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Abstract

In this thesis we are concerned with a specific solution approach for Mathematical Programs
with Complementarity Constraints. The approach we suggest is based on the successive
solution of a sequence of newly relaxed programs. The new relaxation scheme we propose
differs from existing ones in the fact that it combines an exact and a relaxed reformulation
of the complementarity conditions. A positive parameter determines to what extend the
complementarity conditions are relaxed. In this thesis we not only study the various prop-
erties of the programs that are relaxed in this way but we also develop convergence results
concerning a corresponding sequence of solutions. Moreover, we consider the new relaxation
scheme in connection with Sequential Quadratic Programming and Interior Point methods.
Finally we give a detailed report and an associated analysis of the numerical results that
we obtained for the new solution approach.

Zusammenfassung

Die Arbeit beschäftigt sich mit einem speziellen Lösungsansatz für Optimierungsprobleme
mit Komplementaritätsnebenbedingungen. Der vorgestellte Ansatz beruht auf der sukzes-
siven Lösung einer Folge von neuartig relaxierten Optimierungsproblemen. Die neue Relax-
ation unterscheidet sich von bestehenden Ansätzen durch die Kombination einer exakten
und einer relaxierten Reformulierung der Komplementaritätsbedingungen. Dabei wird der
Grad der Relaxation von der Größe eines positiven Parameters bestimmt. Es werden die
Eigenschaften der auf diese Weise erzeugten, relaxierten Optimierungsprobleme untersucht
sowie Konvergenzresultate bzgl. einer entsprechenden Folge von Lösungen entwickelt. Des
Weiteren wird die neue Relaxation im Zusammenhang mit SQP- und Innere-Punkte Ver-
fahren betrachtet. Abschließend erfolgt eine ausführliche Darstellung und Analyse der
numerischen Ergebnisse die mithilfe des neuen Lösungsansatzes erzielt wurden.
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Preface

Mathematical Programs with Equilibrium Constraints, or MPECs, form a special class of
Nonlinear Programming problems. Their characteristic feature concerns their constraint
structure which contains the so-called equilibrium constraints. The terminology already
reveals that this special type of constraints originally described certain system equilibria,
such as Nash equilibria in game theory or equilibria of forces in structural mechanics.
The term Mathematical Program with Equilibrium Constraints is presumed to have been
introduced by Harker and Pang in 1988 [KOZ98],[LPR96]. In general, the equilibrium
constraint corresponds to a parametric variational inequality [LPR96]. However, under
some suitable conditions the variational inequality can be replaced by a complementarity
problem, that consists of a system of equalities and complementarity conditions. In this
case the MPEC is also referred to as a Mathematical Program with Complementarity
Constraints, or MPCC. In this thesis we confine ourselves to discussing only the type of
MPECs, that can be rewritten as an MPCC, though we still call them MPECs.

The general MPEC has its origin in Bilevel Programming [KOZ98], where nonlinear pro-
grams are considered that contain another (lower-level) optimization problem as constraint.
These problems were introduced by Bracken and McGill in the 1970s [LPR96] and gained
more importance by the various applications of the Stackelberg game in economic sciences.
Further applications in the natural and engineering sciences then led to the extension of
the bilivel programs to MPECs. The multitude and variety of recent research results con-
cerning MPECs points out the significance and the current interest in this field of nonlinear
programming.

The answer to the question why we have to treat MPECs separately from standard
nonlinear programming concerns the failure of standard constraint qualifications. MPECs
have a highly nonconvex constraint structure and a representation of the complementarity
constraints by suitable, continuous functions (so-called NCP functions) results in a non-
smooth nonlinear program. Moreover, due to the complementarity conditions and their
combinatorial structure, the regularity assumptions concerning the constraints of a nonlin-
ear program are generally not satisfied. Therefore, the standard optimization theory for
nonlinear programming and the numerical methods that are based on it are not directly
applicable.

Methods that have recently been proposed to solve MPECs concern smoothing or regu-
larization schemes, see for example [FJQ99], [JR00], [Sch01], [LF03a] and [RW04], penalty
approaches see [LPRW96], [SS99] or [HR04] and the direct or adapted application of partic-
ular NLP methods, such as Sequential Quadratic Programming, see for example [Ani05b],
[FLRS06] or [LY07], and Interior-Point Methods, see for example [LS04], [BR05], [DFNS05]
and [LLCN06].

In this doctoral thesis we present a new relaxation method and discuss its theoretical
properties as well as its numerical performance. This new relaxation method can be re-
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Preface

garded as a combination of ideas from regularization schemes with the relaxation-free (or
exact) approach by Fletcher et al. in [FLRS06].

The direct application of an SQP algorithm to the exactly reformulated (in other words
not relaxed) program performs numerically quite promising [FL02b]. However, this ap-
proach can only be guaranteed to be successful for MPECs that have solutions of a special
type, namely strongly stationary minimizers.

The regularization approaches are generally not subject to this restriction, but in general,
due to a regularization parameter, multiple nonlinear programs have to be solved to find an
approximate solution of the original MPEC, which cause an inferior numerical performance
compared to the relaxation-free approach. Moreover, in general an infinite number of
parameterized nonlinear programs have to be solved to obtain a solution that is exactly
feasible for the original MPEC.

In order to avoid the restriction of the relaxation-free approach of Fletcher et al. [FLRS06],
but maintain its good numerical performance for MPECs with strongly stationary solutions
at the same time, we combine both methods. We relax only those parts of the original fea-
sible region, where we suppose that the relaxation-free approach might get in trouble or fail
and use an exact representation of the feasible set for the remaining part. A corresponding
relaxed nonlinear program is obtained by introducing a strictly positive relaxation param-
eter t > 0. If we set t = 0, then the parameterized nonlinear program corresponds to
the original MPEC. Therefore, we are able to show that, under reasonable conditions, by
solving a sequence of such NLPs parameterized by t, we will find a solution of the original
MPEC as soon as t > 0 is sufficiently small.

Before we present our new relaxation method, in Chapter 1 we first start with an intro-
duction into the field of MPECs. We introduce the general MPEC as defined in [LPR96]
and discuss its close connection to bilevel programming and how an MPCC can be derived
from the MPEC. Then we continue giving a brief overview of engineering and economic
applications of MPECs. The main part of Chapter 1 concerns a presentation and discussion
of the most important theoretical properties of MPECs and of the MPEC specific termi-
nology, that we will use in the remaining part of this thesis. We finish the first chapter by
a short review of some recent solution approaches for MPECs.

Chapter 2 together with Chapter 4 forms the main part of this thesis. We first derive the
relaxed nonlinear program that provides the basis of our relaxation method and present
some basic properties of it. Then we relate stationary points and solutions of the original
MPEC and the relaxed nonlinear program. This will be followed by the convergence analysis
of a sequence of solutions of a sequence of parameterized, relaxed nonlinear programs (for
a strictly positive, decreasing sequence of parameters). Finally, we compare the theoretical
properties of our new relaxation scheme to those ones of the relaxation-free approach of
[FLRS06] and the regularization scheme proposed by Scholtes in [Sch01], which seems to
be the most appropriate regularization scheme for a comparison to our method.

Chapter 3 is devoted to an analysis of the new relaxation method in combination with
two main solution methods for standard nonlinear programs, namely Sequential Quadratic
Programming and Interior Point Methods. First, we discuss the convergence behaviour of a
standard local SQP algorithm applied to the relaxed nonlinear program. Then we present
a variant of the two-sided relaxation scheme for MPECs, presented by DeMiguel et al. in
[DFNS05], that incorporates the new relaxation scheme, which we introduced in Chapter 2.

2



Furthermore, we demonstrate how the convergence results of [DFNS05] can be transferred
to the modified two-sided relaxation scheme.

In Chapter 4 we present the numerical results we obtained with the new relaxation
method. First, we introduce a simple outer algorithm that uses a standard SQP solver,
as for example filterSQP [FL98], as a black box and discuss its numerical performance.
Then we explain the two main failures that occurred for some of the test problems using
this simple outer algorithm and present a modified outer algorithm that circumvents these
failures. We examine its numerical performance individually, but we also compare the
numerical results we obtained for the modified algorithm to those ones we obtained using the
relaxation-free approach of [FLRS06] and the regularization scheme of [Sch01], respectively.

We finish this doctoral thesis with a short summary combined with a critical review of
the results we presented in this thesis and an outlook on some possible subsequent research
topics.

3





1 Introduction to MPECs

This chapter is devoted to a general introduction into the field of MPECs. First we intro-
duce the general MPEC and discuss its various forms and its close connection to Bilevel
Programming, which will be followed by a presentation of some engineering and economic
applications of MPECs. We will then illustrate the main difficulties concerning MPECs and
present the definitions and notations that we will need in the following chapters. Finally,
we give a brief overview of some recent solution approaches for MPECs.

1.1 The general MPEC

In general, Mathematical Programs with Equilibrium Constraints (MPEC) are nonlinear
programs (confer (1.13)) that contain a Variational Inequality (VI) as a constraint [FP03].
These variational inequalities describe certain system equilibria resulting from the under-
lying model, for example traffic equilibria, Nash equilibria, equilibria of forces and so on.
For further details and general informations about MPECs we refer to the monographs
[LPR96] and [KOZ98].

The general MPEC as introduced in [LPR96] has the form

min f(x0, x1)
subject to (x0, x1) ∈ X

x1 ∈ S(K(x0),Υ(x0, ·)) ,
(1.1)

where x0 ∈ R
n, x1 ∈ R

p and X ⊆ R
n+p denotes the joint feasible set of x0 and x1. Fur-

thermore, S(K(x0),Υ(x0, ·)) denotes the solution set of a Variational Inequality, denoted
by VI(K(x0),Υ(x0, ·)), that depends on a set K(x0) ⊆ R

p and a function Υ(x0, ·), where
Υ : Rn×R

p → R
p, which are both parameterized by x0. A vector x1 represents a solution

of VI(K(x0),Υ(x0, ·)), if x1 satisfies the conditions

(i) x1 ∈ K(x0)

(ii) (v − x1)
T Υ(x0, x1) ≥ 0 ∀ v ∈ K(x0) .

(1.2)

These conditions can be transformed, if K(x0) represents a cone.

Definition 1.1. Let M⊆ R
`, then M is said to be a cone if and only if

x ∈M, λ ≥ 0 =⇒ λx ∈M.

Moreover, the polar cone of a set M is defined by

M◦ := {y ∈ R
` | yTx ≤ 0 ∀x ∈M}

and the dual cone of M is defined by

M∗ := {y ∈ R
` | yTx ≥ 0 ∀x ∈M} .

5



1 Introduction to MPECs

IfK(x0) ⊆ R
p represents a cone, then the conditions (1.2) are equivalent to the conditions

[FP03]
(i) x1 ∈ K(x0)

(ii) Υ(x0, x1) ∈ K(x0)
∗

(iii) xT
1 Υ(x0, x1) = 0 .

(1.3)

The VI(K(x0),Υ(x0, ·)) is then often called a Complementarity Problem (CP) and denoted
by CP (K(x0),Υ(x0, ·)) [FP03]. Assuming further that K(x0) = (R+

0 )p, then (1.2) can be
simplified even more to

0 ≤ x1 ⊥ Υ(x0, x1) ≥ 0 , (1.4)

which is a short notation of the conditions of (1.3), if K(x0) = (R+
0 )p. Problems of this

kind are referred to as Nonlinear Complementarity Problems (NCP).
If the VI of an MPEC of the form (1.1) can be replaced by the condition (1.4), we obtain

min f(x0, x1)
subject to (x0, x1) ∈ X

0 ≤ x1 ⊥ Υ(x0, x1) ≥ 0 .
(1.5)

This problem is then also referred to as Mathematical Program with Complementarity
Constraints (MPCC). Finally, introducing slack variables x2 and assuming that

X = {x ∈ R
n+2p | h(x) = 0 and g(x) ≥ 0 } ,

where h : Rn+2p → R
q and g : Rn+2p → R

m are twice continuously differentiable functions,
we end up with the problem

min f(x)

subject to h(x) = 0
g(x) ≥ 0

0 ≤ x1 ⊥ x2 ≥ 0 ,

(1.6)

where x = (x0, x1, x2) ∈ R
n × R

p × R
p and f : R

n+2p → R is a twice continuously
differentiable function. MPECs of this type are the object of this thesis.

We have shown under which circumstances we can transform an MPEC of the form (1.1)
into one that has the form of (1.6), other applications for instance in structural design
[FTL99] and robotics [AAP04], however, result directly in a problem of the form (1.6), as
we will see in the following section.

A class of optimization problems that is closely related to MPECs are Bilevel Programs
(BP). The name reflects the feature that the constraints of a so called upper-level problem
comprehend an additional optimization problem, called the lower-level problem, that is
parametrized by the so-called upper-level variables. The general BP as formulated in
[CMS07] is

minx,y F (x, y)

subject to x ∈ X
G(x, y) ≤ 0

y solves miny f(x, y)
subject to g(x, y) ≤ 0 ,

(1.7)
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1.2 Applications of MPECs

where x ∈ R
n are the upper-level variables and y ∈ R

m are the lower-level variables. For
each fixed upper-level variable x̂ ∈ X , the lower-level variables y ∈ R

m are only feasible for
(1.7), if they solve the lower-level problem

miny f(x̂, y)

subject to g(x̂, y) ≤ 0 ,
(1.8)

that is parametrized by x̂. Assuming that the lower-level problem of (1.7) is convex and
satisfies some regularity conditions, the KKT-conditions of (1.8) are necessary and suffi-
cient. Hence, we can replace (1.8) by its KKT-conditions (confer (1.16)) and obtain the
problem

minx,y F (x, y)

subject to x ∈ X
G(x, y) ≤ 0

∇yL(x, y, λ) = 0

0 ≤ λ ⊥ − g(x, y) ≥ 0 ,

(1.9)

where L(x, y, λ) := f(x, y) +
∑p

j=1 λjgj(x, y) denotes the Lagrangian function of (1.8).
Hence, under these conditions the BP can be transformed into an MPEC of the form (1.5).

On the other hand, if the function Υ(x0, ·) in (1.1) corresponds to a partial gradient map
of a convex, continuously differentiable function f(x, y), with f : Rn+m → R, that is

Υ(x0, x1) = ∇x1f(x0, x1) ,

then for every x̂0 ∈ X , the VI

x1 ∈ K(x̂0) and (v − x1)
T ∇x1f(x̂0, x1) ≥ 0 ∀ v ∈ K(x̂0)

represents the stationarity conditions of the minimization problem

minx1 f(x̂0, x1)
subject to x1 ∈ K(x̂0) .

(1.10)

If K(x0) is described by a finite number of inequalities, that is

K(x0) = {x1 ∈ R
m | g(x0, x1) ≤ 0 } ,

where g : Rn+m → R
p, then (1.1) can therefore be rewritten as a BP of the form (1.7).

