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Abstract. We present a comparison between hybridized and non-hybridized
discontinuous Galerkin methods in the context of target-based hp-adaptation.

Using a discrete-adjoint approach, sensitivities with respect to output func-

tionals are computed to drive the adaptation. From the error distribution
given by the adjoint-based error estimator, h- or p-refinement is chosen based

on the smoothness of the solution which can be quantified by properly-chosen
smoothness indicators. Numerical results are shown for inviscid subsonic and

transonic, and laminar viscous flow around the NACA0012 airfoil.

1. Introduction

During the last years, discontinuous Galerkin (DG) methods (see, e.g., [5, 9, 1])
have become increasingly popular. This is indisputably due to their advantages
— high-order accuracy on unstructured meshes, a variational setting, and local
conservation, just to name a few.

However, the use of discontinuous function spaces is at the same time the reason
for a major disadvantage: unlike in continuous Galerkin (CG) methods, degrees
of freedom are not shared between elements. As a consequence, the number of
unknowns is substantially higher compared to a CG discretization. Especially for
implicit time discretization this imposes large memory requirements, and poten-
tially leads to increased time-to-solution.

In order to avoid these disadvantages, a technique called hybridization may be
utilized (see [11, 8, 10, 19, 18, 20]), resulting in hybridized discontinuous Galerkin
(HDG) methods. Here, the globally coupled unknowns have support on the mesh
skeleton, i.e. the element interfaces, only. This reduces the size of the global system
and coincidentally improves the sparsity pattern.
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However, aiming at industry applications, e.g. turbulent flow around a com-
plete airplane or within an aircraft engine, hybridization alone does most likely
not provide a sufficiently successful overall algorithm. In these applications one is
usually interested in certain quantities only, for example lift or drag coefficients in
aerospace, instead of the solution quality per se. Thus, it might be beneficial to
distribute the degrees of freedom within the computational domain in such a way
that the solution to the discretized problem is close to optimal with respect to the
accuracy of these quantities. To achieve this goal, target-based error control meth-
ods have been developed (see [15, 24, 25, 13, 12]). One such method is based on the
adjoint solution of the original governing equations with respect to the target func-
tional. In this method, an additional linear system of partial differential equations
is solved which then gives an estimate on the spatial error distribution contribut-
ing to the error in the target functional. This estimate can be used as a criterion
for local adaptation. Within the context of low order schemes, mesh refinement is
used for adaptation [24, 25]. Using DG (or HDG), however, offers the additional
possibility of varying the polynomial degree within each element. For smooth so-
lutions, this is more efficient compared to mesh refinement, as it yields exponential
convergence. Combining both methodologies results in so-called hp-adaptation.

In [23], we presented a discretization method for nonlinear convection-diffusion
equations. The method is based on a discontinuous Galerkin discretization for
convection terms, and a mixed method using H(div) spaces for the diffusive terms.
Furthermore, hybridization is used to reduce the number of globally coupled degrees
of freedom. Its adjoint consistency was shown in [22]. In [27, 2], we extended our
computational framework to include HDG schemes, as well as adjoint-based h-
and hp-adaptation. In the current paper, we compare our HDG method with a
standard DG method in the context of hp-adaptation for stationary compressible
flow, mainly with the aim to assess the efficiency of both methods.

This paper is structured as follows. We briefly cover the governing equations,
namely the compressible Euler and Navier-Stokes equations, in Sec. 2. After that
we introduce our discretization and describe the concept of hybridization in Sec. 3.
In Sec. 4 we establish the adjoint formulation and show how hybridization can be
applied to the dual problem. Then we show its efficiency and robustness with
examples from compressible flow, including inviscid subsonic and transonic, and
subsonic laminar flow, in Sec. 5. Finally, we offer conclusions and outlook on future
work in Sec. 6.

2. Governing Equations

We consider systems of partial differential equations

(1) ∇ · (fc(w)− fv(w,∇w)) = s (w,∇w)

with convective and diffusive fluxes

(2) fc : Rm → Rm×d and fv : Rm × Rm×d → Rm×d,

respectively, and a state-dependent source term

(3) s : Rm × Rm×d → Rm.

