. Denote
by ‖·‖−1 the norm dual to the H1

0 (Γ∗) norm with respect to the L2-duality. Under the
conditions given in Theorem 4 and some further mild assumptions the error bound

‖u−uh‖−1 ≤ ch2‖u‖H2(Γ∗)

holds. This second order convergence is derived in a norm weaker than the com-
monly considered L2(Γ∗) norm. The reason is that our arguments use isotropic
polynomial interpolation error bounds on 4D space-time elements. Naturally, such
bounds call for isotropic space-time H2-regularity bounds for the solution. For our
problem class such regularity is more restrictive than in an elliptic case, since the
solution is generally less regular in time than in space. We can overcome this by
measuring the error in the weaker ‖ · ‖−1-norm.

3.2.3 Results of numerical experiments

For the results of experiments with the space-time unfitted FEM presented in Sec-
tion 3.2.1 we refer to [41, 15]. In [41] results for the transport equation (25) on a
smoothly evolving surface (e.g., shrinking sphere) are presented which clearly show
a second order convergence (w.r.t. L2-norm) both with respect to the space and the
time mesh size. Furthermore, this convergence behavior occurs already on relatively
coarse meshes. In [15] an example with a topological singularity is considered. For
this example the assumptions we need in the error analysis are not satisfied. The
evolving surface essentially consists of two disjoint spheres which approach each
other and then merge. On this surface the transport equation (25) is considered. The
space-time unfitted FEM presented in Section 3.2.1, cf. (30), is applied without any
modifications. It turns out that despite the topological singularity the method yields
satisfactory results, which indicates that this unfitted space-time FEM has very good
robustness properties.

4 Applications to two-phase flows

In this section we present two examples of more advanced applications of the unfit-
ted finite element techniques presented above. These applications are directly related
to the main topics of the Priority Program 1506.
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4.1 Mass transport in two-phase flow

We present numerical simulations of a dissolution process of oxygen from a rising
(and deforming) air bubble into a water-glycerol solution. This example is treated
in detail in [27]. We take a setting that has also been considered in [3, 25], [24,
Chapter 9.8.3] and [42, Chapter 4.3.2]. Close to the bottom of a container filled with
a homogeneuous water-glycerol mixture a 4mm spherical air bubble is placed. Due
to buoyancy the bubble rises and deforms. After some time the rising of the bubble
reaches a quasi-stationary state with an ellipsoidal shape. Initially the concentration
of oxygen inside the fluid is assumed to be zero and a constant concentration u0 is
prescribed inside the bubble. During the rise of the bubble oxygen dissolves from
the bubble to the fluid and a wake of oxygen follows the path of the bubble. Contour
lines of the concentration for different times are depicted in Fig. 7. The material

0 0.0265 ·u0

t = 0.00s t = 0.05s t = 0.10s t = 0.15s t = 0.20s

Fig. 7 Concentration contours in the fluid phase at several time for the dissolution process of
oxygen from a rising air bubble in a water-glycerol mixture for Schmidt number Sc = 10.

parameters to this system are given in Table 1. While these parameters are realistic
for the fluid dynamics, the diffusion coefficients are artificial in order to be able to
prescribe a value for the Schmidt number Sc = µ

ρα
in the liquid phase, Sc = 10. The

simulation of the fluid dynamics is realized with the finite element software DROPS,
cf. [17]. The software is based on a level set technique for interface capturing and
(unfitted) modified P2 − P1 finite elements. We use adaptively refined tetrahedral
grids close to the (evolving) interface and the wake of the bubble. We refer to [19]
for details on the used model and its numerical treatment. The results obtained for
the fluid dynamics have been validated against experimental data from [54]. For
details we refer to [27, Section 5.4.1.1].

For the discretization of the mass transport problem we consider the unfitted
space-time finite element method discussed in section 2.2 with bilinear functions
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liquid phase (Ω2 = ΩL) disperse phase (Ω1 = ΩB)

density ρ [kg/m3] 1205 1.122
dynamic viscosity µ [Pas] 0.075 1.824×10−5

Henry weight β [1] 1 33
diffusion coeff. α [m2/s] 6.224×10−5 ·Sc−1 1.916×10−5

surface tension τ [N/m] 0.063
init. bubble diameter d [m] 0.004

gravity g [m/s2] 9.81

Table 1 Material parameters for the considered setting. The setting is the same as in [25, 3, 24].

(linear in space and linear in time) and a Nitsche stabilization parameter of λ = 20.
At time T = 0.2 of the simulation we compare the concentration along straight lines

0 0.5 1 1.5 2 2.5 3
·10−3

0

0.01

0.02

0.03

distance to interface in m

concentration u/u0 in liquid phase

0◦

90◦

135◦

Fig. 8 Concentration layer profile in the liquid phase along lines of angles 0◦, 90◦ and 135◦ com-
puted with the space-time unfitted finite element method (lines) and comparison data (dots).

which are crossing the bubble center in Fig. 8. On the lines through the tip (0◦),
the equator (90◦) and close to the wake (135◦) we compare the concentration with
simulated data from [42, Figure 9.35]. The results are in good agreement.