An overview of the state-of-the-art of bilevel programming can be found in the survey paper
[CMS07]. For a more comprehensive treatment of the subject, we refer the reader to the
monographs [Bar98] and [Dem02].

1.2 Applications of MPECs

MPECs have many applications in the field of engineering as well as in economic sciences.
Often, they arise if some design parameters are to optimize subject to certain system
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1 Introduction to MPECs

equilibria. Economic equilibria (Nash equilibria), equilibria of forces, network equilibria
and others are examples for such system equilibria. Many of these can be described by
complementarity conditions. Hence, the resulting optimization problem corresponds to a
Mathematical Program with Equilibrium Constraints of the form (1.6). Other applications
result directly in a Mathematical Program with Complementarity Constraints.

Before we discuss the economic applications, we first describe some engineering applica-
tions. A detailed overview of MPEC applications can be found in [FP97] and the mono-
graphs [KOZ98] and [LPR96].

1.2.1 Engineering Applications

An important engineering application of MPECs arises in the area of contact problems.
Consider a physical contact (with friction) between two or more solid bodies. The comple-
mentarity condition then models the fact that the contact forces that have to be involved in
the model (for example friction forces) can only be strictly positive if the distance between
the bodies vanishes, thus if the gap between them is equal to zero.

Applications involving frictional contact problems are discussed for example in [KM06].
A recent area in which such problems play an important role occurs in robotics [LPR96],
see for example [AAP04].

Another kind of contact problems arise in the area of shape optimization. Modelling of an
elastic membrane with a rigid or compliant obstacle involves complementarity conditions
as we will see next. We briefly describe a shape optimization problem where we try to
minimize a domain Ω(α) subject to the condition that the membane is supposed to come
into contact with a rigid obstacle for a predefined subset Ω0 ⊆ Ω(α). The description here
conforms with the detailed discussion of such problems in [KOZ98].

Let

• α be the design parameter that describes the part of the boundary of Ω(α) that is to
be optimized

• J(α) be a measure of the domain Ω(α),

• Uad be a set of admissible design parameters α,

• Ω0 be a given minimum contact region,

• u be the deflection of the membrane,

• S(α) be the graph of the function that describes the surface of the rigid obstacle,

• f(α) be the force that acts perpendicularly on the membrane,

• A(α) be the corresponding stiffness matrix and

• C(α) be the resulting contact region.

8



1.2 Applications of MPECs

Then the resulting discretized optimization problem is of the form

minα J(α)
subject to α ∈ Uad

Ω0 ⊆ C(α)
uj = 0 for all j ∈ D(α)
0 ≤ u− S(α) ⊥ A(α)u− f(α) ≥ 0 ,

where α, u, S(α) and f(α) are the vectors of the corresponding function values at the
nodes of the discretized domain Ω(α). Furthermore, Ω0 and C(α) correspond to the sets
of indices of nodes lying in Ω0 and C(α), respectively. Finally, the set D(α) denotes the
set of indices of nodes lying in ∂Ω(α), hence we also assumed the discretized version of the
boundary condition u = 0 on ∂Ω(α).

Examples for such problems are the pack-comp (with a compliant obstacle) and the
pack-rig (with a rigid obstacle) problems of the MacMPEC test problem set (see Section
4.1 and the Appendix). Figure 1.1 illustrates the result for problem pack-rig1c-16, which

Figure 1.1: Result for problem pack-rig1c-16 of MacMPEC

is a 2D obstacle problem on [0, 1]×[0, 1] and corresponds to Example 9.1 in [KOZ98], Section
9.2. Here we have Ω0 = [0.25, 0.5] × [0.25, 0.75], f(α)(x, y) = −1.0, S(α)(x, y) = −0.05x.
The set Ω(α) is discretized using triangular finite elements with linear basis functions and
a discretization parameter h = 1/16. Furthermore, the set of admissible design variables
α is

Uad = {α ∈ R
17 | 0.6 ≤ α ≤ 1.0, |αi−1 −αi| < 3.0 } .

Problems closely related to the problems we just described occur in the area of structural
mechanics. Given a basic structure and an external load, the object of interest is the optimal
design of this mechanical structure. The objective function might either be the total weight
or volume of the structure or its compliance.

Consider a basic structure which is given by the nodes of the potential bars of a truss.
Given the total volume V of the bars and the external load vector f , we are interested in a
truss design, determined by the volumes vi of the bars (hence the vi are the design variables),
which minimizes the compliance fTx, where x denotes the vector of nodal displacements.

9



1 Introduction to MPECs

The potential energy of the truss structure is then given by [JKZ98]

E(v, x) =
1

2
xTA(v)x− fTx ,

where

A(v) =
n∑

j=1

vjAj

and Aj is the stiffness matrix corresponding to the jth bar. The matrix A(v) is symmetric
and positive semi-definit. (Furthermore, under reasonable assumptions it is positive defi-
nite, if vj > 0 j = 1, . . . , n.) If x minimizes E(v, x), then we have a state of an equilibrium
of forces [JKZ98].

Next, we involve the constraint of a rigid obstacle, thus we assume that it cannot be
penetrated by the nodes of the truss and we have the additional condition

Cx ≤ d ,

where C is a kinematic transformation matrix and d consists of the distances between the
obstacle and the initial nodes.

Since the resulting optimization problem

minx E(v, x)
subject to Cx ≤ d

is convex, the solutions of it are characterized by the KKT-conditions (confer (1.16))

−f +A(v)x+ CTλ = 0
Cx− d ≤ 0

λ ≥ 0
λT (Cx− d) = 0 .

The Lagrangian multiplier λ can be interpreted as the contact force based on the rigid
obstacle. Since this is only positive, if the truss comes into contact with the obstacle, we
obtain a complementarity condition.

As we are interested in a truss with minimal compliance subject to a given total volume
of the truss bars, we end up with the MPEC

minx,v,λ fTx
subject to

∑n
j=1 vj = V

−f +A(v)x+ CTλ = 0
Cx− d ≤ 0
λ ≥ 0
λT (Cx− d) = 0 .

For a brief survey of some structural design applications of MPECs see for example [AW05].
Other engineering applications of MPECs concern network design problems [LPR96], chem-
ical engineering problems [BRB07] and further parameter identification problems [TLQ01].
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1.2.2 Economic Applications

In many economic applications models serve to gain some insights into the interactions of
economic systems. On the basis of the obtained information one hopes to be able to deve-
lope more adequate and sophisticated political or economic strategies. Such strategies are
for example economic reforms (for example deregularization of public networks), taxation,
business expansion, toll pricing and others.

Consider an economic system that deals with a finite number of commodities. With each
commodity a specific price is associated. Moreover, it is assumed that there exist only two
different type of agents: on the one hand the sectors (companies or producers) on the other
hand the consumers.

The general equilibrium problem [FP97] is concerned with finding commodity prices and
determining the behavior of the agents such that

1. each sector maximizes its profit,

2. supply exceeds demand and

3. expenditure equals income.

The third statement is called the Walras law. It constitutes the condition that the total
expenditure of the consumers is equal to the income that originates from the trade with
the commodities.

Furthermore, it is generally assumed that the consumers do not have a preferred producer
but decide by price advantages. Hence, we consider the case of a perfect competition
between the producers. Finally, each agent has perfect information about the prices.

The general equilibrium that is described by these conditions can be represented by
complementarity conditions [FP97], such that we obtain an MPEC, if we choose some of
the input data as design parameters that we want to optimize in a particular sense. Design
parameters are for example production level, facility locations and distribution of goods.
The described general equilibrium problem has to be specified according to the object of
interest: production, consumption, taxation and subsidies and so on. Established fields of
economic applications of MPECs are for example toll pricing problems [LH04], modeling
of electric power markets [CHLM06],[HMP00] and transportation networks [HP06].

Most of these economic applications of MPECs are based on the concept of the Stackel-
berg game. These game theoretic problems are closely connected to MPECs, as we will
explain in the following. A general introduction to game theory can be found in [HI06] or
[Sch04].

The Stackelberg game is an extension of the Nash game. For this reason, we will first
describe this basic concept, before we turn to the Stackelberg game.

Consider a finite number M ∈ N of players i ∈ {1, . . . ,M}. Each of the players possesses
a set of strategies si ∈ Si ⊆ R

mi . The aim of each player is to minimize her cost function
θi(si, s̃i), where

s̃i ∈
M∏

j=1
j 6=i

Sj

11



1 Introduction to MPECs

denotes the vector of strategies of the remaining players (in other words all players except
for player i). Each player observes the strategies of the other players and chooses her
optimal strategy under the assumption that they will not change their chosen strategy.
Furthermore, it is assumed that the players do not cooperate with each other.

A combination of strategies

s∗ ∈
M∏

j=1

Sj

is called a Nash equilibrium if there exists no incentive for any player i to change her
strategy s∗i ∈ Si. This situation can mathematically be described by

s∗i ∈ argmin{θi(si, s̃
∗
i ) | si ∈ Si } for all i ∈ {1, . . . ,M} .

Until now, all players are equal in the sense that they have the same information and
can choose freely any strategy si ∈ Si subject to this information. If we consider the
Stackelberg game, we have in contrast a distinct player, called the Stackelberg leader,
which can influence the remaining players, called the Stackelberg followers. The leader can
anticipate the reactions of the followers and choose its optimal strategy according to his
knowledge. Furthermore, the leader’s choice influences the sets of strategies of the followers.
In other words the sets of strategies of the followers Si(x) ⊆ R

mi are parameterized by the
leader’s strategy x. Moreover, the cost functions θi may also be parameterized by x, thus
we have

θi(x, ·) :
M∏

j=1

R
mj → R .

Hence, first the leader chooses its strategy x∗ ∈ X, where X denotes the set of strategies
of the leader, and afterwards the followers play a Nash game that is parameterized by the
leader’s choice x∗. The joint answer of the followers

s∗ := (s∗i )i∈{1,...,M} ∈
M∏

j=1

Sj(x
∗)

corresponding to x∗ satisfies

s∗i ∈ argmin{θi(x
∗, si, s̃

∗
i ) | si ∈ Si(x

∗) } for all i ∈ {1, . . . ,M} .

Suppose f : Rm ×
M∏

j=1
R

mj → R denotes the cost function of the Stackelberg leader, then

finding a solution vector (x∗, s∗) that solves the Stackelberg game corresponds to solving
the BP (confer (1.7))

minx,s f(x, s)

subject to x ∈ X
si solves minsi θi(x, s) i = 1, . . . ,M

subject to si ∈ Si(x)

(1.11)
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1.3 MPEC Theory

Assume that each set of strategies Si(x) is a nonempty, closed convex set and

θi(x, ·, s̃i) : Rmi → R

is convex and continuously differentiable in si. Then we can replace the lower-level problems

minsi θi(x, s)
subject to si ∈ Si(x)

(1.12)

of problem (1.11) by the VI

s ∈ S(x) and (v − s)T D(x, s) ≥ 0 ∀ v ∈ S(x) ,

where

S(x) =

M∏

j=1

Sj(x)

and
D(x, s) := (di(x, s))i∈{1,...,M}

with
di(x, s) := ∇siθi(x, s) for all i ∈ {1, . . . ,M}

(for a detailed description see [FP03]).
Moreover, if the sets of strategies can be represented by a finite number of continuously

differentiable functions, then we can replace the lower-level problems by the corresponding
KKT-conditions and obtain an MPCC (see the foregoing Section 1.1).

1.3 MPEC Theory

Before we start our discussion of the specific theoretical characteristics and terms of MPECs,
we will first briefly review some basic optimality conditions of Nonlinear Programming.

Basic Optimality Conditions for Nonlinear Programming

Consider the general Nonlinear Program (NLP)

min f(x)

subject to h(x) = 0
g(x) ≥ 0 ,

(1.13)

where f : R
n → R, h : R

n → R
q and g : R

n → R
m are here assumed to be twice

continuously differentiable functions. The following definitions [GK02] are essential in the
theory of Nonlinear Programming.

The general stationarity condition for an ordinary NLP of the form (1.13) is

∇f(x∗)T d ≥ 0 ∀ d ∈ T (X , x∗) , (1.14)

where X := {x ∈ R
n : h(x) = 0, g(x) ≥ 0} denotes the feasible region and T (X , x∗) denotes

the tangent cone that is defined as follows [GK02]:
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1 Introduction to MPECs

Definition 1.2. LetM⊆ R
` denote a nonempty set and let x ∈M. The tangent cone of

M at x is defined by

T (M, x) =
{

d ∈ R
`
∣
∣
∣ ∃ (xk) ⊂M,

∃ (ηk) ⊂ R, ηk ↘ 0 : xk → x and (xk − x)/ηk → d
}

.

Moreover the corresponding normal cone of M at x is

N (M, x) = (T (M, x))◦ .

Condition (1.14) represents the fact that there exists no feasible descent direction at a
local optimum x∗ and it is equivalent to

− ∇f(x∗) ∈ N (X , x∗) . (1.15)

As these two stationarity conditions are difficult to verify they are in particular not well
practicable for numerical purposes. Some constraint qualifications (CQ) are therefore typ-
ically used to guarantee that the unwieldy tangent cone T (X , x∗) can be replaced by the
linearized tangent cone

Tlin(X , x∗) := {d ∈ R
` | ∇hj(x

∗)T d = 0, ∀ j ∈ Ih(x∗), ∇g(x∗)T d ≥ 0, ∀ j ∈ Ig(x∗) } ,
where

Ih(x) = {i ∈ {1, .., q} : hi(x) = 0} ,
Ig(x) = {i ∈ {1, ..,m} : gi(x) = 0} ,

denote the sets of the active constraints in x.
One of the most basic constraint qualification is the so-called Abadie Constraint Quali-

fication [GK02].

Definition 1.3. Let x∗ ∈ X , then x∗ is said to satisfy the Abadie Constraint Qualification
(ACQ), if T (X , x∗) = Tlin(X , x∗).