(Potentially, some of these quantities could be zero.) We denote the spatial dimen-
sion by d and the number of conservative variables by m. Boundary conditions can
be applied to the conservative variables w ∈ Rm and to the diffusive flux fv.
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2.1. Two-Dimensional Euler Equations. The Euler equations are comprised
of the inviscid compressible continuity, momentum and energy equations. They are
given in conservative form as

(4) ∇ · fc(w) = 0

with the vector of conserved variables

(5) w = (ρ, ρu, ρv, E)T

where ρ is the density, u and v are the components of the velocity vector ŵ :=
(u, v)T , and E the total energy. The convective flux is given by

fc,1 =
(
ρu, p+ ρu2, ρuv, u(E + p)

)T
(6)

fc,2 =
(
ρv, ρuv, p+ ρv2, v(E + p)

)T
.(7)

Pressure is related to the conservative flow variables w by the equation of state

(8) p = (γ − 1)

(
E − 1

2
ρ
(
u2 + v2

))
where γ = cp/cv is the ratio of specific heats, generally taken as 1.4 for air.

Along wall boundaries we apply the slip boundary condition

(9) U(w) = (u, v) · n = 0.

We also define a boundary function which satisfies U(w∂Ω(w)) = 0 as

(10) w∂Ω(w) =


1 0 0 0
0 1− n2

x −nxny 0
0 −nxny 1− n2

y 0
0 0 0 1

w.

2.2. Two-Dimensional Navier-Stokes Equations. The Navier-Stokes equations
in conservative form are given by

(11) ∇ · (fc(w)− fv(w,∇w)) = 0.

The convective part fc of the Navier-Stokes equations coincides with the Euler
equations. The viscous flux is given by

fv,1 = (0, τ11, τ21, τ11u+ τ12v + kTx)
T

(12)

fv,2 = (0, τ12, τ22, τ21u+ τ22v + kTy)
T
.(13)

The temperature is defined via the ideal gas law

(14) T =
µγ

k · Pr

(
E

ρ
− 1

2

(
u2 + v2

))
=

1

(γ − 1)cv

p

ρ

where Pr =
µcp
k is the Prandtl number, which for air at moderate conditions can be

taken as a constant with a value of Pr ≈ 0.72. k denotes the thermal conductivity
coefficient. For a Newtonian fluid, the stress tensor is defined as

(15) τ = µ

(
∇ŵ + (∇ŵ)

T − 2

3
(∇ · ŵ) Id

)
.

The variation of the molecular viscosity µ as a function of temperature is deter-
mined by Sutherland’s law as

(16) µ =
C1T

3/2

T + C2
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with C1 = 1.458× 10−6 kg

ms
√

K
and C2 = 110.4 K.

Along wall boundaries, we apply the no-slip boundary condition, i.e.

(17) (u, v) = 0.

with corresponding boundary function

(18) w∂Ω(w) = (ρ, 0, 0, E)
T

Furthermore, one has to give boundary conditions for the temperature. In the
present work we use the adiabatic wall condition, i.e.

(19) ∇T · n = 0

Combining both no-slip and adiabatic wall boundary conditions, gives a condition
for the viscous flux, namely

(20) fv,∂Ω(fv) =

(
0 τ11 τ21 0
0 τ12 τ22 0

)T
.

3. Discretization

3.1. Notation. We tesselate the domain Ω into a collection of non-overlapping
elements, denoted by Th, such that

⋃
K∈Th K = Ω. For the element edges we

consider two different kinds of sets, ∂Th and Γh, which are element-oriented and
edge-oriented, respectively. The first is the collection of all element boundaries,
which means that every edge appears twice. The latter, however, includes every
edge just once. The reason for this distinction will become clear later. Please note
that neither of these sets shall include edges lying on the domain boundary; the set
of boundary edges is denoted by Γbh.

We denote by Πp(D) the set of polynomials of degree at most p on some do-
main D. We will need discontinuous function spaces for the domain and the mesh
skeleton:

Vh = {v ∈ L2 (Ω) : v|K ∈ ΠpK (K), K ∈ Th}m×d(21)

Wh = {w ∈ L2 (Ω) : w|K ∈ ΠpK (K), K ∈ Th}m(22)

Mh = {µ ∈ L2 (Γh) : µ|e ∈ Πpe(e), e ∈ Γh}m.(23)

Thus, v ∈ Vh, w ∈ Wh and µ ∈ Mh are piecewise polynomials of degree p which
can be discontinuous across edges (for v, w) or vertices (for µ), respectively.