We can conclude that the numerical methods for the transport equations on evolv-
ing domains are robust and accurate even in these challenging realistic configura-
tions.

4.2 Droplet breakup with surfactants

We present results of a numerical experiment for a two-phase flow problem with sur-
factants. This example is treated in detail in [55]. We briefly describe the model of
this flow problem, the important model parameters and discuss a simulation result.
For more information we refer to section 7.4 in [55]. The experiment is very similar
to the one considered in [52]. In that paper, however, a diffusive interface model is



High Order Unfitted FEM for elliptic and parabolic PDEs 25

used, whereas we consider a sharp interface model. A spherical droplet with radius
r = 1 is put in a rectangular box of dimensions 12(length)×4(width)×4(height),
cf. Fig. 9, and exposed to a shear flow in the length direction with shear rate γ̇ = 1.
The two fluids are Newtonian, modeled by the incompressible Navier-Stokes equa-
tions, and there is a surface tension force at the sharp interface. Dirichlet shear
flow boundary conditions are imposed on the upper and lower boundaries. Peri-
odic boundary conditions are imposed on all other boundaries. For the densities and
viscosities we take ρ1 = ρ2 = µ1 = µ2 = 1. The Reynold’s and Capillary numbers
have values Re = 0.4, Ca = 0.42 (as in [52]). The surface tension coefficient for a
clean interface has value τ0 = 2.38. We assume that there are insoluble surfactants
(only) on the interface. The transport of these surfactants is modeled by the equation
(25) with source term f = 0 and w resulting from the Navier-Stokes fluid dynam-
ics model. For the effect of the surfactant concentration S on the surface tension
coefficient the Langmuir model is used:

τ(S)
τ0

= 1+β ln(1−χ
S
S∗

),

with parameter values β = 0.2, χ = 0.1, S∗ = 1.91×10−5. The surfactant diffusion
coefficient has value αd = 0.1.

We do not explain the components of the numerical solver used for the simulation
of the fluid-dynamics, cf. the brief description in section 4.1. For further information
we refer to [19]. The surfactant equation on the evolving interface is treated with the
unfitted space-time FEM discussed in section 3.2.

Fig. 9 Droplet in shear flow and surfactant concentration for t = 10, 30, 37.5, 40s.
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In Fig. 9 we show a simulation result, which shows the interface evolution and
surfactant concentration distribution. These (and further results in [55]) show a good
agreement with simulation results from [52]. A comparison with a simulation for the
clean droplet case shows that (as expected) due to the surfactants the droplet deforms
more and breaks up earlier. The level set technique allows a robust handling of
the droplet breakup. The unfitted space-time FEM is a robust discretization method
for the surfactant transport equation. This method is exactly the same as the one
presented in section 3.2, without any “tricky” modifications to deal with the droplet
breakup.

5 Summary and outlook

We summarize the main new contributions obtained based on our research in the
Priority Program 1506:

• We extended the combination of unfitted FEM with the Nitsche technique, al-
ready introduced in the literature for stationary interface problems, to problems
with evolving interfaces. For this we developed and analyzed space-time variants
of unfitted FE and Nitsche methods (section 2.2).

• We developed and analyzed a new method for obtaining higher order accurate
approximations of implicitly described geometries. We applied this method to
stationary interface problems (section 2.1) and to PDEs on stationary surfaces
(section 3.1).

• The space-time unfitted FE technique is further developed for the discretization
of PDEs on evolving surfaces (section 3.2).

• We developed a stabilization technique for convection dominated interface prob-
lems (remark 2).

• We developed a new optimal preconditoner for the efficient solution of a dis-
cretized stationary interface problem (remark 3).

• We applied these techniques not only to model problems, but also to more diffi-
cult applications in two-phase flow problems (section 4).

We briefly address a few topics, which we consider to be relevant for further re-
search:

• So far the higher order unfitted FEM has been studied only for a stationary in-
terface/surface. The extension of this approach to problems with evolving inter-
faces/surfaces is a subject of current research.

• For the unfitted FEMs treated in the sections 2.2 and 3.1 optimal order L2-error
bounds are not available, yet.

• Concerning stabilization techniques and preconditioners for the resulting discrete
problems only very few results are known. More research is required to improve
the efficiency of (iterative) solvers for these systems.

• The higher order methods presented in section 2.1 and 3.1 use different meshes,
the original triangulation T and the curved mesh Θh(T ), respectively, for the
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definition of the level set function φh and a scalar field u. In cases where these
quantities are coupled, i.e. where the level set (evolution) may depend on u the
transfer of information from one mesh to the other has to be provided. Applying
this in a proper way is another topic of current research.

• The performance of these relatively new (higher order) unfitted space-time FE
techniques to challenging applications from e.g. two-phase flow problems should
be investigated.

• We need a better understanding of the unfitted space-time method for PDEs on
evolving surfaces with topological singularities.
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