Suppose x∗ satisfies the ACQ, then (1.15) can be replaced by

− ∇f(x∗) ∈ (Tlin(X , x∗))◦

which can then by the Farkas Lemma (Lemma 2.27 in [GK02]) proved to be equal to the
KKT-conditions (see Definition 1.6), which mostly form the basis of solution methods and
software for NLPs. Since the ACQ is difficult to verify, often some stronger constraint qua-
lifications are used that imply the ACQ and hence the admissibility of the KKT-conditions.
Two basic regularity assumptions concerning the feasible region of the NLP that imply the
ACQ are:

Definition 1.4. Let x∗ be feasible for (1.13), then x∗ is said to satisfy the Linear Inde-
pendence Constraint Qualification (LICQ), if the family

∇hi(x
∗) i ∈ {1, . . . , q},

∇gj(x
∗) j ∈ Ig(x∗)

is linear independent.
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Definition 1.5. Let x∗ be feasible for (1.13), then x∗ is said to satisfy the Mangasarian-
Fromowitz Constraint Qualification (MFCQ), if

1. the family ∇hi(x
∗) i = 1, . . . , q is linear independent and

2. there exists a vector d ∈ R
n that satisfies the conditions ∇gj(x

∗)T d > 0 for all
j ∈ Ig(x∗) and ∇hi(x

∗)T d = 0 for all i ∈ {1, . . . , q}
It can be proved (see for example [GK02]), that these two constraint qualifications satisfy

the implications LICQ ⇒ MFCQ ⇒ ACQ.
Next we define the Karush-Kuhn-Tucker (KKT-) conditions that form a necessary opti-

mality condition [GK02] for Nonlinear Programming problems.

Definition 1.6. Let x∗ ∈ R
n. We call the conditions

∇f(x∗)−∇g(x∗)λ∗ −∇h(x∗)µ∗ = 0
h(x∗) = 0
g(x∗) ≥ 0
λ∗ ≥ 0

gi(x
∗)λ∗i = 0 i = 1, . . . ,m

(1.16)

Karush-Kuhn-Tucker (KKT-) conditions. Moreover, if there exist λ∗ ∈ R
m and µ∗ ∈ R

q,
such that (x∗, λ∗, µ∗) satisfies (1.16), then we call x∗ a stationary point of (1.13) and the
vectors λ∗ and µ∗ Lagrange multipliers of x∗.

Suppose that a local solution x∗ of (1.13) satisfies either LICQ or MFCQ, then the
existence of vectors λ∗ ∈ R

m and µ∗ ∈ R
q, such that (x∗, λ∗, µ∗) satisfies the KKT-

conditions form a necessary optimality condition.

Theorem 1.1. Let x∗ ∈ R
n be a local solution of (1.13). If x∗ satisfies either LICQ or

MFCQ, then there exist vectors λ∗ ∈ R
m and µ∗ ∈ R

q, such that (1.16) is satisfied.

Proof. See for example Theorem 2.39 and 2.41 in [GK02].

Define the sets

I+
g (x, λ) = {i ∈ {1, . . . ,m} : gi(x) = 0, λi > 0} ,
I0
g (x, λ) = {i ∈ {1, . . . ,m} : gi(x) = 0, λi = 0}

and
S(x, λ) = { d ∈ R

n\{0}|
∇hi(x)

T d = 0, i ∈ {1, . . . , q},
∇gj(x)

T d = 0, j ∈ I+
g (x, λ),

∇gj(x)
T d ≥ 0, j ∈ I0

g (x, λ) }
and let

L(x, λ, µ) = f(x)−
m∑

j=1

λjgj(x)−
q
∑

i=1

µihi(x) (1.17)

denote the Lagrangian function of (1.13), then we can define a standard Second Order
Sufficient Condition (SOSC) for x∗ to be a local solution of (1.13).
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Definition 1.7. Let x∗ be a stationary point of (1.13) with multipliers λ∗ and µ∗ and
suppose that

dT∇2
xxL(x∗, λ∗, µ∗) d > 0 ∀ d ∈ S(x∗, λ∗) , (1.18)

then x∗ is said to satisfy the Second Order Sufficient Condition (SOSC) for (1.13).

Theorem 1.2. Let (x∗, λ∗, µ∗) satisfy the KKT-conditions and the SOSC, then x∗ is a
strict local solution of (1.13).

Proof. See for example Theorem 2.55 in [GK02].

For further details concerning Nonlinear Programming we refer the interested reader to
[GK02], [Fle00] or [CGT00]. Having reviewed the basic notions of the theory of Nonlinear
Programming, that we will need in the following, we now start our discussion of the theory
of MPECs.

As mentioned before, in this thesis we consider MPECs of the form

min f(x)

subject to h(x) = 0
g(x) ≥ 0

0 ≤ x1 ⊥ x2 ≥ 0,

(1.19)

where x = (x0, x1, x2) ∈ R
n × R

p × R
p and all (in)equalities are meant componentwise.

Throughout, we will assume that f : Rn+2p → R, h : Rn+2p → R
q and g : Rn+2p → R

m

are twice continuously differentiable functions.
Note that MPECs formulated with the seemingly more general complementarity condi-

tion
0 ≤ G(x)⊥H(x) ≥ 0 ,

where G and H are twice continuously differentiable functions, mapping R
n+2p to R

p, can
be transformed to the form (1.19) by introducing slack variables:

G(x)− s1 = 0
H(x)− s2 = 0
0 ≤ s1 ⊥ s2 ≥ 0 .

The complementarity constraint

0 ≤ x1 ⊥ x2 ≥ 0, (1.20)

can equivalently be replaced by one of the conditions

(i) x1 ≥ 0, x2 ≥ 0, xT
1 x2 = 0,

(ii) x1j ≥ 0, x2j ≥ 0, x1jx2j = 0, j = 1, . . . , p, (1.21)

(iii) x1j ≥ 0, x2j ≥ 0, x1j = 0 or x2j = 0, j = 1, . . . , p,

(iv) φ(x1j , x2j) = 0, j = 1, . . . , p,

where φ denotes an NCP function (see Definition 1.13 in Section 1.4). Any reformulation of
(1.20) by smooth constraints results in positively linear dependent gradients of the active
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constraints. Furthermore, note that at every feasible point x of (1.19) the complementarity
condition does not admit strictly feasible points thus the MFCQ is also violated at every
feasible point (see also [SS00]).

The combinatorial, nonconvex structure of the complementarity constraints may even
prevent the ACQ (see Definition 1.3) to hold in a solution x∗. These unfavourable properties
of MPECs make these problems rather difficult to solve. Moreover, due to the lack of the
constraint qualifications, the standard necessary and sufficient conditions for NLPs cannot
be applied straightforwardly to MPECs, such that this class of optimization problems needs
to be handled with special care. In the following, we will consider these difficulties in more
detail.

The stationarity condition for MPECs that corresponds to (1.14) is referred to as B-
stationarity condition and is the most fundamental stationarity concept for MPECs. It is
discussed in more detail in [FP99, SS00, Ye05].

Definition 1.8. Let Z be the feasible region of (1.19) and let x∗ ∈ Z. Then x∗ is called
B-(Bouligand)-stationary, if

∇f(x∗)Td ≥ 0 ∀ d ∈ T (Z, x∗).

or equivalently
− ∇f(x∗) ∈ (T (Z, x∗))◦ .

Hence, B-stationarity is a necessary optimality condition for local solutions of an MPEC.

Definition 1.9. Let x = (x0, x1, x2) ∈ R
n+2p be feasible for (1.19), then

1. The components of a pair (x1j , x2j) are called degenerate, if they do not satisfy strict
complementarity, that is if x1j = 0 and x2j = 0.

2. If the pair satisfies strict complementarity, that is either x1j > 0 or x2j > 0, then x1j

and x2j are called nondegenerate.

3. If all components of x1 and x2 are nondegenerate, then x is said to satisfy strict
complementarity.

If a feasible point x of (1.19) possesses degenerate components x1j and x2j and e1j , e2j ∈
T (Z, x), then the tangent cone T (Z, x) is nonconvex. However, as the linearized tangent
cone is always convex in this case the ACQ is inherently not satisfied. Thus, applying the
KKT-condition (1.16) to a smoothly reformulated MPEC is inadequate as the following
example illustrates.

Example 1.1.

min x2 − x1

subject to x2
1 + x2

2 − 2x2 ≤ 0 : λ
0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ

We reformulate the complementarity constraint by an alternative of (ii) of (1.21), such
that we have two nonnegative multipliers ν1 and ν2 corresponding to x1 ≥ 0 and x2 ≥ 0,
respectively, and a third multiplier ξ corresponding to x1x2 ≤ 0.
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The solution of this MPEC is (x∗1, x
∗
2) = (0, 0) and the tangent cone in (0, 0) is

T (Z, (0, 0)) = {d ∈ R
2 | d1 = 0 and d2 ≥ 0} = {0} ×R

+
0

such that

∇f(0, 0)T d = −d1 + d2 = d2 ≥ 0 ∀ d ∈ T (Z, (0, 0))

and (0, 0) is by Definition 1.8 B-stationary. It also satisfies (1.14) for all smooth reformu-
lations. However, as

(−1

1

)

+ λ∗
(

0

−2

)

− ν∗1
(

1

0

)

− ν∗2
(

0

1

)

− ξ∗
(

0

0

)

=

(
0

0

)

can only be satisfied if ν∗1 = −1 < 0, (0, 0) is not a KKT-point of the reformulated MPEC.
This is not contradictory, since the linearized tangent cone in (0, 0) is

Tlin(Z, (0, 0)) = {d ∈ R
2 | d1 ≥ 0 and d2 ≥ 0} = R

+
0 ×R

+
0

such that T (Z, (0, 0)) 6= Tlin(Z, (0, 0)) and the ACQ does not hold. Hence, replacing the
stationarity condition (1.14) by the KKT-conditions of a smoothly reformulated MPEC was
not admissible.

The problem that an MPEC cannot be treated as an ordinary NLP led to a variety of
theoretical examinations of the MPEC, its tangent and normal cones and the development
of some potentially more appropriate constraint qualifications and stationarity concepts.
Most of them are discussed in more detail in [LPR96, KOZ98, FP99, FK05a, SS00].

Next to B-stationarity, the so-called C- and M-stationarity and in particular strong
stationarity are subject of recent research [FK05b, Fle05, Ye99, Ye05]. To ease the notation
of the conditions of these stationarities, we first introduce some further notations. Let

LMPEC(x, λ, µ, ν1, ν2) = f(x)−
m∑

j=1

λjgj(x)−
q
∑

i=1

µihi(x)− νT
1 x1 − νT

2 x2 (1.22)

denote the Lagrangian of (1.19) and let

I1(x) = {j ∈ {1, . . . , p} : x1j = 0},
I2(x) = {j ∈ {1, . . . , p} : x2j = 0}

denote the index sets of the active constraints concerning the complementarity conditions
for the MPEC (1.19). The definition of the mentioned stationarity concepts are then as
follows.
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1.3 MPEC Theory

Definition 1.10.

1. A point x∗ is called C-(Clarke)-stationary, if there exist multipliers λ∗ ∈ R
m, µ∗ ∈ R

q,
ν̂1 ∈ R

p and ν̂2 ∈ R
p, such that the following system of (in)equalities

∇xLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) = 0
h(x∗) = 0
g(x∗) ≥ 0
λ∗ ≥ 0

gi(x
∗)λ∗i = 0 i = 1, . . . ,m
x∗1 ≥ 0
x∗2 ≥ 0

x∗1j = 0 or x∗2j = 0 j = 1, . . . , p

x∗1j ν̂1j = 0 j = 1, . . . , p

x∗2j ν̂2j = 0 j = 1, . . . , p

(1.23)

is satisfied and

∀ j ∈ (I1 ∩ I2)(x∗) : ν̂1j ν̂2j ≥ 0

holds.

2. A point x∗ is called M-(Mordukhovich)-stationary, if there exist multipliers λ∗, µ∗,
ν̂1, and ν̂2, such that (1.23) is satisfied and

∀ j ∈ (I1 ∩ I2)(x∗) : ν̂1j , ν̂2j > 0 or ν̂1j ν̂2j = 0

holds.

3. A point x∗ is called strongly stationary, if there exist multipliers λ∗, µ∗, ν̂1, and ν̂2,
such that (1.23) is satisfied and

∀ j ∈ (I1 ∩ I2)(x∗) : ν̂1j ≥ 0 and ν̂2j ≥ 0.

holds.

Notice, that the stationarity concepts differ only in the additional condition on the
multipliers ν̂1j and ν̂2j for indices j ∈ (I1 ∩ I2)(x∗), in other words for the degenerate
components of x∗. Hence, if x∗ satisfies strict complementarity, the stationarity conditions
in Definition 1.10 are all equal. Otherwise we have the implications: strong stationarity ⇒
M-stationarity ⇒ C-stationarity.

In the case that x∗ satisfies strict complementarity, the complementarity conditions lo-
cally correspond to an equality constraint, such that the combinatorial structure of the
feasible set and accordingly of the tangent cone vanishes in the vicinity of x∗. Hence,
replacing the complementarity conditions by such equality constraints and assuming the
resulting constraints satisfy the ACQ in x∗, we then have T (Z, x∗) = Tlin(Z, x∗) for the re-
formulated MPEC, such that we may apply the KKT-conditions to verify the B-stationarity
of x∗.
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The stationarity conditions of Definition 1.10 can also be stated in terms of the cor-
responding normal cone (see for example [FKO07]). To illustrate the differences of the
normal cones we consider the simple MPEC

min f(x1, x2)

subject to 0 ≤ x1 ⊥ x2 ≥ 0 .
(1.24)

The corresponding normal conesNC(x∗1, x
∗
2), NM (x∗1, x

∗
2) andNS(x∗1, x

∗
2) for (x∗1, x

∗
2) = (0, 0)

to be C-, M- or strongly stationary if and only if ∇f(x∗1, x
∗
2) ∈ Nu, u = C,M or S are

demonstrated in Figure 1.2.

x1

x2

NC(0, 0)

x1

x2

NM (0, 0)
x1

x2

NS(0, 0)

Figure 1.2: Corresponding normalcones in (x1, x2) = (0, 0) for (1.24) for C-, M- and strong
stationarity

In Example 1.1 the solution (x∗1, x
∗
2) = (0, 0) was a B-stationary point that was M-

stationary, though not strongly stationary as any multiplier that satisfies (1.23) is of the
form (λ∗, ν̂1, ν̂2) = (1/2(1 − a),−1, a) with a ∈ [0, 1]. This illustrates that not every B-
stationary point is strongly stationary, thus the strong stationarity is not always a necessary
optimality condition. However, the next example demonstrates that the M-stationarity
conditions are too weak to guarantee B-stationarity in general.

Example 1.2.

min f(x) = −2x1 + (x2 − x1)
2

subject to 0 ≤ x1 ⊥ x2 ≥ 0 ,

then (x∗1, x
∗
2) = (0, 0) is M-stationary with multipliers (ν̂1, ν̂2) = (−2, 0). However, d =

(1, 0) is a feasible descent direction as ∇f(x∗)Td = −2d1 = −2 < 0 and

d ∈ T (Z, (0, 0)) = {d ∈ R
2 | min(d1, d2) = 0}

= R
+
0 × {0} ∪ {0} ×R

+
0 .

