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Abstract. Approximating solutions to singularly perturbed differential equations necessitates the use of stable
integrators. One famous approach is to split the equation into stiff and non-stiff parts. Treating stiff parts implicitly,
non-stiff ones explicitly leads to so-called IMEX schemes. These schemes are supposed to exhibit very good accuracy
and uniform stability, however, not every (seemingly reasonable) splitting induces a stable algorithm. In this paper,
we present a new IMEX-splitting - based on a reference solution (RS) - applied to the isentropic Euler equations.
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1 INTRODUCTION
In this work, we consider the isentropic Euler equations at low Mach number ε, given by

ρt +∇ · (ρu) = 0 (1)

(ρu)t +∇ · (ρu⊗ u) +
∇p(ρ)

ε2
= 0. (2)

Pressure p is set as p(ρ) = ργ , where γ is a constant larger than one. Consequently, (1)-(2) is a conservation law,
and it can therefore be written as

wt +∇ · f(w) = 0 (3)

for w = (ρ, ρu)T . The equations are equipped with suitable initial and boundary conditions that allow for a limit as
ε→ 0, so-called well-prepared conditions. To simplify the presentation, we only use periodic boundary conditions
in this work. The eigenvalues of the Jacobian of f in normal direction ~n are given by

λ0 = u · ~n, λ± = u · ~n± 1

ε

√
γp

ρ
.

It is well-known that for explicit finite volume-type schemes, the time-step restriction depends on the Courant-
Friedrichs-Levy (CFL) condition in a way such that ∆t . ε∆x which, for ε � 1, is an undesirable feature. Fully
implicit schemes offer a (partial) remedy, as they usually tend to remove the severe CFL condition. However, these
schemes are, at least for low approximation orders, overly diffusive. Therefore, the use of an implicit / explicit
(IMEX) mixture has been developed for this type of problem, see, e.g., [1, 2, 3, 4] and the references therein. All
these schemes rely on a splitting of the convective function f into a stiff part f̃ (with eigenvalues of O(ε−1)) and
a non-stiff part f̂ . The former one is treated implicitly, while the latter one is treated explicitly. However, not
every splitting of f yields a stable IMEX scheme, see [5, 6]. Based on our work in [8], we therefore present a new
flux splitting for (1)-(2) which is based on what we call the reference solution, the (formal) solution for ε → 0.
Expanding all quantities ρ, u and p in (1) in terms of ε (i.e., ρ = ρ(0) + ερ(1) + . . .), one can - given suitable initial
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conditions [7] - show that the limit equation is given by

ρ(0) ≡ const, ∇ · u(0) = 0 (4)

(u(0))t +∇ · (u(0) ⊗ u(0)) +
∇p(2)

ρ(0)
= 0. (5)

More formally, this has been shown in [7]. Equations (4)-(5) constitutes the incompressible Euler equations. As
before, we abbreviate w(0) = (ρ(0), ρ(0)u(0)).

2 SPLITTING
Based on an earlier idea being momentarily under development [9], we consider a splitting of the convective flux
f into stiff and non-stiff terms based on the reference solution. For singularly perturbed ODEs, we have already
applied this idea successfully in [8].

Definition 1. RS-IMEX splitting: The reference-solution (RS) IMEX splitting for f in (3) is given by

f̃(w) = f(w(0)) + f ′(w(0))(w − w(0)), f̂(w) = f(w)− f̃(w). (6)

Let us note that f̃(w) is a linear function in w. In a numerical scheme, this will be beneficial in terms of computing
time. It follows from (4) that ρ(0) is a constant, which implies the following simple corollary:

Corollary 1. For f̂ and f̃ as defined in Definition 1, there holds

∇ · f̃(w) = ∇ · f ′(w(0))w. (7)

Furthermore, the eigenvalues of f̂ ′(w) · ~n are given by

λ̂0 = 0, λ̂1 = u · ~n− u(0) · ~n, λ̂2 = 2
(
u · ~n− u(0) · ~n

)
,

in particular, they are independent of ε.

With this being said, the semi-discrete first order IMEX scheme can be written as

wn+1
∆t = wn∆t −∆t∇ ·

(
f̃(wn+1

∆t ) + f̂(wn∆t)
)
. (8)

An important consistency requirement of such a scheme is asymptoticity preservation, see [1] for a thorough intro-
duction. Roughly speaking, this means that as ε→ 0, the numerical scheme (8) is a consistent discretization of the
ε→ 0 continuous equations. Indeed, the scheme investigated has this property:

Lemma 1. The semi-discrete IMEX scheme (8) is asymptotic preserving (AP), i.e., plugging

w∆t = w∆t,(0) + εw∆t,(1) + . . .

into (8), the lowest order terms constitute a consistent discretization of equations (4)-(5).