Usually, the polynomial degree between elements and interfaces does not vary.
If, however, two neighboring elements have different polynomial degrees pK− and
pK+ , the polynomial degree on the interface shared by both elements is taken to
be the higher one, i.e. pe = max {pK− , pK+}. This way, both optimal order of
consistency in each element and stability can be ensured.

We will distinguish between element-oriented inner products and edge-oriented
inner products

(v, w)Th =
∑
K∈Th

∫
K

vw dx,

〈v, w〉∂Th =
∑
K∈Th

∫
∂K

vw dσ, 〈v, w〉Γh
=
∑
e∈Γh

∫
e

vw dσ.
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3.2. Weak Formulation. We can rewrite general convection-diffusion equations
as a first-order system by introducing an additional unknown representing the gra-
dient of the solution

q = ∇w
∇ · (fc (w)− fv (w, q)) = s (w, q) .

By multiplying the strong, mixed form with appropriate test functions (τh, ϕh) ∈
Vh×Wh and integrating by parts, we obtain a standard DG discretization in mixed
form

0 = (τh, qh)Th + (∇ · τh, wh)Th − 〈τh · n, ŵ〉∂Th
− (∇ϕh, fc(wh)− fv(wh, qh))Th − (ϕh, s(wh, qh))Th +

〈
ϕh, f̂c − f̂v

〉
∂Th

+NDG
h,∂Ω (qh, wh; τh, ϕh)

where the numerical trace ŵ and the numerical fluxes f̂c, f̂v have to be chosen ap-
propriately to define a stable and consistent method. Furthermore, the boundary
conditions, here denoted by NDG

h,∂Ω (qh, wh; τh, ϕh), have to be discretized appropri-
ately.

In contrast to a DG discretization, where the numerical trace ŵ is defined ex-
plicitly in terms of wh and qh, it is treated as an additional unknown in an HDG
method. This additional unknown is called λh and has support on the skeleton of
the mesh only In order to close the system the continuity of the numerical fluxes
across edges is required in a weak sense, resulting in a third equation.

The weak formulation of the hybrid system, comprised of equations for the gra-
dient qh, the solution itself wh and its trace on the mesh skeleton λh, is then given
by:

Find (qh, wh, λh) ∈ Xh := (Vh,Wh,Mh) s.t. ∀(τh, ϕh, µh) ∈ Xh

0 = Nh (qh, wh, λh; τh, ϕh, µh)

:= (τh, qh)Th + (∇ · τh, wh)Th − 〈τh · n, λh〉∂Th
− (∇ϕh, fc(wh)− fv(wh, qh))Th − (ϕh, s(wh, qh))Th +

〈
ϕh, f̂c − f̂v

〉
∂Th

+
〈
µh,

r
f̂c − f̂v

z〉
Γh

+Nh,∂Ω (qh, wh; τh, ϕh) .

Please note the use of ∂Th in the weak formulation of the mixed form, and Γh in the
last equation defining λh. This perfectly resembles the character of these equations,
being element- and edge-oriented, respectively. The terms tested against τh and
ϕh are called local solvers, meaning they do not depend on the solution within
neighboring elements but only on the trace of the solution which is approximated
by λh. The coupling between elements is then introduced by weakly enforcing the
normal continuity of the numerical fluxes across interfaces.

We choose numerical fluxes comparable to the Lax-Friedrich flux and to the LDG
flux for the convective and diffusive flux, respectively, i.e.

f̂c (λh, wh) = fc (λh) · n− αc (λh − wh)(24)

f̂v (λh, wh, qh) = fv (λh, qh) · n+ αv (λh − wh)(25)
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The stabilization introduced can be given by a tensor; in our work, however, we
restrict ourselves to a constant scalar α = αc + αv which seems to be sufficient for
a wide range of test cases.

3.2.1. Boundary Conditions. In order to retrieve an adjoint-consistent scheme, spe-
cial care has to be taken when discretizing the boundary conditions (see Schütz and
May [22]). The boundary conditions have to be incorporated by using the boundary
states w∂Ω and boundary fluxes fv,∂Ω, i.e.

Nh,∂Ω (qh, wh; τh, ϕh) := 〈τh · n,w∂Ω (wh)〉Γb
h

+ 〈ϕh, (fc (w∂Ω (wh))− fv,∂Ω (fv (w∂Ω (wh) , qh))) · n〉Γb
h
.