Thus, given an MPEC we need further properties to decide which stationarity condition
is suitable to characterize its candidates of local solutions. As discussed in [Fle05] and
[SS00] the fulfillment or non-fulfillment of certain constraint qualifications can serve as
such decision support. There exists a variety of constraint qualifications for MPECs. The
strongest condition that is mainly used and furthermore easiest to verify is the MPEC-
LICQ.
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0.5

1

(0, 0)

d

Figure 1.3: Contours of f and direction d = −δ∇f(0, 0) (δ ∈ (0, 1)) of Example 1.2.

Definition 1.11. Let x∗ be a feasible point of (1.19). Then the MPEC-LICQ (MPEC-
Linear Independence Constraint Qualification) is said to hold at x∗ if the gradients

∇hi(x
∗) i ∈ {1, . . . , q},

∇gj(x
∗) j ∈ Ig(x

∗),
en+j j ∈ I1(x

∗),
en+p+j j ∈ I2(x

∗),

where ej denotes the j-th unit vector in R
n+2p, are linearly independent.

Notice, that the definition of the MPEC-LICQ differs from the standard LICQ: the
complementarity constraints are smoothly reformultated by (ii) of (1.21) to obtain differ-
entiable constraints, however only the gradients of the conditions x1 ≥ 0 and x2 ≥ 0 are
considered and the gradients concerning the condition x1jx2j = 0 j = 1, . . . , p are left
out. However, the MPEC-LICQ represents the standard LICQ for the following related
optimization problem known as Relaxed Nonlinear Program [FL04a, FP99, SS00].

RNLP min f(x)

subject to h(x) = 0
g(x) ≥ 0

x1j = 0, x2j ≥ 0 j ∈ (I1\I2)(x∗)
x2j = 0, x1j ≥ 0 j ∈ (I2\I1)(x∗)
x1j ≥ 0, x2j ≥ 0 j ∈ (I1 ∩ I2)(x∗)

Note that the feasible set of RNLP in this case is determined by the point x∗. Sometimes,
it is more useful to determine the feasible set of RNLP not by x∗ but by a different point,
for instance by the current iterate xk of an iterative method. This, however, needs then to
be clearly indicated to avoid ambiguity.
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It can be shown that strong stationarity corresponds to the standard stationarity for
NLPs (confer (1.16)) applied to the RNLP [FL04a]. Furthermore, if the MPEC-LICQ holds
in x∗, B-stationarity of x∗ implies strong stationarity [SS00]. Hence, under the assumption
that the MPEC-LICQ holds, strong stationarity is a necessary optimality condition. More
relations concerning constraint qualifications and stationarity conditions for MPECs can
also be found in [FK05a, FK05b, Fle05, Ye05].

Next, before defining the second order optimality conditions, we introduce the following
sets of critical directions in x∗, following the definitions in [RW04]. Let

S̄(x∗, λ∗, µ∗, ν̂1, ν̂2) = { (d0, d1, d2) ∈ R
n+2p\{0}|

∇hi(x
∗)Td = 0, i ∈ {1, . . . , q}

∇gj(x
∗)Td = 0, j ∈ I+

g (x∗, λ∗)

∇gj(x
∗)Td ≥ 0, j ∈ I0

g (x∗, λ∗)

d1j = 0, j ∈ (I1\I2)(x∗)
d1j = 0, j ∈ (I1 ∩ I2)(x∗) and ν̂1j > 0
d1j ≥ 0, j ∈ (I1 ∩ I2)(x∗) and ν̂1j = 0
d2j = 0, j ∈ (I2\I1)(x∗)
d2j = 0, j ∈ (I1 ∩ I2)(x∗) and ν̂2j > 0
d2j ≥ 0, j ∈ (I1 ∩ I2)(x∗) and ν̂2j = 0 }

and

S∗(x∗, λ∗, µ∗, ν̂1, ν̂2) = {(d0, d1, d2) ∈ S̄(x∗λ∗, µ∗, ν̂1, ν̂2) |
min(d1j , d2j) = 0, j ∈ (I1 ∩ I2)(x∗) and ν̂1j = ν̂2j = 0 },

as well as

S̃(x∗, λ∗, µ∗, ν̂1, ν̂2) = { (d0, d1, d2) ∈ R
n+2p\{0} | ∇hi(x

∗)T d = 0, i ∈ {1, . . . , q}
∇gj(x

∗)T d = 0, j ∈ I+
g (x∗, λ∗)

d1j = 0, j : ν̂1j 6= 0,
d2j = 0, j : ν̂2j 6= 0 }

be the MPEC specific sets of critical directions. The first two sets differ only in the
additional condition on the components of a direction d ∈ R

n+2p\{0} corresponding to
indices j ∈ (I1 ∩ I2)(x∗), with ν̂1j = ν̂2j = 0, whereas for the third set there exists no
condition on directions d ∈ R

n+2p\{0} for indices for which the multipliers vanish. The
defined sets hence satisfy the relationship S∗(x∗, λ∗, µ∗, ν̂1, ν̂2) ⊆ S̄(x∗, λ∗, µ∗, ν̂1, ν̂2) ⊆
S̃(x∗, λ∗, µ∗, ν̂1, ν̂2).

Definition 1.12.

1. If x∗ is a strongly stationary point of (1.19) with multipliers (λ∗, µ∗, ν̂1, ν̂2) satisfying
(1.23), then x∗ is said to satisfy the MPEC-SOSC (MPEC-Second Order Sufficient
Condition), if

dT∇2
xxLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) d > 0 (1.25)

holds for all d = (d0, d1, d2) ∈ S∗(x∗, λ∗, µ∗, ν̂1, ν̂2).

2. If (1.25) holds for all d ∈ S̄(x∗, λ∗, µ∗, ν̂1, ν̂2), then x∗ is said to satisfy the RNLP-
SOSC (RNLP-Second Order Sufficient Condition).
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3. If (1.25) holds for all d ∈ S̃(x∗, λ∗, µ∗, ν̂1, ν̂2), then x∗ satisfies the SSOSC (Strong
Second Order Sufficient Condition).

Considering the definitions of these sets, we obtain the relationship SSOSC ⇒ RNLP-
SOSC ⇒ MPEC-SOSC for the second order conditions. Moreover note that the RNLP-
SOSC corresponds to the standard SOSC (confer (1.18)) applied to RNLP.

Finally, we state a result concerning the second order sufficient conditions, which is a
simple application of the corresponding result in [SS00].

Theorem 1.3. If x∗ is a strongly stationary point of the MPEC (1.19) that satisfies the
MPEC-SOSC for any multiplier vector satisfying the strong stationarity conditions, then
x∗ is a strict local minimum of (1.19).

Proof. If for any d 6= 0 satisfying

∇gj(x
∗)Td ≥ 0, j ∈ Ig(x∗)

∇h(x∗)Td = 0, j ∈ {1, . . . , q}
d1j = 0 j ∈ (I1\I2)(x∗) (1.26)

d2j = 0 j ∈ (I2\I1)(x∗)
min(d1j , d2j) = 0 j ∈ (I1 ∩ I2)(x∗) ,

and additionally ∇f(x∗)Td = 0 it holds for any suitable multiplier vector (x∗, λ∗, µ∗, ν̂1, ν̂2)

dT∇2
xxLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) d > 0 ,

then x∗ is a strict local minimum of (1.19) by Theorem 7 of [SS00]. Hence, if we can show
that any d 6= 0 satisfying (1.26) and ∇f(x∗)Td = 0 is an element of S∗(x∗, λ∗, µ∗, ν̂1, ν̂2),
then x∗ is a strict local minimum of (1.19).

Therefore, let d 6= 0 satisfy (1.26) and additionally ∇f(x∗)Td = 0. It then follows in
combination with the strong stationarity of x∗ that

0 = ∇f(x∗)Td =
∑

j∈I+
g (x∗,λ∗)

λ∗j∇gj(x
∗)T d+

q
∑

i=1

µ∗i∇hi(x
∗)Td+

∑

j∈(I1∩I2)(x∗)

( ν̂1j d1j+ν̂2j d2j ) .

This, however, can only be satisfied if d1j = 0 for all j ∈ (I1 ∩ I2)(x∗) with ν̂1j > 0 and
d2j = 0 for all j ∈ (I1 ∩ I2)(x∗) with ν̂2j > 0, respectively, as well as ∇gj(x

∗)T d = 0 for all
j ∈ I+

g (x∗, λ∗). Hence we can derive the following additional conditions for the direction d

∇gj(x
∗)T d = 0, j ∈ I+

g (x∗, λ∗)

d1j = 0, j ∈ (I1 ∩ I2)(x∗) and ν̂1j > 0

d2j = 0, j ∈ (I1 ∩ I2)(x∗) and ν̂2j > 0 .

and conclude that d ∈ S∗(x∗, λ∗, µ∗, ν̂1, ν̂2).

The MPEC-SOSC is thus sufficient to guarantee the local optimality of a strong station-
ary point x∗ for (1.19) .
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1.4 Existing Approaches

Recent numerical approaches to solve MPECs follow a variety of directions. A survey of
the different ideas can be found in [FL04b]. The majority of them have a special treatment
of the complementarity constraints in common, either by relaxation or as a penalty term
or elsewise.

Regularization schemes are based on introducing a parameter t > 0 such that the re-
sulting parametrized nonlinear program Pt is regular and for t = 0 the original MPEC is
recovered. Although the different methods vary in the way of the parametrization, they
share the feature that the smaller t > 0, the better Pt approximates the MPEC. Thus,
solving a sequence of such problems Pt, a sequence of approximate solutions is obtained,
which converges to a solution of the original MPEC, under suitable assumptions.

Similar ideas concern penalization techniques, where the complementarity constraints
are added as a penalty term to the objective function. In some of the approaches the
penalty term does not only contain the complementarity constraints but also the ordinary
nonlinear constraints of the MPEC.

Finally, there are approaches that concern the direct or adapted application of particular
NLP methods, as Sequential Quadratic Programming, Interior Point and Trust-Region
Methods to solve MPECs.

In the sequel, we will give a brief overview of each of these directions starting with
regularization methods. To keep the consistency of the notation, we sometimes slightly
adapt the notation of the approaches and the corresponding results. The modifications,
however, mainly concern the form of the complementarity constraints that are discussed.

Smoothing and Regularization Methods

Often smoothing methods for MPECs are based on a reformulation the complementarity
constraint

0 ≤ x1 ⊥ x2 ≥ 0

with (x1, x2) ∈ R
2p by means of an NCP function, which is defined as follows [GK02].

Definition 1.13. A function φ : R2 −→ R is called NCP (Nonlinear Complementarity
Problem) function , if

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0

holds.

Two main examples for NCP functions are the minimum function

φMin(a, b) := 2min(a, b)

and the Fischer-Burmeister function

φFB(a, b) := a+ b−
√

a2 + b2 .
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Reformulating accordingly the MPEC, we obtain the problem

min f(x)
subject to h(x) = 0

g(x) ≥ 0
φ(x1j , x2j) = 0 j = 1, . . . , p ,

(1.27)

which has an identical feasible region to the original problem. However, since these NCP
functions are not differentiable in (a, b) = (0, 0), it is not suitable to apply an NLP method
to (1.27). Therefore, one parametrizes (smoothes) the NCP function in a way, such that the
parametrized function is differentiable for every strictly positive parameter t and coincides
with the original function for t = 0. The smoothed minimum function is

φMin
t (a, b) := a+ b−

√

(a− b)2 + 4t2 .

and the smoothed Fischer-Burmeister function has the form

φFB
t (a, b) := a+ b−

√

a2 + b2 + 2t2 .

Using a smoothed NCP function φt to solve the MPEC, we hence get a family of parame-
terized NLPs with differentiable constraint functions:

Pt min f(x)
subject to h(x) = 0

g(x) ≥ 0
φt(x1j , x2j) = 0 j = 1, . . . , p .

(1.28)

The feasible regions of these problems are cumulatively approximating the feasible region
of the MPEC for every positive, decreasing sequence of parameters tk ↘ 0. Hence, to solve
the MPEC, one has to solve such a sequence of smoothed problems Ptk .

Facchinei et al. [FJQ99] present such a solution approach using the smoothed Minimum
function and approximately solving a sequence of problems Ptk .

Jiang and Ralph [JR00] distinguish two similar approaches. The first one, the explicit
smooth SQP method, is based on solving a sequence of modified quadratic models of Ptk

at which the parameter tk > 0 is updated after each solution of such Quadratic Programs
(QP). The alternative, the implicit smooth SQP method, is based on solving a sequence of
modified SQP subproblems of

P minx,t f(x)
subject to h(x) = 0

g(x) ≥ 0
φ(x1j , x2j , t) = 0 j = 1, . . . , p

et − 1 = 0

where t is treated as an additional variable and for each t it holds φ(x1j , x2j , t) := φt(x1j , x2j)
and e denotes Euler’s constant. The terms explicit and implicit correspond to the update
of t since for the first variant one has to update the parameter explicitly, whereas for the
second one the constraint et − 1 = 0 implicitly forces t = 0.
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Zhu et al. [ZLZ07] propose to solve the MPEC using the nonsmooth Fischer-Burmeister
function, however, combined with the idea of successive approximation, at which the exact
nonsmooth function is used outside Bε(0, 0) and a smooth approximation of it inside of
Bε(0, 0). The resulting function Φε of this combination then replaces the original Fischer-
Burmeister function and problems of the form

Pε min f(x)
subject to h(x) = 0

g(x) ≥ 0
Φε(x1j , x2j) = 0.

are solved.

Zhu et al. [ZLZ07] consider global solutions of the MPEC and the reformulated prob-
lems as well as the convergence of a sequence of stationary points of Pεk

for a decreasing
sequence of parameters εk. One main assumption of their convergence result concerns the
nondegeneracy of the accumulation point that is considered. Numerical results have not
yet been reported.

Another solution approach is the regularization scheme proposed by Scholtes in [Sch01]
and further discussed in [RW04]. Therein, the complementarity constraint (1.20) is relaxed
by a strictly positive parameter t

x1j ≥ 0, x2j ≥ 0, x1jx2j ≤ t, j = 1, . . . , p

such that the resulting parameterized problem is

NLP (t) min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1 ≥ 0, x2 ≥ 0

x1jx2j ≤ t j = 1, . . . , p .

(1.29)

The bilinear function φBil(a, b) = ab is not an NCP function, since the implication

φBil(a, b) = 0 =⇒ a ≥ 0, b ≥ 0

does not hold. Therefore, these conditions have to be additionally included in the con-
straints of NLP(t). The main convergence results given in [Sch01] can be stated as follows.

Theorem 1.4. Let (tk) be a sequence of positive scalars tending to zero, let xk be a sta-
tionary point of NLP (tk) tending to x̄ and suppose the MPEC-LICQ holds at x̄. Let

I0 = { j |xk
1jx

k
2j = tk for infinitely many k } .