Proof. We assume that w0
∆t (the initial datum) is such that both ρ0

∆t,(0) and ρ0
∆t,(1) are constants and that u0

∆t,(0) is
solenoidal. This makes sense because it is only in this setting that the continuous equations have a limit as ε → 0,
see [7]. In literature, such a choice of initial data is called well-prepared. We conclude inductively, showing that
wn+1 is well-prepared given that wn is. With these preliminaries, there holds∇· f̂(wn) = O(1), i.e., the only terms
of order ε−2 and ε−1 can be found in∇ · f̃(wn+1). Leaving out the tedious details, one obtains that those terms are

γρ(0)
γ−1∇

(
ρn+1

∆t,(0)

)
= 0, γρ(0)

γ−1∇
(
ρn+1

∆t,(1)

)
= 0,

respectively, which yields the fact that both ρn+1
∆t,(0) and ρn+1

∆t,(1) are constant in space. Due to conservation of mass
and periodic boundary conditions, it must be the same constant as on time slab n. Then again, considering the
continuity equation, one can deduce that ∇ · u∆t,(0)

n+1 = 0. This means that at time slab n + 1, the data is again
well-prepared. Now, realizing that f̂(wn) + f̃(wn+1) = f(wn) +O(‖wn+1 − wn‖ + ‖w(0)(t

n+1) − w(0)(t
n)‖),

and further realizing that taking the divergence removes the O(ε−2) and O(ε−1) dependencies, the proof that the
first-order expansion (8) is a consistent approximation of (4)-(5) follows.
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3 FULL DISCRETIZATION
So far, we have only been concerned with the temporal discretization of (3). To simplify matters, the spatial dis-
cretization is chosen as a standard first-order finite volume scheme with a numerical flux with constant numerical
viscosity both for the explicit and for the implicit part of the equation. More precisely, we discretize (1)-(2) with
flux splitting as in Definition 1 by

wn+1
j = wnj −

1

|Ωj |
∑

ejk∈∂Ωj

|ejk|
(
f̂num(wnk , w

n
j , ~njk) + f̃num(wn+1

k , wn+1
j , ~njk)

)
. (9)

As is standard in finite volumes, wnj is an approximation of the mean-value of w(x, tn) on cell Ωj . ejk is an edge
connecting Ωj to Ωk; njk is the associated normal facing into Ωk. The numerical flux f̂num is set to

f̂num(wnk , w
n
j , ~njk) :=

1

2

(
f̂(wnk ) + f̂(wnj )

)
~njk −

α̂

2
(wnk − wnj ),

similarly for f̃num, ensuring conservativity. In our numerical results, we set the viscosities α̂ and α̃ to positive
constants. Note that α̃ could be equally well set to zero. This work only constitutes a proof of concept as to what
extend the new splitting is able to cope with singular perturbations, which explains the simple choices of both
discretization and parameters. Extensions to more advanced methods, such as the discontinuous Galerkin method,
are currently underways.
The reference solution (4)-(5) is also approximated using a finite volume scheme. It is natural to treat the convection
term ∇ · (u(0) ⊗ u(0)) explicitly, and the remaining terms implicitly. The procedure is completely analogous to
(9), with the obvious exception that ∇ · u(0) = 0 does not have a time-derivative, and so (9) has to be modified
accordingly.

4 NUMERICAL RESULTS
In order to assess the stability properties of the proposed splitting, we consider a test case with periodic boundaries
on the unit square (0, 1)2 taken from [4], originally proposed in [3]. The adiabatic coefficient is set to γ = 2, and
initial data are given by

ρ(x, y, t = 0) = 1 + ε2 sin(2π(x+ y))2

u(x, y, t = 0) = v(x, y, t = 0) = sin(2π(x− y)).

Our numerical viscosities are set to α̂ = 2 and α̃ = 1. The choice for the explicit part is motivated by a rough
approximation of the eigenvalues of the explicit convective flux. As already stated, α̃ could be equally well set to
zero.
Obviously, the initial data are well-prepared, i.e., they allow for a limit as ε → 0. As outlined before, an explicit
scheme is not able to cope with this problem given a time step restriction independent of ε. With the scheme
presented here, we do not observe any ε restrictions on the CFL number, and can use a uniform CFL number for all
ranges of ε. See Figure 1 for an image of the approximated u for ε = 10−3 (left) and ε = 10−6 (right). As one can
see, there is hardly any difference between those plots, which is clear from the fact that the solution should converge
as ε→ 0.

5 CONCLUSION AND OUTLOOK
We have presented a way of splitting a hyperbolic equation into stiff and non-stiff contributions. The splitting relies
on the reference solution w(0). We have shown that this splitting is AP, and we have shown preliminary numerical
results.
Current work is twofold: First, mathematical analysis is performed to prove that the scheme is indeed stable inde-
pendent of ε for ε → 0. Second, we extend this concept to higher-order discretization schemes in both time and
space. In particular in that scenario, a better splitting can certainly yield improvements over existing splittings.
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