We would like to emphasize that λh does not occur in this boundary term as it is
only defined on interior edges.

3.2.2. Shock-Capturing. In non-smooth parts of the solution, for example shocks in
compressible flows, a stabilization term has to be introduced. We use the shock-
capturing approach by Nguyen and Peraire [17] which is based on an artificial
viscosity term incorporating the local dilatation of the flow. It is worth mentioning,
that we discretize the shock-capturing term, given by ∇ · (ε (w,∇w)∇w), only
with the volume integral contribution of the weak formulation (thus neglecting the
surface integral due to the integration by parts), i.e. we augment the discretization
with the term

(26) Nh,sc (wh;ϕh) := − (∇ϕh, ε (wh,∇wh)∇wh)Th .

In the viscous case, where the gradient is explicitly given, ∇wh can be replaced by
qh yielding

(27) Nh,sc (qh, wh;ϕh) := − (∇ϕh, ε (wh, qh) qh)Th .

Please note, that this term enters only the local part of the discretization.

3.3. Relaxation. In order to solve the nonlinear system of equations that defines
the HDG method, the Newton-Raphson method is applied. Beginning with an
initial guess x0

h :=
(
q0
h, w

0
h, λ

0
h

)
, one iteratively solves the linear system

(28) N ′h [xnh] (δxnh; yh) = −Nh (xnh; yh) ∀yh ∈ Xh

and updates the solution as

(29) xn+1
h = xnh + δxnh

until the residual Nh (xnh; yh) has reached a certain threshold. Please note, that
we have grouped qh, wh and λh, and the test functions into xh := (qh, wh, λh)
and yh := (τh, ϕh, µh), respectively. N ′h denotes the Fréchet derivative of Nh with
respect to xnh.

This routine can, however, lead to stability problems if the starting value x0
h is

too far away from the solution xh. Therefore, an artificial time is introduced and a
backward Euler method is applied, which yields a slight modification of the linear
system given in Eq. (28), namely

(30)

(
ϕh,

1

∆tn
δwnh

)
Th

+N ′h [xnh] (δxnh; yh) = −Nh (xnh; yh) .

Please note that by choosing ∆tn → ∞, a pure Newton-Raphson method is ob-
tained. Usually the time step is kept finite for a few initial steps to ensure stability.
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As soon as the residual is lower than a certain threshold, i.e. the current approx-
imation xnh is thought to be sufficiently close to the solution xh, we let the time
step go towards infinity.

As we are interested in steady-state problems, we can use local time-stepping in
order to accelerate the computation. For each element, we apply a time step based
on a global CFL number, the element volume and an approximation of the flux
Jacobian’s spectral radius, i.e.

(31) ∆tnK = CFLn
|K|

λc + 4λv
.

Here λc and λv represent approximations to the maximum eigenvalue of the con-
vective and diffusive flux, respectively (see Mavriplis and Jameson [16]).

3.4. Hybridization. Using an appropriate polynomial expansion for δqh, δwh and
δλh, the linearized global system is given in matrix form as

(32)

 A B R
C D S
L M N

 δQ
δW
δΛ

 =

 F
G
H


where the vector [δQ, δW, δΛ]

T
contains the expansion coefficients of δxh with re-

spect to the chosen basis.
In order to carry on with the derivation of the hybridized method, we want to

formulate that system in terms of δΛ only. Therefore we split it into

(33)

[
A B
C D

] [
δQ
δW

]
=

[
F
G

]
−
[
R
S

]
δΛ

and

(34)
[
L M

] [ δQ
δW

]
+NδΛ = H.

Substituting Eq. (33) into Eq. (34) yields the hybridized system
(35)(
N −

[
L M

] [ A B
C D

]−1 [
R
S

])
δΛ = H −

[
L M

] [ A B
C D

]−1 [
F
G

]
The workflow is as follows: First, the hybridized system is assembled and then

being solved for δΛ. Subsequently, δQ and δW can be reconstructed inside the
elements via Eq. (33). It is very important to note that it is not necessary to solve
the large system given by Eq. (33). In fact, the matrix in Eq. (33) can be reordered
to be block diagonal. Each of these blocks is associated to one element. Thus, both
the assembly of the hybridized matrix in Eq. (35) and the reconstruction of δQ and
δW can be done in an element-wise fashion. In order to save computational time,
the solutions to Eq. (33) can be saved after the assembly of the hybridized system
and reused during the reconstruction of δQ and δW .