Then the following statements hold:

1. For every sufficiently large k NLP(tk) has unique Langrange multipliers λk, µk, γk,νk,
δk at xk.
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2. The point x̄ is a C-stationary point of NLP(0) with unique multipliers λ̄, µ̄, ν̂1 and
ν̂2 that satisfy

λ̄j = lim
k→∞

λk
j ≥ 0

µ̄i = lim
k→∞

µk
i

ν̂1k = lim
k→∞

νk
1k ≥ 0 k /∈ I0

ν̂2k = lim
k→∞

νk
2k ≥ 0 k /∈ I0

ν̂1m = lim
k→∞

−δk
1mx

k
1m ≤ 0 m ∈ I0

ν̂2m = lim
k→∞

−δk
2mx

k
1m ≤ 0 m ∈ I0

3. The point x̄ is B-stationary if and only if ν̂1m = ν̂2m = 0 for all m ∈ (I1∩ I2)(x̄)∩ I0.

4. If in addition the second order optimality conditions (see Definition 1.7) hold at each
xk, then x̄ is M-stationary.

Theorem 1.5. Suppose x̄ is a B-stationary point of NLP(0) and MPEC-LICQ as well as
SSOSC hold at x̄. Assume further that ν̂1j 6= 0 if j ∈ I1(x̄) and ν̂2j 6= 0 if j ∈ I2(x̄) for
every j = 1, . . . , p. Then there exists an open neighbourhood U of x̄, a scalar t̄ > 0 and a
piecewise smooth function x : (−t̄, t̄) −→ U such that x(t) is the unique stationary point of
NLP(t) for every 0 < t < t̄. Moreover, x(t) satisfies second order sufficient conditions.

The result of Theorem 1.5 has been improved and extended by Ralph and Wright in
[RW04]. However, since it is not of particular importance to which of these variants of
Theorem 1.5 we compare our results with, we confine ourselves to state here only the basic
result of [Sch01].

A variant of this approach is discussed in [BS07], where the inequality constraints
x1jx2j ≤ t are replaced by equality constraints x1jx2j = t for j = 1, . . . , p. Preliminary
numerical experiments mentioned in [Sch01] reveal, however, that this solution approach is
not likely to be advantageous compared with the one using x1jx2j ≤ t.

In contrast to the feasible region of Pt for t > 0, the feasible region of NLP (t) contains
the feasible region of the MPEC. Thus, by solving NLP (t) for a strictly positive parameter
t one might already find a solution of the MPEC without having to solve further problems
NLP (t) for reduced parameters t.

Another modified regularization scheme is proposed by Fukushima and Lin [FL05]. They
consider solving a sequence of parameterized problems

min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1jx2j ≤ t2 j = 1, . . . , p

(x1j + t)(x2j + t) ≥ t2 j = 1, . . . , p .
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The convergence results they state resemble the results of Theorem 1.4.

Finally, Lin and Fukushima [LF03a] have also analyzed a relaxation method that is based
on solving a sequence of problems (applied to (1.19))

min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1 ≥ 0

(ekj − x1)x2 ≥ 0 j = 0, . . . , p ,

(1.30)

where

ekj := (1/k) e + k ej j = 0, . . . , p

with e0 := (0, . . . , 0)T , e = (1, . . . , 1)T , ej denotes the j-th unit vector and k ∈ N. They
discuss the limiting behaviour of global solutions as well as of stationary points of a sequence
of problems (1.30) and report some computational results of their method.

Penalty Methods

Other ideas to deal with the equilibrium or complementarity constraints use penalty ap-
proaches of various kinds. Luo et al. [LPRW96] consider MPECs of the form (1.1), which
are then, however, reformulated by the KKT-conditions for the VI, such that the resulting
MPEC has a similar form to (1.9). Then, a so-called penalty equivalent is introduced which
applied to (1.9) corresponds to

minx,y F (x, y) +$ r(x, y, λ)1/N

subject to x ∈ X
G(x, y) ≤ 0
λ ≥ 0
‖λ‖ ≤ c ,

(1.31)

with

r(x, y, λ) := ‖∇yL(x, y, λ)‖+
∑

((gi(x, y))
+ + λi|gi(x, y)|)

and N ∈ N. It is proved that under suitable conditions, the solution set of problem (1.31)
is identical to the one of the original MPEC (1.1).

A further specification of this approach for NCP constrained programs is discussed in
[LPR96]. Applied to problem (1.19), the penalty equivalent then has the form

min f(x) +$xT
1 x2

subject to h(x) = 0
g(x) ≥ 0
x1 ≥ 0, x2 ≥ 0 ,

which, again under suitable assumptions, is shown to have an identical solution set to
(1.19). The results for the exact penalty approach of [LPRW96] have been further extended
in [LF03b].
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1.4 Existing Approaches

Another exact penalty approach for a similar type of MPECs is considered in [SS99].
Therein Scholtes and Stöhr prove the existence of an exact penalty function for such MPECs
under suitable assumptions. Furthermore, they suggest a solution approach that is based
on an extension of the S`1QP method of Fletcher [Fle00], which is an SQP trust-region
method on the basis of an `1 penalty function. Therein, linearized constraints are directly
substituted into the QP objective function by an `1 penalty term, such that the only
constraints of the QP subproblems are those implied by the trust-region. In [SS99] a suitable
extension of the `1 penalty term is proposed that handles the complementarity constraints
specifically. Applied to (1.19) the proposed `1 penalty term of the QP subproblem in a
current iterate xk has the form:

pIk
(d) =

p
∑

j=1
j∈Ik

max{|xk
1j + d1j |,−(xk

2j + d2j)}+

p
∑

j=1
j /∈Ik

max{|xk
2j + d2j |,−(xk

1j + d1j)}

+

q
∑

j=1

|hj(x
k) +∇hj(x

k)T d|+
m∑

j=1

(−gj(x
k)−∇gj(x

k)T d)+

with Ik ⊆ {1, . . . , p} and Ik is adapted appropriately after each solution of a QP subproblem.
The QP subproblems then have the form

min qk(d) +$pIk
(d)

subject to ‖d‖ ≤ ∆k ,

where qk(d) = ∇f(xk)T d + 1/2 dT ∇2
xxL(xk, πk) d with L(x, π) being the corresponding

Lagrangian function and ∆k being the actual trust-region radius.

A different penalty approach is suggested in [HR04]. Hu and Ralph discuss the conver-
gence properties of the penalty problem (applied to (1.19))

min f(x) +$p(x1, x2)
subject to h(x) = 0

g(x) ≥ 0
x1 ≥ 0, x2 ≥ 0 ,

(1.32)

with p(x1, x2) satisfying appropriate conditions such that reasonable convergence properties
result. Two functions satisfying these conditions are

p(x1, x2) =

p
∑

j=1

x1jx2j or p(x1, x2) =

p
∑

j=1

φFB(x1j , x2j)
3 .

In contrast to the methods that are concerned with penalty equivalents of the MPEC, the
penalty method of [HR04] is not exact in the sense that the solution set of problem (1.32)
is not considered to be identical to the one of (1.19). However, under suitable assumptions
it is shown that if an iterate x0 is a stationary point of (1.32) that is close enough to a
B-stationary point x∗, and the corresponding penalty parameter $ is sufficiently large,
then the generated sequence of stationary points xk satisfies xk → x∗.
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1 Introduction to MPECs

SQP Methods

The approaches we will discuss next consider SQP methods for MPECs. They differ not
only in the specific SQP variant that is proposed, but also in the class of MPECs the
algorithms are designed for.

We begin with solution approaches for MPECs with linear constraints. Fukushima et al.
[FLP98] propose an SQP algorithm that is applied to a reformulation of the MPEC using
the smoothed Fischer-Burmeister function φFB

t (a, b). A line-search applied to an `1 penalty
function is further used to promote global convergence. Their algorithm is shown to be
globally convergent under suitable conditions including nondegeneracy of the solution. A
further modification of the algorithm is discussed in [JLM06].

Another kind of SQP algorithm for this class of MPECs is suggested by Zhang et al.
[ZLW04]. Their SQP method is based on an approximately active search and similar to
the Piecewise SQP Approach explained in [LPR96]. The algorithm is globally convergent
and is further extended to a more general class of MPECs in [LY07].

Finally, Júdice et al. [JSRF07] present an active set algorithm designed for MPECs with
linear constraints.

For general MPECs of the form of (1.19) Fletcher et al. [FLRS06] recommend to apply
directly ordinary SQP methods to (1.19) reformulated as the NLP

min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1 ≥ 0, x2 ≥ 0

xT
1 x2 ≤ 0 .

(1.33)

They establish superlinear convergence near a strongly stationary point x∗ under reasonable
assumptions, including the MPEC-LICQ and a second order sufficient condition to hold in
x∗. Convincing numerical results for this approach are presented in [FL02b].

An extension of the results of [FLRS06] is considered by Leyffer in [Ley06]. Therein,
Leyffer applies an ordinary SQP method to problems that are exact reformulations of
(1.19) using nonsmoothed NCP functions. The convergence results of [FLRS06] can also
be established for these reformulations.

Another extension is considered by Anitescu in [Ani05b]. He discusses the usage of SQP
methods with an elastic-mode. In [ATW07] Anitescu et al. demonstrate global convergence
of an SQP method with elastic-mode to C-, M- or strongly stationary points.

Interior Point Methods

Recently, Interior Point Methods (see Section 3.2) have also been used to solve MPECs and
receive an increasing interest. The methods we discuss in the following are alike, as they
all originate in solving a barrier problem, where the complementarity constraints receive a
special treatment. The methods differ, however, in the way they treat the complementarity
constraints.
To begin with, Liu and Sun [LS04] propose a method that solves a relaxed barrier problem
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1.4 Existing Approaches

of the form
min f(x)− ρ∑m+3p

j=1 ln(sj)

subject to h(x) = 0
H(x, s, t) = 0 ,

(1.34)

where s = (sg, s1, s2, sc) ∈ R
m+3p,

H(x, s, t) =







g(x) − sg

x1 − s1
x2 − s2

X1x2 + sc − te






,

and X1 = diag(x1j) ∈ R
p×p, ρ > 0 is the barrier parameter and t > 0 denotes the

relaxation parameter. Note that we obtain (1.34), if we introduce slack variables si to
problem NLP (t) and remove the remaining inequality constraints s ≥ 0 by inserting the
corresponding barrier-term ρ

∑m+3p
j=1 ln(sj) into the objective function.

Liu and Sun further propose to link the reduction of the barrier parameter ρ with the
reduction of the relaxation parameter t by choosing ρ to be a fixed fraction of t. They
prove global convergence of their algorithm under suitable assumptions.

A similar interior point approach is considered by Raghunatan and Biegler [BR05]. They
introduce a barrier problem akin to (1.34). However, they do not introduce the slack vari-
ables s1 and s2 for the inequality constraints x1 ≥ 0 and x2 ≥ 0 but remove these constraints
by directly adding a corresponding part to the barrier term. Thus, their objective function
has the form

f(x)− ρ
m∑

j=1

ln(sgj)− ρ
p
∑

j=1

ln(x1j)− ρ
p
∑

j=1

ln(x2j)− ρ
m∑

j=1

ln(scj)

and the corresponding constraint function H(x, s, t) is

H(x, s, t) =

(
g(x) − sg

X1x2 + sc − t e

)

.

They also link the updates of the barrier parameter and of the relaxation parameter. The
algorithm that is proposed attains quadratic convergence to a strongly stationary point
under suitable assumptions.

The interior point method of DeMiguel et al. [DFNS05] differs from the preceding two
in that it uses a two-sided relaxation scheme. The scheme is obtained by not only relaxing
the constraint x1jx2j = 0 but also the nonnegativity condition on x1j and x2j . To be more
precise, the condition

0 ≤ x1j ⊥ x2j ≥ 0,

is replaced by
x1j ≥ −δ1j , x2j ≥ −δ2j , x1jx2j ≤ tj .

Slack variables are again introduced and a problem similar to (1.34) is solved. The re-
laxation parameters are then reduced in each iteration according to the sign of a corre-
sponding multiplier estimate for a strongly stationary point. Either δij for i = 1, 2 is
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1 Introduction to MPECs

reduced or the parameter tj is reduced, but not both. This procedure ensures that the
strictly feasible set does not correspond to the empty set even in the limit, in contrast
to the other relaxation methods we described before. This property makes it attractive
for interior-point algorithms. The algorithm presented in [DFNS05] is shown to converge
superlinearly near a strongly stationary point x∗ if x∗ satisfies suitable conditions including
MPEC-LICQ and SSOSC.

Finally, an interior point approach is analyzed by Leyffer et al. [LLCN06] that is based on
a barrier problem, where the complementarity constraints are not relaxed by introducing a
relaxation parameter t. Instead the conditions x1jx2j = 0 are removed from the constraints
and a corresponding penalty term is added to the objective function. The barrier problem
that is solved is

min f(x) +$xT
1 x2 − ρ

∑m
j=1 ln(sgj)− ρ

∑p
j=1 ln(x1j)− ρ

∑p
j=1 ln(x2j)

subject to h(x) = 0
g(x) − sg = 0

Global and local convergence results are discussed and numerical experiences for different
penalty parameter update modes are reported.

Other Methods

Although we tried to cover a large variety of methods to solve MPECs, we clearly could not
mention all approaches that have been proposed and tested. Other methods, as for example
Implicit Programming approaches which are described e.g. in [LPR96] and [KOZ98] have
not been discussed here.

However, the selection we made corresponds to the main purpose of this section, which
is to give some brief background information about the state-of-the-art of methods for
MPECs that are somehow related to the relaxation scheme we introduce and analyse in
the following chapters.

32



2 New Relaxation Scheme for MPECs

In the following chapter we will present the new relaxation scheme for MPECs. The
scheme we propose can be regarded as a combination of ideas from regularization schemes,
as for example the one proposed by Scholtes in [Sch01], with the relaxation-free approach
proposed by Fletcher et al. [FLRS06].

First, we derive and illustrate the new relaxation, followed by a detailed discussion of
its properties. In particular, we analyse the stationary points and solutions of the relaxed
problems. Then we are concerned with the convergence behaviour of sequences (xk) that
are determined by solving a sequence of relaxed problems. Afterwards, we briefly consider
possible extensions of the relaxation and finally we compare our new relaxation with the
regularization scheme of Scholtes and the direct approach of Fletcher et al..

2.1 Relaxation

For t > 0, our relaxation for each pair (x1j , x2j) ∈ R
2 is done only on a subset of the

triangle with the vertices (0, 0), (t, 0), and (0, t). Therefore, if the relaxation parameter
is sufficiently small then around a local solution x∗ of (1.19) our relaxed problem only
modifies the complementarity constraints that correspond to degenerate components of the
vector x∗. Hence, we merge the overall relaxation for all components of Scholtes [Sch01]
with the exactness for the strictly complementary components of the approach of Fletcher
et al. [FLRS06]. Moreover, if t = 0, then the parametrized nonlinear program corresponds
to the original MPEC.

To derive the relaxation scheme that we analyse in this thesis, we first consider the scalar
complementarity condition

x1 ≥ 0, x2 ≥ 0 and x1x2 = 0, (2.1)

with x1, x2 ∈ R. Now, if we introduce new Cartesian coordinates

y := x1 + x2 and z := x1 − x2,

then the constraints of (2.1) simplify to y = |z|. Next, to smooth out the kink of the
absolute value function on the interval [−1, 1], we define a function θ : D ⊆ R→ R, where
D is supposed to be an open subset of R with [−1, 1] ⊆ D, which satisfies the following
conditions

Assumptions 2.1.

1. θ is twice continuously differentiable on [−1, 1],

2. θ(1) = θ(−1) = 1,
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2 New Relaxation Scheme for MPECs

3. θ′(−1) = −1 and θ′(1) = 1,

4. θ′′(−1) = θ′′(1) = 0 and

5. θ is strictly convex on (−1, 1).

Throughout this thesis we will assume that Assumptions 2.1 hold. Suitable examples for
θ are

θs(z) :=
2

π
sin

(

z
π

2
+

3π

2

)

+ 1 (2.2)

or

θp(z) :=
1

8
(−z4 + 6z2 + 3) (2.3)

Combining θ inside [−1, 1] with the absolute value function outside [−1, 1] and scaling the
interval leads to a C2-function

ψ(z, t) :=

{
|z| |z| ≥ t
t θ(z

t ) |z| < t ,

which gives us a relaxation of y = |z| of the form

y ≥ −z, y ≥ z and y ≤ ψ(z, t) . (2.4)

Switching back to our original coordinate system we obtain

x1 + x2 ≥ x2 − x1, x1 + x2 ≥ x1 − x2 and x1 + x2 ≤ ϕ(x1, x2, t) ,

with ϕ(x1, x2, t) := ψ(x1 − x2, t). Hence, relaxing each of the complementarity constraints
of the MPEC as described above, we get a parametric nonlinear program R(t) of the form:

R(t) min f(x)

subject to h(x) = 0
g(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2, t) ≤ 0 ,

(2.5)

where Φ(x1, x2, t) : Rp ×R
p ×R

+
0 → R

p is defined by

Φ(x1, x2, t) := x1 + x2 − ϕ(x1, x2, t)

and

ϕj(x1, x2, t) :=

{ |x1j − x2j | |x1j − x2j | ≥ t
t θ(

x1j−x2j

t ) |x1j − x2j | < t .

Since θ is assumed to be strictly convex on (−1, 1) the graph of θ(z/t) lies entirely above
the two linearizations of θ in z = −t and z = t , respectively. In other words θ(z/t) > |z/t|
for all z ∈ (−t, t). Furthermore, for any z ∈ R\(−t, t) we have ψ(z, t) = |z|.
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2.1 Relaxation

Now, consider a point x̂ that is feasible for (1.19). Then x̂ is also feasible for R(t) for
any t ≥ 0, as for all complementarity pairs (x̂1j , x̂2j) with |x̂1j − x̂2j | ≥ t by the definition
of Φ

Φj(x̂1, x̂2, t) = x̂1j + x̂2j − |x̂1j − x̂2j| = 2min(x̂1j , x̂2j) = 0. (2.6)

and for all pairs (x̂1j , x̂2j) with |x̂1j − x̂2j | < t we have

Φj(x̂1, x̂2, t) = x̂1j + x̂2j − tθ
(

x̂1j−x̂2j

t

)

< x̂1j + x̂2j − t
∣
∣
∣
x̂1j−x̂2j

t

∣
∣
∣

= x̂1j + x̂2j − |x̂1j − x̂2j | = 2min(x̂1j , x̂2j) = 0.

(2.7)

Hence, by the feasibility of a point x̂ for (1.19) we do not only know that x̂ is feasible
for any R(t) with t ≥ 0, but we can also directly deduce, which indices j ∈ {1, . . . , p} are
contained in the active set of R(t) concerning the constraints Φj(x1, x2, t) ≤ 0 which we
will denote by

IΦ(x, t) = { j ∈ {1, . . . , p} |Φj(x1, x2, t) = 0 } .
The next Lemma summarizes the observations we just made.

Lemma 2.1. Let x̂ be feasible for (1.19), then

1. x̂ is also feasible for R(t) for every t ≥ 0 and

2. j ∈ IΦ(x̂, t) if and only if max(x̂1j , x̂2j) ≥ t.

Proof. The problem R(t) differs from (1.19) only in the constraints concerning the comple-
mentarity of x̂1 and x̂2. By (2.6) and (2.7), however, x̂ satisfies the constraint Φj(x1, x2, t)≤
0 for all j ∈ {1, . . . , p} and for all t ≥ 0. Moreover, if max(x̂1j , x̂2j) < t, thus |x̂1j− x̂2j| < t,
then (2.7) implies that Φj(x1, x2, t) ≤ 0 is inactive, whereas if max(x̂1j , x̂2j) ≥ t, thus
|x̂1j − x̂2j| ≥ t, then j ∈ IΦ(x̂, t) by (2.6).

On the other hand, the strict convexity of θ implies that a point x̂ that is feasible for
R(t) and satisfies Φj(x̂1, x̂2, t) = 0 for a pair (x̂1j , x̂2j) with |x̂1j − x̂2j | < t is infeasible for
(1.19) as

0 = Φj(x̂1, x̂2, t) = x̂1j + x̂2j − tθ
(

x̂1j−x̂2j

t

)

< x̂1j + x̂2j − t
∣
∣
∣
x̂1j−x̂2j

t

∣
∣
∣

= 2min(x̂1j , x̂2j) .

(2.8)

This demonstrates the relaxing property of R(t), since for all x with Φj(x1, x2,t)=0 and
|x1j − x2j| < t, by (2.8) we have (x1j , x2j) ∈ R

+ ×R
+.

Now consider a strictly positive decreasing sequence (tk) and a corresponding sequence
(xk) ⊆ R

n+2p, where each xk is feasible for R(tk). Assume the sequence (xk) converges to
a point x̂ that is feasible for (1.19). Then, by view of (2.8) , (2.6) and the corresponding
remarks, it becomes clear, that the relaxation concerns increasingly only the pairs (xk

1j , x
k
2j)

that converge to the degenerate complementarity pairs of x̂.
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2 New Relaxation Scheme for MPECs

Moreover, if t = 0, then the feasible region of the MPEC and of R(t) are equal. Figure 2.1
illustrates the new relaxation scheme and how it combines the ideas of the regularization
scheme proposed by Scholtes in [Sch01] with the ideas of the approach to solve the MPEC
by using exact NCP-functions (for example the minimum function) analysed in [Ley06]
(confer Section 1.4).
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Figure 2.1: Contours of Φj(x1, x2, t) = 0 with θs(z) as defined by (2.2) for different values
of t > 0, namely t ∈ {0.05, 0.2, 0.5, 0.8}

Having discussed the relaxation property of R(t) in relation to (1.19), we also need to
relate the feasible regions of R(t) for different values of t in order to be able to relate their
solutions.

Lemma 2.2. Let Z(t) denote the feasible region of R(t), then for every pair of parameters
t1, t2 ∈ R, with 0 ≤ t1 < t2 :

Z(t1) ⊆ Z(t2) . (2.9)

Proof. Since for different parameters tk the feasible regions of R(tk) differ only in the
relaxing constraints Φj(x1, x2, tk) ≤ 0 for j ∈ {1, .., p}, we have to prove (2.9) only for these
constraints. First, we show that for any 0 ≤ t1 < t2

Φj(x1, x2, t2) ≤ 0 (2.10)

is implied by Φj(x1, x2, t1) ≤ 0 for all j ∈ {1, .., p}.
Suppose |x1j − x2j | ≥ t1, then (2.10) is an immediate consequence of the definition of

Φj. Therefore, we assume that |x1j − x2j| < t1. Let z := x1j − x2j then

∣
∣
∣
∣

z

t1

∣
∣
∣
∣
,

∣
∣
∣
∣

z

t2

∣
∣
∣
∣
< 1 .
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It follows from the Assumptions 2.1 for θ in conjunction with Lemma 2.1 that

θ
(z

t

)

>
∣
∣
∣
z

t

∣
∣
∣ and

∣
∣
∣θ′
(z

t

)∣
∣
∣ < 1 ,

such that
θ
(z

t

)

>
∣
∣
∣
z

t

∣
∣
∣ >

∣
∣
∣
z

t

∣
∣
∣

∣
∣
∣θ′
(z

t

)∣
∣
∣ ≥ z

t
θ′
(z

t

)

.

Hence, for pairs (x1j , x2j) with |x1j−x2j| < t1, the function ϕj(x1, x2, t) is strictly monotone
increasing in t ≥ 0, as we have

∂ϕj

∂t
(x1, x2, t) = θ

(z

t

)

− z

t
θ′
(z

t

)

> 0 .

Now, the strict monotonicity of ϕj , the definition of Φj and the condition Φj(x1, x2, t1) ≤ 0
imply (2.10).

Consider a sequence (tk) with 0 ≤ tk+1 < tk < . . . < t0, then

Z(0) ⊆ Z(tk+1) ⊆ Z(tk) ⊆ . . . ⊆ Z(t0) .

This, however, implies that if we have found a local solution x∗ of R(t̂) with t̂ > 0 that is
feasible for (1.19), then x∗ is a local solution of R(t) for all t ∈ [0, t̂].

Lemma 2.3. Let Assumptions 2.1 hold and let x∗ be a strict local minimum of R(t̂) in an ε-
neighbourhood Bε(x

∗) of x∗, that satisfies the complementarity constraints 0 ≤ x1⊥x2 ≥ 0.
Then x∗ is a strict local minimum of R(t) for every t ∈ [0, t̂ ] in the same ε-neighbourhood
Bε(x

∗).

Proof. Suppose x∗ is a strict local minimum of R(t̂ ) that satisfies the complementarity
constraints, thus x∗ ∈ Z(0). Then by Lemma 2.2 it follows that

∀x ∈ (Z(t) ∩ Bε(x
∗)) ⊆

(
Z(t̂) ∩ Bε(x

∗)
)

: f(x) > f(x∗) (2.11)

for every t ∈ [0, t̂ ). Hence, x∗ is also a strict local minimum for R(t) for every t ∈ [0, t̂ ) in
the same ε-neighbourhood Bε(x

∗) of x∗.

In Section 2.3 we will consider sequences (xk) ⊆ R
n+2p, where each xk is feasible for

R(tk) for positive, strictly decreasing parameter sequences (tk). We are therefore further
interested in the question whether a limit point x̄ of such a sequence (xk) is feasible for
(1.19). The next Lemma addresses to this question.

Lemma 2.4. Let Z(t) denote the feasible region of R(t) and let Z be the feasible region of
(1.19). Furthermore, let (tk) ⊆ R

+ be a sequence that satisfies tk → 0. Then

Z = Z(0) =
∞⋂

k=1

Z(tk) (2.12)

holds, such that any accumulation point x̄ of a sequence (xk) with xk ∈ Z(tk) satisfies
x̄ ∈ Z, in other words x̄ is feasible for (1.19).
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Proof. As Φj(x1, x2, 0) = 2 min(x1j , x2j) ≤ 0 implies 0 ≤ x1 ⊥ x2 ≥ 0, the first equation
of (2.12) is clearly satisfied. Furthermore, Lemma 2.2 implies Z(0) ⊆ ⋂∞

k=1Z(tk) .
To prove Z(0) ⊇ ⋂∞

k=1Z(tk), we assume that there exists an x̄ ∈ ⋂∞
k=1Z(tk)\Z(0). Then

x̄1j x̄2j > 0 for at least one index j ∈ {1, . . . , p}, thus x̄1j > 0 and x̄2j > 0. Since

0 ≥ Φj(x1, x2, tk) = x1j + x2j − |x1j − x2j | = 2 min(x1j , x2j)

for all pairs (x1j , x2j) with |x1j − x2j | ≥ tk, by the feasibility of x̄ for each R(tk) and as
min(x̄1j , x̄2j) > 0, we conclude that |x̄1j − x̄2j | < tk for all k ∈ N. However, this implies

0 ≤ |x̄1j − x̄2j | ≤ lim
k→∞

tk = 0 ,

and hence x̄1j = x̄2j. Define ϑ := x̄1j ≥ 0, then for all k ∈ N

0 ≥ Φj(x̄1, x̄2, tk) = 2ϑ − ϕj(ϑ, ϑ, tk) = 2ϑ − tk θ(0) ,
such that 2ϑ ≤ tkθ(0) for all k ∈ N. Therefore,

0 ≤ 2ϑ ≤ θ(0) lim
k→∞

tk = 0 ,

which contradicts the assumption that x̄1jx̄2j > 0. Hence, Z(0) =
⋂∞

k=1Z(tk).

Let LR(t)(x, λ, µ, ν1, ν2, ξ) denote the corresponding Lagrangian function for R(t), with

LR(t)(x, λ, µ, ν1, ν2, ξ) = f(x)−∑m
j=1 λjgj(x)−

∑q
i=1 µihi(x)

−νT
1 x1 − νT

2 x2 +
∑p

j=1 ξjΦj(x1, x2, t) .
(2.13)

We can then state the first order stationarity conditions for R(t) as follows (confer (1.16)):
a point x is said to be a stationary point or KKT-point for R(t) if it is feasible for R(t)
and there exist multipliers λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗ such that the system

∇xLR(t)(x, λ
∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗) = 0

h(x) = 0

g(x) ≥ 0

λ∗ ≥ 0

gj(x)λ
∗
j = 0 j = 1, . . . ,m

x1 ≥ 0, x2 ≥ 0

ν∗1 ≥ 0, ν∗2 ≥ 0

x1jν
∗
1j = 0, x2jν

∗
2j = 0 j = 1, . . . , p

Φ(x1, x2, t) ≤ 0

ξ∗ ≥ 0

ξ∗j Φj(x1, x2, t) = 0 j = 1, . . . , p .

(2.14)

is satisfied. In view of the definition of Φi(x1, x2, t), the matrix ∇xΦ(x1, x2, t) is very sparse.
Its entries ∂Φi(x1, x2, t)/∂x1j , ∂Φi(x1, x2, t)/∂x2j all vanish except for the two diagonals

αj :=
∂Φj(x1, x2, t)

∂x1j
=







0 x1j ≥ x2j + t
2 x1j ≤ x2j − t
1− θ′(x1j−x2j

t ) otherwise
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2.1 Relaxation

βj :=
∂Φj(x1, x2, t)

∂x2j
=







0 x2j ≥ x1j + t
2 x2j ≤ x1j − t
1 + θ′(

x1j−x2j

t ) otherwise .

for all t > 0. It follows that

∇xΦ(x1, x2, t) =





0
D1

D2





with D1 = diag(αj) ∈ R
p×p and D2 = diag(βj) ∈ R

p×p.