The hybridized matrix is a nf ×nf block matrix, where nf = |Γh| is the number
of interior edges. In each block row there is one block on the diagonal and 2d off-
diagonal blocks in the case of simplex elements. These blocks represent the edges of
the neighboring elements of one edge. Each block is dense and has O

(
m2 · p2(d−1)

)
entries. Please recall that p is the polynomial degree of the ansatz functions, d is
the spatial dimension of the domain Ω and m is the number of partial differential
equations (m = 4 for the 2-dimensional Euler or Navier-Stokes equations). This
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structure is very similar to that of a normal DG discretization, whereas the blocks
in the latter have O

(
m2 · p2d

)
entries and thus are considerably bigger for higher

polynomial order p. The size of the system matrix does not only play a big role
in terms of memory consumption but also for the iterative solver. Here, a major
portion of the overall workload goes into matrix-vector products which are of course
faster, if the problem dimensions are smaller. In our code we use an ILU(n)-
preconditioned GMRES which is available through the PETSc library [4, 3].

4. Adaptation Procedure

In the context of adjoint-based (also referred to as target- or output-based) error
estimation, one is interested in quantifying the error of a specific target functional
Jh : Xh → R, i.e.

(36) eh := Jh (x)− Jh (xh) ,

where xh is the approximation to x in Xh. This target functional can for example
represent lift or drag coefficients in aerospace applications. In general, the target
functional is an integrated value, where integration can be both on a volume or
along the boundary. For the derivation of the adjoint-based error estimate we
expand the target functional in a Taylor series as follows

(37) Jh (x)− Jh (xh) = J ′h [xh] (x− xh) +O
(
‖x− xh‖2

)
.

We proceed in a similar manner with the error in the residual, i.e.

(38) Nh (x; yh)−Nh (xh; yh) = N ′h [xh] (x− xh; yh) +O
(
‖x− xh‖2

)
.

As our discretization is consistent the first term Nh (x; yh) vanishes.
Substituting Eq. (38) into Eq. (37) and neglecting the quadratic terms yields

(39) eh ≈ η := −Nh (xh; zh)

where zh is defined by the so-called adjoint equation

(40) N ′h [xh] (yh; zh) = J ′h [xh] (yh) ∀yh ∈ X̃h.

The adjoint solution zh =
(
q̃h, w̃h, λ̃h

)
∈ X̃h represents the link between varia-

tions in the residual and in the target functional.
The global error estimate η can then be restricted to a single element to yield a

local indicator to drive an adaptation procedure, i.e.

(41) ηK :=
∣∣Nh (xh; zh)

∣∣
K

∣∣
so that |η| ≤

∑
K∈Th ηK holds.

Please note, that the functionals Nh and Jh and their jacobians have to be

evaluated in a somewhat richer space than Xh, namely X̃h ⊃ Xh. Otherwise the
weighted residual Nh (xh; zh) would be identical zero as

(42) Nh (xh; yh) = 0 ∀yh ∈ Xh.

This can be achieved by either mesh refinement or a higher polynomial degree of
the ansatz functions. In our setting, especially when using a hierarchical basis, the
latter is advantageous with respect to implementational effort and efficiency.
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4.1. Hybridization. In matrix form, the adjoint system (see Eq. (40)) reads as
follows

(43)

 A B R
C D S
L M N

T
 Q̃

W̃

Λ̃

 =

 F̃

G̃

H̃


Please note, that in our formulation H̃ = 0 as λh is not defined on the boundary
and thus the target functional depends only on wh and qh.

As the overall structure of the adjoint equation is similar to the primal system
(see Eq. (35)), one can also apply static condensation to the adjoint system which
then yields its hybridized form:(

N − [ L M ]

[
A B
C D

]−1 [
R
S

])T
Λ̃ = −

[
RT ST

] [ A B
C D

]−T [
F̃

G̃

]
It is interesting to note that the hybridized adjoint system matrix is also the

transpose of the hybridized primal system matrix. This is very beneficial for the
implementation as the routines for the assembly of this matrix are already available.