Remark 2.1. Note that due to the conditions on θ(z) for all feasible points x ∈ R
n+2p, we

obtain 0 ≤ αj ≤ 2 and 0 ≤ βj ≤ 2. Moreover, βj = 2 − αj for all j ∈ {1, .., p} and the
values of αj are strictly monotonically decreasing for z := (x1j − x2j)/t in (−1, 1).

As we will make use of this conclusion later on in Section 2.3, we state it more precisely
in the following lemma.

Lemma 2.5. Suppose θ(z) satisfies Assumptions 2.1 and let α(z) := 1− θ′(z) and β(z) :=
1+ θ′(z). Then α(z) is strictly monotonically decreasing and β(z) is strictly monotonically
increasing for z ∈ (−1, 1).

Proof. If θ(z) satisfies the Assumptions 2.1, then for all z ∈ (−1, 1)

∂α

∂z
= −θ′′(z) < 0 and

∂β

∂z
= θ′′(z) > 0.

The following lemma relates the active index sets I1(x) and I2(x) to IΦ(x, t). These
relations will later be used in the analysis of the stationary points and the local minima of
the MPEC in comparison to those of R(t).

Lemma 2.6. Let t > 0 and let x be a feasible point of R(t), then it follows that

1. if j ∈ I1(x) and x2j ≥ t or j ∈ I2(x) and x1j ≥ t, then j ∈ IΦ(x, t) and the
corresponding gradients of the active constraints are positive linear dependent.

2. If x1j < t and x2j < t, then at most either j ∈ IΦ(x, t) or j ∈ (I1 ∪ I2)(x) but not
both.

Proof. The first part of the lemma is due to the definition of Φj(x1, x2, t), the special
structure of ∇xΦj(x1, x2, t) and the values of αj and βj , respectively. The second part
follows by Lemma 2.1.

Combining the two statements of Lemma 2.6 leads to the fact that either the constraints
x1j ≥ 0 or x2j ≥ 0 and Φj(x1, x2, t) ≤ 0 are both active and the corresponding gradients
are positive linear dependent or at most one of them appears in the KKT-system with a
possibly non-vanishing multiplier.
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2.2 Properties

In this section we will first relate the stationary points of the MPEC (1.19) to the stationary
points of R(t). This will be done by comparing the corresponding KKT-systems in order to
derive relations between suitable Lagrange multipliers of both problems. We then correlate
the local minima of (1.19) and of R(t) using the informations about the stationary points
and comparing the second order sufficient conditions of both problems.

A crucial assumption that we will need to relate a strongly stationary point x∗ of (1.19) to
a stationary point of R(t), concerns the admissible size of the parameter t. In order to prove
that x∗ is stationary for R(t), we have to assume that t ≥ 0 is small enough. The admissible
size of t thereby depends on the nonvanishing components of the complementarity pairs
of x∗. To simplify the notation of the corresponding results and their proofs, we therefore
introduce the following notation.

Definition 2.1. Let x∗ be a strongly stationary point of (1.19), then we define

τ(x∗) := min{x∗ij | i ∈ {1, 2} , j ∈ {1, . . . , p} and x∗ij > 0 } .

If x∗ij = 0 for all j ∈ {1, . . . , p} and i ∈ {1, 2}, then we set τ(x∗) := +∞.

The relation between strongly stationary points of (1.19) and stationary points of R(t)
can now be stated as follows.

Lemma 2.7. Suppose that x∗ is a strongly stationary point of (1.19) with multipliers
λ∗,µ∗,ν̂1,ν̂2. Then for every t ∈ (0, τ(x∗)] there exist multipliers ν∗1 , ν

∗
2 , ξ

∗ such that the
vector (x∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗) satisfies the stationarity conditions (2.14) of R(t).

Proof. By Lemma 2.1, the feasibility of x∗ for R(t) follows directly from the feasibility of
x∗ for (1.19). Now, let t ∈ (0, τ(x∗)], then x∗1j ≥ t for all j /∈ I1(x∗) and x∗2j ≥ t for all
j /∈ I2(x∗). Hence,

αj = 0 and βj = 2 for j /∈ I1(x∗)
αj = 2 and βj = 0 for j /∈ I2(x∗) .

(2.15)

As x∗ is feasible for (1.19), we have that I1(x
∗)⊥ ∩ I2(x∗)⊥ = ∅ (with Ii(x

∗)⊥ denoting
the complement of Ii(x

∗) in {1, .., p} (i = 1, 2)). Considering the special structure of
∇xΦ(x1, x2, t), the values of αj and βj of (2.15) and comparing (2.14) with the conditions
for strong stationarity yields

ν̂1j = ν∗1j − 2ξ∗j and 0 = ν̂2j = ν∗2j for j /∈ I2(x∗)
ν̂2j = ν∗2j − 2ξ∗j and 0 = ν̂1j = ν∗1j for j /∈ I1(x∗) .

(2.16)

If ν̂ij < 0 (i = 1, 2), then we choose ξ∗j > 0 such that ν∗ij = ν̂ij + 2ξ∗j ≥ 0.

As a consequence of Lemma 2.1, ξ∗j has to vanish for all j ∈ (I1∩ I2)(x∗) if t > 0. Hence,
we have

0 ≤ ν̂1j = ν∗1j and 0 ≤ ν̂2j = ν∗2j for all j ∈ (I1 ∩ I2)(x∗) .
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Remark 2.2. Note that examining the proof of Lemma 2.7 we get the answer to the question
why t has to be smaller then the parameter τ(x∗). If t > τ(x∗), then Φj(x

∗
1, x

∗
2, t) ≤ 0 might

not be active for all j ∈ {1, . . . , p}\(I1 ∩ I2)(x∗) and we might not be able to increase ξ∗j in
order to guarantee ν∗1j ≥ 0 or ν∗2j ≥ 0, respectively.

Lemma 2.7 does not give any information about the uniqueness of the multipliers of the
stationary point of R(t). In fact, due to the positive linear dependence of active constraint
gradients, as mentioned in Lemma 2.6, it cannot be guaranteed that the chosen multipliers
are unique, even if the multipliers for the strongly stationary point x∗ are unique. However,
assuming the MPEC-LICQ holds in x∗, we can prove the uniqueness for a special choice
of multipliers, which we call basic multipliers and define as follows (similar to the basic
multipliers defined in [Ley06]).

Definition 2.2. Let x∗ be a strongly stationary point of (1.19) with multipliers λ∗, µ∗, ν̂1,
and ν̂2 then we call the multipliers defined by

λb := λ∗

µb := µ∗

νb
1j := (ν̂1j)

+ j = 1, . . . , p

νb
2j := (ν̂2j)

+ j = 1, . . . , p

ξb
j :=







(

− ν̂1j

2

)+
j ∈ (I1\I2)(x∗)

(

− ν̂2j

2

)+
j ∈ (I2\I1)(x∗)

0 j ∈ (I1 ∩ I2)(x∗)

the basic multipliers of x∗ for R(t).

Suppose x∗ is a strongly stationary point of (1.19) and let t ∈ (0, τ(x∗)]. Furthermore,
let Λ(x∗, t) denote the set of all feasible multipliers of x∗ for R(t) (thus multipliers that
satisfy (2.14)), which is not empty by Lemma 2.7. It turns out, that assuming the MPEC-
LICQ holds in x∗, the basic multipliers are not only feasible and unique, but also solve the
minimization problem

min ‖(λ, µ, ν1, ν2, ξ)‖1
subject to (λ, µ, ν1, ν2, ξ) ∈ Λ(x∗) .

Lemma 2.8. Let x∗ be a strongly stationary point of (1.19), with multipliers λ∗, µ∗, ν̂1

and ν̂2 that satisfies the MPEC-LICQ and let t ∈ (0, τ(x∗)]. Then,

1. the basic multipliers (λb,µb, νb
1, ν

b
2, ξ

b) are unique and feasible for R(t), thus

(λb, µb, νb
1, ν

b
2, ξ

b) ∈ Λ(x∗, t)

and

2. they form the unique solution of

min ‖(λ, µ, ν1, ν2, ξ)‖1
subject to (λ, µ, ν1, ν2, ξ) ∈ Λ(x∗, t) .

(2.17)

41



2 New Relaxation Scheme for MPECs

Proof. First, the MPEC-LICQ in x∗ implies the uniqueness of the multipliers λ∗, µ∗, ν̂1

and ν̂2. The uniqueness of the multipliers (λb, µb, νb
1, ν

b
2, ξ

b) hence directly follows by
Definition 2.2.

Next, note that (λb, µb, νb
1, ν

b
2, ξ

b) satisfies all the conditions on (λ, µ, ν1, ν2, ξ) made
in the proof of Lemma 2.7. Hence, the basic multipliers are feasible for R(t).

Since λ∗, µ∗, ν̂1 and ν̂2 are unique by the MPEC-LICQ and the corresponding feasible
multipliers (λ, µ, ν1, ν2, ξ) of R(t) therefore must satisfy λ = λ∗ and µ = µ∗, we can reduce
(2.17) to

min ‖(ν1, ν2, ξ)‖1
subject to (λ, µ, ν1, ν2, ξ) ∈ Λ(x∗, t) .

(2.18)

Now consider (2.14) and notice that the feasible multipliers of x∗ for R(t) with t ∈ (0, τ(x∗)]
must additionally satisfy the conditions

ν1j = ν̂1j + 2ξj for j ∈ (I1\I2)(x∗)
ν2j = ν̂2j + 2ξj for j ∈ (I2\I1)(x∗)
ν1j = ν̂1j, ν2j = ν̂2j and ξj = 0 for j ∈ (I1 ∩ I2)(x∗)
ν1j ≥ 0, ν2j ≥ 0 and ξj ≥ 0 for j ∈ {1, . . . , p} .

Substituting νij with j ∈ {1, . . . , p} and i = 1, 2, in the objective function of (2.18) and
into the inequality conditions, we obtain the problem

min
∑p

j=1(ν̂1j + ν̂2j) + 3
∑p

j=1 ξj

subject to ξj ≥
(

− ν̂1j

2

)+
j ∈ (I1\I2)(x∗)

ξj ≥
(

− ν̂2j

2

)+
j ∈ (I2\I1)(x∗)

ξj = 0 j ∈ (I1 ∩ I2)(x∗) ,

which is clearly solved by ξb. Finally, the corresponding values of ν1 and ν2 that are
uniquely derived by the values of ν̂1, ν̂2 and ξb coincide with the values of the definition of
νb
1 and νb

2.

Next, we consider the inverse direction of Lemma 2.7. We obviously need to require the
feasibility of x∗ for (1.19), since it cannot be guaranteed by the feasibility of x∗ for R(t).
However, provided x∗ is feasible for (1.19), the stationarity of x∗ for R(t) implies that x∗

is strongly stationary.

Lemma 2.9. Suppose t > 0 and (x∗(t), λ∗(t), µ∗(t), ν∗1 (t), ν∗2 (t), ξ∗(t)) satisfies (2.14).
Moreover, let x∗(t) be feasible for (1.19). Then, x∗(t) is strongly stationary with multi-
pliers λ∗ = λ∗(t), µ∗ = µ∗(t) and

ν̂1j = ν∗1j(t)− αj ξ
∗
j (t)

ν̂2j = ν∗2j(t)− (2− αj) ξ
∗
j (t) .
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Proof. First suppose t > 0. Considering the feasibility assumption on x∗(t), the choice of
the multipliers and the values of αj and ξ∗j (t), respectively, the conditions of (1.23) are a
direct consequence of the conditions of (2.14). Furthermore, the nonnegativity of ν̂ij (i =
1, 2) for j ∈ (I1∩I2)(x∗(t)) is implied by ξ∗j (t) = 0 (since by Lemma 2.1 Φj(x

∗
1(t), x

∗
2(t), t) <

0) and the nonnegativity of ν∗ij(t) (i = 1, 2).

Having related the first order conditions of (1.19) and R(t), it remains to relate the second
order sufficient conditions in order to describe the relation between the strict local minima
of both problems. We therefore compare the sets of critical directions of both problems
and the corresponding Hessians of the Lagrangian functions with respect to x. It turns
out, that the sets of critical directions and the corresponding Hessians of the Lagrangian
functions are identical. Hence, the second oder sufficient conditions are identical and can
be replaced by each other. Let

SR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗, t) = { d ∈ R
n+2p\{0} |

∇hi(x
∗)Td = 0, i ∈ {1, . . . , q}

∇gj(x
∗)Td = 0, j ∈ I+

g (x∗, λ∗)

∇gj(x
∗)Td ≥ 0, j ∈ I0

g (x∗, λ∗)

∇Φj(x
∗
1, x

∗
2, t)

T d = 0, j ∈ I+
Φ (x∗, t, ξ∗)

∇Φj(x
∗
1, x

∗
2, t)

T d ≤ 0, j ∈ I0
Φ(x∗, t, ξ∗)

d1j = 0, j ∈ I+
1 (x∗, ν∗1 )

d1j ≥ 0, j ∈ I0
1 (x∗, ν∗1 )

d2j = 0, j ∈ I+
2 (x∗, ν∗2 )

d2j ≥ 0, j ∈ I0
2 (x∗, ν∗2 )} .

denote the set of critical directions of R(t) in x∗. Suppose x∗ is a strongly stationary point
of (1.19) or a stationary point of R(t) with t ∈ (0, τ(x∗)], and we choose the multipliers as
described in Lemma 2.7 or Lemma 2.9, respectively. Then we obtain the identity

S̄(x∗, λ∗, µ∗, ν̂1, ν̂2) = SR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗, t)

as well as ∇xxLR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗) = ∇xxLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2). Hence, in this
case the RNLP-SOSC for (1.19) and the SOSC for R(t) are identical conditions.

Theorem 2.1. Let x∗ be feasible for (1.19). Then

1. if x∗ is a strongly stationary point of the MPEC (1.19) that satisfies the RNLP-SOSC,
then x∗ is a stationary point of R(t) for every t ∈ (0, τ(x∗)] that satisfies the SOSC
for R(t). Thus, x∗ is a strict local minimum of R(t).

2. On the other hand, if x∗ is a stationary point for R(t) that satisfies the SOSC, then
x∗ is a strongly stationary point of the MPEC (1.19) that satisfies the RNLP-SOSC.
Therefore, it is also a strict local minimum of (1.19) .