The adjoint solution within each element can then be computed with the aid of
the adjoint local system, given by

(44)

[
A B
C D

]T [
Q̃

W̃

]
=

[
F̃

G̃

]
−
[
L M

]T
Λ̃

where the matrix is also the transpose of the primal local matrix (see Eq. (33)).

4.2. Marking Elements for Refinement. After having obtained a localized er-
ror estimate, we have to choose a set of elements to be refined. This can be done
in many different ways. Often the so-called fixed-fraction approach is chosen [12].
Here, a user-defined fraction of elements which contribute the most to the overall
error are marked. The only parameter necessary is θ ∈ (0, 1) which determines
the size of this set relative to the total number of elements (θ = 1 corresponds to
uniform refinement and θ = 0 to no refinement at all).

4.3. Choosing between h- and p-Adaptation. The final step in the adaptation
procedure is the decision between mesh refinement and order enrichment. There
exist several ways to make this decision. Ceze and Fidkowski [7] solve local adjoint
problems for both options and then decide which one is more efficient with respect to
degrees of freedom or the non-zero entries in the system matrix. We, however, adopt
the strategy by Wang and Mavriplis [26]. They used a smoothness sensor devised
by Persson and Peraire [21] for an artificial viscosity approach. This sensor exploits
the fact that the decay of the expansion coefficients of the solution is closely linked
to its smoothness. For smoother solutions, decay is faster. This can be exploited
to check the regularity of the solution. On each elements, the smoothness sensor is
defined as

(45) SK :=
(w − w̃, w − w̃)K

(w,w)K

where w̃ is the projection of w to the next smaller polynomial space. Hence, w− w̃
represents the higher order components of the solution (see Fig. 1). As we use
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(a) Coarse mesh

(b) Adapted mesh

Figure 1. Smoothness sensor for a transonic test case

an orthogonal basis this projection is very cheap. First promising results for this
approach are given in [2].

5. Results

In the following we compare our in-house HDG and DG solvers in terms of de-
grees of freedom and runtime. The DG discretization is based on the Lax-Friedrich
and the BR2 [6] fluxes for convective and viscous terms, respectively. Boundary
conditions and target functionals are evaluated in an adjoint-consistent manner
[14]. Both solvers share the same computational framework, so we believe that our
comparison is meaningful.

We apply both solvers to compressible flow problems, including inviscid subsonic
and transonic, and subsonic laminar flow. In all cases we show results for pure
mesh-adaptation (p = 1 . . . 4) and hp-adaptation (p = 2 . . . 5).

However, before we turn our attention to the adaptive computations, we want
to compare runtimes for both methods on a fixed mesh for several polynomial
orders. This way, we can a priori learn which improvement can be expected. In
Fig. 2 runtimes for both HDG and DG can be seen for a Euler and a Navier-Stokes
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Figure 2. Runtime comparison of the hybridized and non-
hybridized DG method for a fixed mesh and varying polynomial
degree

computation on a mesh with 2560 elements. We used polynomial orders from p = 0
to p = 6. Usually, there are more faces than elements. Hence, for p = 0 and p = 1
DG is faster than HDG. However, already for p = 2 HDG catches up. At p = 6
there is a ratio of 2 for the Euler test case and 1.8 for the Navier-Stokes test case.

5.1. Subsonic Inviscid Flow over the NACA 0012 Airfoil. In the first test
case, we consider subsonic inviscid flow over the NACA 0012 airfoil which is defined
by

(46) y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
with x ∈ [0, 1]. Using this definition, the airfoil would have a finite trailing edge
thickness of .252 %. In order to obtain a sharp trailing edge we modify the x4

coefficient, i.e.

(47) y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
.

The flow is characterized by a free stream Mach number of Ma∞ = 0.5 and an
angle of attack of α = 2◦. In Fig. 3 the baseline mesh for the Euler test cases
(subsonic and transonic) can be seen. It consists of 719 elements and its far field is
over a 1000 chords away.

Admissible target functionals defined on the boundary for the Euler equations
are given by the weighted pressure along wall boundaries, i.e.

(48) J(w) =

∫
∂Ω

ψ · (pn) dσ

where n is the outward pointing normal. By using ψ = 1
C∞

(cosα, sinα)
T

or

ψ = 1
C∞

(− sinα, cosα)
T

along wall boundaries and otherwise 0, the functional
represents the pressure drag coefficient cD or the pressure lift coefficient cL, respec-
tively. C∞ is a normalized reference value defined by C∞ = 1

2γMa2
∞p∞l. Here, l is

the chord length of the airfoil.
For the purely h-adaptive runs, θ = 0.02 showed the best performance. In

case of hp-adaptation, we used θ = 0.1. In order to compute the error in the drag
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Figure 3. Baseline mesh with 719 elements for inviscid computations

p 1 2 3 4 hp
tDG/tHDG 0.885 1.364 1.267 1.417 1.582

Table 1. Runtime ratios for a fixed error level (Ma∞ = 0.5, α = 2◦)

coefficient, a reference value was obtained on a hp-adapted mesh with approximately
2.6 · 105 degrees of freedom.

In Fig. 4a, a purely h-adapted mesh can be seen. The most refined regions are
the leading and trailing edge. The first is of importance as the flow experiences
high gradients towards the stagnation point. Refinement of the latter is necessary
as the flow is singular at this point due to the sharp trailing edge and the slip-wall
boundary conditions. As soon as the error in these two regions is sufficiently low,
other elements close to the airfoil get refined as well. For the hp-adapted mesh
(see Fig. 4b) the leading and trailing edge are refined as well. All other regions,
however, undergo mostly p-enrichment.

In terms of degrees of freedom, both HDG and DG show similar results (please
note, that ndof = ndofw as this is a good measure for the resolution). For all com-
putations it takes some adaptations until the critical regions, leading and trailing
edge, are resolved. From this point on, one can see the benefit of a higher order
discretization: the error drops significantly faster with respect to degrees of freedom
and computational time (see Fig. 5 and 6).

In Tbl. 1, we give the runtime ratios for a fixed error level (we always choose the
minimum level attained). Here, we can see that HDG is already faster from p = 2
on. This is due to the fact, that the adjoint is approximated with p = 3 so that the
computation of the dual solution is faster using HDG.

5.2. Transonic Inviscid Flow over the NACA 0012 Airfoil. Next, we turn
our attention to transonic flow which develops more complex features (e.g. com-
pression shocks) compared to the subsonic regime. The flow is characterized by a
free stream Mach number of Ma∞ = 0.8 and an angle of attack of α = 1.25◦.

As this flow has more features then the subsonic test case before, we chose
higher parameters for adaptation, namely θ = 0.05 for both mesh-adaptation and
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(a) Pure h-adapation (p = 2)

(b) hp-adapation (p = 2 . . . 5)

Figure 4. Adapted meshes for the subsonic Euler test case
(Ma∞ = 0.5, α = 2◦)

hp-adaptation. The reference value for the drag coefficient was obtained on a hp-
adapted mesh with approximately 2.3 · 105 degrees of freedom.

In Fig. 7a a purely h-adapted mesh can be seen. The adjoint sensor detects all
regions of relevance for the drag: the upper shock, the leading and trailing edge,
and the lower weak shock. Further refinement is added upstream of the shock,
where the adjoint has steep gradients and thus needs higher resolution. In the case
of hp-adaptation, the mesh-refinement is stronger confined to the shock region and
the trailing edge. The other features undergo p-enrichment.

As expected, both methods show a similar accuracy for a given number of degrees
of freedom. The computations with p = 2 . . . 4 outperform p = 1 but are comparable
to each other. Hp-adaptation shows very good results which is due to the accurate
prediction of the solution smoothness (see Fig. 8 and 9).

Again, HDG is faster than DG from p = 2 on (see Tbl. 2). The hp-adaptive run
is nearly 2.5 times faster.
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Figure 5. Drag convergence with respect to degrees of freedom
(Ma∞ = 0.5, α = 2◦)
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Figure 6. Drag convergence with respect to time (Ma∞ = 0.5, α = 2◦)

p 1 2 3 4 hp
tDG/tHDG 0.57 1.309 1.669 1.708 2.492

Table 2. Runtime ratios for a fixed error level (Ma∞ = 0.8, α = 1.25◦)

5.3. Subsonic Laminar Flow over the NACA 0012 Airfoil. Finally, we con-
sider viscous flow in the subsonic regime. The free stream Mach number is Ma∞ =
0.5, the angle of attack α = 1◦ and the Reynolds number Re = 5000. Due to the
latter, a thin boundary layer develops around the airfoil.

The baseline mesh for the Navier-Stokes test case is more refined around the
airfoil such that the boundary layer is correctly captured (see Fig. 10). It consists
of 1781 elements and its far field is over a 1000 chords away.
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(a) Pure h-adaptation (p = 2)

(b) hp-adaptation (p = 2 . . . 5)

Figure 7. Adapted meshes for the transonic Euler test case
(Ma∞ = 0.8, α = 1.25◦)

Admissible target functionals defined on the boundary for the Navier-Stokes
equations are given by the weighted boundary flux along wall boundaries, i.e.

(49) J (w,∇w) =

∫
∂Ω

ψ · (pn− τn) dσ

where n is the outward pointing normal. Here ψ is non-zero only on wall boundaries.

By using ψ = 1
C∞

(cosα, sinα)
T

or ψ = 1
C∞

(− sinα, cosα)
T

along wall boundaries
and otherwise 0, the functional represents the viscous drag coefficient cD or the
viscous lift coefficient cL, respectively.

For this test case we use θ = 0.05 during mesh-adaptation and θ = 0.1 during
hp-adaptation. The reference value for the drag coefficient was obtained on a hp-
adapted mesh with approximately 2.5 · 105 degrees of freedom.

Both the h-adapted mesh (see Fig. 11a) and the hp-adapted mesh (see Fig. 11b)
undergo refinement within the boundary layer and the wake region. The mesh
refinement for the hp-adaptive run is however more restricted to the leading edge
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Figure 8. Drag convergence with respect to degrees of freedom
(Ma∞ = 0.8, α = 1.25◦)
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Figure 9. Drag convergence with respect to time (Ma∞ = 0.8,
α = 1.25◦)

region where the boundary layer develops. Further downstream, p-enrichment is
used as soon as the necessary mesh-resolution is reached.

In terms of accuracy versus degrees of freedom HDG does a slightly better job
than DG. This is most probably due to the better approximation of the gradient.
The overall behavior is however the same. The higher the polynomial degree the
more accurate and efficient the computations are for both HDG and DG (see Fig. 12
and 13). The difference between p = 3, p = 4 and hp is not as big, though.
This might lead to the conclusion that isotropic mesh refinement is not longer
efficiently applicable in cases involving strong gradients. Hence, the efficiency of
the adaptation procedure is rather limited by the mesh refinement strategy.

Concerning the timings, we can see a similar trend as in the previous test cases
(see Tbl. 3). For p = 1, however, HDG is twice as fast which is again caused by
the approximation of the gradient (for a p = 1 DG discretization the gradient is
an element-wise constant). For higher polynomial degree, the runtime ratios drop
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Figure 10. Baseline mesh with 1781 elements for viscous computations

(a) Pure h-adaptation (p = 2)

(b) hp-adaptation (p = 2 . . . 5)

Figure 11. Adapted meshes for the Navier-Stokes test case
(Ma∞ = 0.5, α = 1◦, Re = 5000)
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Figure 12. Drag convergence with respect to degrees of freedom
(Ma∞ = 0.5, α = 1◦, Re = 5000)
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Figure 13. Drag convergence with respect to time (Ma∞ = 0.5,
α = 1◦, Re = 5000)

p 1 2 3 4 hp
tDG/tHDG 2.069 1.458 1.204 1.541 2.453

Table 3. Runtime ratios for a fixed error level (Ma∞ = 0.5, α =
1◦, Re = 5000)

to reasonable numbers. The hp-adative HDG computation is 2.5 times as fast
compared to the DG run.

6. Conclusion and Outlook

We presented an adjoint-based hp-adaptation methodology and compared it
for hybridized and non-hybridized discontinuous Galerkin methods. Using hp-
adaptation proved to be superior to pure h-adaptation if discontinuous or singular
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flow features were involved. In all cases, a higher polynomial degree turned out to
be beneficial.

We showed that one can expect HDG to be faster than DG from p = 2 on. For
viscous test cases, HDG yields more accurate lift and drag coefficients for the same
number of degrees of freedom due to the better approximation of the gradient.

We plan to extend our computational framework to three dimensional problems.
Then, adaptivity will play an even more crucial role, as the problem size increases
drastically compared to the two dimensional case.

Furthermore, compressible flows are often dominated by anisotropic features,
such as shocks or very thin boundary layers. Thus, taking this anisotropy into
account during adaptation is crucial.
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