Proof. First the stationarity of x∗ for R(t) or (1.19), respectively, results from Lemma 2.7
or from Lemma 2.9, respectively.
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2 New Relaxation Scheme for MPECs

Hence, it remains to show, that the second order conditions in x∗ imply each other. We
therefore compare the second derivatives with respect to x∗ of the Lagrangian functions
LMPEC(x∗,λ∗, µ∗,ν̂1,ν̂2) and LR(t)(x

∗, λ∗, µ∗, ν∗1 , ν∗2 , ξ∗):

∇2
xxLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) =∇2

xxf(x∗)−
∑

j∈Ig

∇2
xxgj(x

∗)λ∗j −
q
∑

i=1

∇2
xxhi(x

∗)µ∗i

∇2
xxLR(t)(x

∗, λ∗, µ∗, ν∗1 , ν
∗
2 , ξ

∗) =∇2
xxf(x∗)−

∑

j∈Ig

∇2
xxgj(x

∗)λ∗j −
q
∑

i=1

∇2
xxhi(x

∗)µ∗i

+

p
∑

j=1

(
0 0
0 ∇2

yyΦj(x
∗
1, x

∗
2, t)

)

ξ∗j ,

where y := (x1, x2). We observe that they only differ in the additional term

M(x∗, t) =

p
∑

j=1

(
0 0
0 ∇2

yyΦj(x
∗
1, x

∗
2, t)

)

ξ∗j .

Now, consider Lemma 2.1 and the special structure of ∇xΦ(x1, x2, t) and notice that either
ξ∗j = 0 or ∇2

yyΦj(x
∗
1, x

∗
2, t) = 0, such that M(x∗, t) vanishes completely. Hence,

∇2
xxLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) = ∇2

xxLR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗) .

Next, we prove that S̄(x∗, λ∗, µ∗, ν̂1, ν̂2) = SR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗, t). First, the
conditions on the directions d ∈ R

n+2p\{0} corresponding to the constraints gj(x) ≥ 0
with j ∈ {1, . . . ,m} and hi(x) = 0 with i ∈ {1, . . . , q} are completely identical. Moreover,
the remaining conditions can be transformed into each other as follows:

First assume d ∈ SR(t)(x
∗,λ∗,µ∗,ν∗1 ,ν

∗
2 ,ξ

∗, t). If j ∈ (I1\I2)(x∗), then provided t < τ(x∗),

αj d1j + (2− αj) d2j = 2 d1j ≤ 0 and d1j ≥ 0

which implies d1j = 0. The same argument implies that d2j = 0 for j ∈ (I2\I1)(x∗).
If j ∈ (I1 ∩ I2)(x∗), then the conditions on the corresponding multipliers ξ∗j = 0 and
ν̂1j > 0 lead to ν∗1j > 0, such that d1j = 0. Likewise, it follows that d2j = 0 for indices
j ∈ (I1 ∩ I2)(x∗) with ν̂2j > 0. Furthermore, if j ∈ (I1 ∩ I2)(x∗) then the nonnegativity of
d1j and d2j follows immediately. Hence, d ∈ S̄(x∗, λ∗, µ∗, ν̂1, ν̂2) and we obtain

SR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗, t) ⊆ S̄(x∗, λ∗, µ∗, ν̂1, ν̂2).

Now let d ∈ S̄(x∗, λ∗, µ∗, ν̂1, ν̂2), then d1j = 0 for j ∈ (I1\I2)(x∗) or d2j = 0 for j ∈
(I2\I1)(x∗), respectively . Since IΦ(x∗, t) ∩ (I1 ∩ I2)(x∗) = ∅ and

j ∈ (I1\I2)(x∗) ⇒ ∇xΦj(x
∗
1, x

∗
2, t)

T d = 2 d1j = 0

j ∈ (I2\I1)(x∗) ⇒ ∇xΦj(x
∗
1, x

∗
2, t)

T d = 2 d2j = 0 ,

the conditions concerning to the constraints Φj(x1, x2, t) are satisfied. Moreover,

j ∈ {I1(x∗)|ν∗1j > 0} ⇒ j ∈ (I1\I2)(x∗) or j ∈ (I1 ∩ I2)(x∗) .
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If j ∈ (I1\I2)(x∗), then d1j = 0 follows directly by the definition of S̄(x∗, λ∗, µ∗, ν̂1, ν̂2).
If on the other hand j ∈ (I1 ∩ I2)(x∗), then ν∗1j = ν̂1j, such that ν∗1j > 0 implies ν̂1j > 0
and hence d1j = 0 . Accordingly, d2j = 0 for j ∈ {I2(x∗)|ν∗2j > 0}. Finally, with d1j ≥ 0
for j ∈ {I1(x∗)|ν∗1j = 0} and d2j ≥ 0 for j ∈ {I2(x∗)|ν∗2j = 0}, respectively, we obtain

S̄(x∗, λ∗, µ∗, ν̂1, ν̂2) = SR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗, t)

for the related multipliers, introduced in Lemma 2.7 and Lemma 2.9.

Having answered the question whether a local minimum of (1.19) is also a local minimum
of R(t), we can extend Theorem 2.1 by combining it with Lemma 2.3.

Corollary 2.1. Let x∗ be a strongly stationary point of (1.19) that satisfies the RNLP-
SOSC. Then there exists an ε > 0, such that for every t ∈ [0, τ(x∗)], x∗ is a strict local
minimum in Bε(x

∗) of R(t) which satisfies the SOSC.

Proof. In view of Theorem 2.1, it follows that x∗ is a strict local minimum of R(t) for every
t ∈ (0, τ(x∗)]. Hence, if we choose t̂ = τ(x∗), then there exists an ε > 0, such that x∗ is a
strict local minimum in Bε(x

∗) of R(t̂). Next, if we apply Lemma 2.3, then x∗ is a strict
local minimum of R(t) in Bε(x

∗) for every t ∈ [0, τ(x∗)].

2.3 Convergence

In the preceding section, we related the stationary points and local solutions of (1.19) and
of R(t). In particular, we proved that a local solution of (1.19) that satisfies the strong
stationarity conditions and the RNLP-SOSC, is a local minimizer of R(t), provided t ≥ 0
is small enough.

However, as our solution approach is based on solving a sequence of problems R(tk),
where (tk) is a positive, decreasing sequence, we are in addition interested in the convergence
behaviour of thus determined sequences of solutions (xk).

At first we consider a sequence of global solutions of problems R(tk). The starting point
of the following theorem is therefore a positive, strictly decreasing sequence of parameters
tk and a convergent sequence of global solutions xk of the corresponding problems R(tk).

Theorem 2.2. Let (tk) ⊆ R
+ be a sequence that satisfies tk → 0 and let (xk) be a se-

quence of global solutions of the corresponding problems R(tk). Furthermore, let x̄ be an
accumulation point of (xk). Then, x̄ is a global solution of (1.19).

Proof. As x̄ is an accumulation point of (xk), there exist a subsequence (xk)k∈K, such that

lim
k→∞
k∈K

xk = x̄ .

It follows by Lemma 2.4, that x̄ is feasible for (1.19). Now, suppose x̄ is not a global
minimum of (1.19), then there exists an x̂ ∈ Z with f(x̄) > f(x̂). This, however, implies,
by the continuity of f and the convergence of the subsequence (xk)k∈K, that for all k ∈
K sufficiently large f(xk) > f(x̂) which contradicts the assumption that xk is a global
minimum of R(tk).
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Although interesting from a theoretical viewpoint, the convergence of a sequence of
global solutions is not very serviceable for practical purposes, as NLP solvers are often not
designed to find the global solutions, but rather the stationary points of an NLP. In the
remaining part of this section, we will therefore focus on sequences of stationary points.

The starting point of the next theorem is again a positive sequence of parameters tk → 0.
Though now, we consider a convergent sequence of stationary points xk of the problems
R(tk). If the limit point x̄ satisfies the MPEC-LICQ, then we can prove that it is a C-
stationary point of (1.19). Moreover, if we tie together the multipliers of the two positive
linear dependent gradients, the sequence of multiplier vectors of the stationary points xk

converges to the unique multiplier vector of x̄. If in addition each xk satisfies the SOSC
for R(tk), then we can proof that x̄ is even M-stationary.

Theorem 2.3. Let (tk) ⊆ R
+ be a sequence that satisfies tk → 0. Furthermore, let

(xk) ⊆ R
n+2p be a sequence of stationary points of R(tk) that converges to a limit point x̄

and suppose the MPEC-LICQ holds in x̄.

1. Then x̄ is a C-stationary point of the MPEC with unique multipliers λ̄, µ̄, ν̄1 and ν̄2

that satisfy

λ̄j = lim
k→∞

λk
j ≥ 0 j ∈ Ig(x̄)

µ̄i = lim
k→∞

µk
i i ∈ {1, . . . , q}

ν̄1m = lim
k→∞

(νk
1m − ξk

mα
k
m) m ∈ I1(x̄)

ν̄2m = lim
k→∞

(νk
2m − ξk

m(2− αk
m)) m ∈ I2(x̄)

and

λ̄j = 0 j /∈ Ig(x̄), ν̄1m = 0 m /∈ I1(x̄), ν̄2m = 0 m /∈ I2(x̄) .

2. If in addition the SOSC holds in each stationary point xk of R(tk), then x̄ is M-
stationary.

3. Finally, x̄ is strongly stationary, if and only if ν̄1m ≥ 0 and ν̄1m ≥ 0 for all indices
m ∈ (I1 ∩ I2)(x̄) ∩ Iinf

Φ with

Iinf
Φ := {j ∈ {1, . . . , p} | j ∈ IΦ(xk, tk) for infinitely many k ∈ N}.

Proof. Since g(x) is continuous Ig(x
k) ⊆ Ig(x̄) for sufficiently large k ∈ N and as each xk

is a stationary point of R(tk), it satisfies the KKT conditions (2.14). Hence,

∇f(xk) =
∑

j∈Ig(x̄)

λk
j∇gj(x

k) +

q
∑

i=1

µk
i∇hi(x

k)

+

p
∑

m=1

(νk
1m − ξk

mα
k
m) e1m (2.19)

+

p
∑

m=1

(νk
2m − ξk

m(2− αk
m)) e2m
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As xk → x̄ and tk → 0, then for sufficiently large k ∈ N it holds xk
1m ≥ tk for all

m /∈ I1(x̄). Hence, by the feasibility of xk and the first part of Lemma 2.6, we have
m ∈ I2(xk) ∩ IΦ(xk, tk) for all m /∈ I1(x̄). Accordingly, we get m ∈ I1(xk) ∩ IΦ(xk, tk) for
all m /∈ I2(x̄). Hence, by the second part of Lemma 2.6 and the values of αj for sufficiently
large k ∈ N,

νk
1m = 0 and αk

m = 0 for all m /∈ I1(x̄)
νk
2m = 0 and (2− αk

m) = 0 for all m /∈ I2(x̄) ,

such that (2.19) can be rewritten as AT
k πk = ∇f(xk), where πk = ((λk)Ig(x̄), µ

k, γk
1 , γ

k
2 )

with γk
1m := (νk

1m − ξk
mα

k
m)I1(x̄) and γk

2m := (νk
2m − ξk

m(2 − αk
m))I2(x̄) and Ak denotes the

matrix consisting of the row vectors

∇gj(x
k)T j ∈ Ig(x̄)

∇hi(x
k)T i ∈ {1, . . . , q}
eT1m m ∈ I1(x̄)

eT2m m ∈ I2(x̄) .

Due to the continuous differentiability of g and h the row vectors ∇gj(x
k)T and ∇hi(x

k)T

converge to ∇gj(x̄)
T and ∇hi(x̄)T , respectively. Hence, the sequence (Ak) converges to the

matrix A consisting of the row vectors

∇gj(x̄)
T j ∈ Ig(x̄)

∇hi(x̄)
T i ∈ {1, . . . , q}

eT1m m ∈ I1(x̄)
eT2m m ∈ I2(x̄) .

Since the MPEC-LICQ is assumed to hold in x̄, these vectors are linear independent,
such that A has full row rank. Hence, there exists a unique solution vector π solving
ATπ = ∇f(x̄). The full row rank of A implies that AAT is invertible, such that by the
convergence of (Ak) and the perturbation lemma (see for example Lemma 5.23 in [GK02])
AkA

T
k is invertible for sufficiently large k ∈ N. Hence there exists a unique solution vector

πk = (AkA
T
k )−1(Ak∇f(xk)). Furthermore, since ∇f(xk) converges to ∇f(x̄)

πk = (AkA
T
k )−1(Ak∇f(xk)) −→ (AAT )−1(A∇f(x̄)) = π .

Therefore, if we define

λ̄j := 0 j /∈ Ig(x̄), ν̄1m := 0 m /∈ I1(x̄), ν̄2m := 0 m /∈ I2(x̄) ,

then (λk, µk, (νk
1m− ξk

mα
k
m), (νk

2m− ξk
m(2−αk

m))) converges to the unique multiplier vector
(λ̄, µ̄, ν̄1, ν̄2) of x̄ satisfying (1.23).

Since the feasibility of x̄ follows by Lemma 2.4, to prove that x̄ is C-stationary it remains
to show that ν̄1mν̄2m ≥ 0 holds for all m ∈ (I1 ∩ I2)(x̄). Suppose without loss of generality
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there exists an index m ∈ (I1 ∩ I2)(x̄) with ν̄1m < 0 and ν̄2m > 0. It follows from the
convergence (νk

1m − ξk
mα

k
m)→ ν̄1m and (νk

2m − ξk
m(2− αk

m))→ ν̄2m that

νk
1m − ξk

mα
k
m < 0 (2.20)

and

νk
2m − ξk

m(2− αk
m) > 0 (2.21)

for sufficiently large k ∈ N. As ξk
m(2 − αk

m) ≥ 0 for all k ∈ N condition (2.21) implies
that νk

2m > 0 for sufficiently large k ∈ N. Therefore, m ∈ I2(xk) must hold. Hence, either
m ∈ I2(xk)\IΦ(xk, tk) or m ∈ I2(xk) ∩ IΦ(xk, tk). If m ∈ I2(xk)\IΦ(xk, tk), then ξk

m = 0.
This however implies that νk

1m− ξk
mα

k
m = νk

1m ≥ 0 which contradicts (2.20). If on the other
hand m ∈ I2(xk) ∩ IΦ(xk, tk), then by the second part of Lemma 2.6 νk

1m = 0 and αk
m = 0

for sufficiently large k ∈ N. Therefore, νk
1m − ξk

mα
k
m = 0 which again contradicts (2.20).

To prove the second part of the theorem, assume that the SOSC holds in each xk and
that x̄ is not M-stationary. Then, there exists at least one index m0 ∈ (I1 ∩ I2)(x̄) with
ν̄1m0 < 0 and ν̄2m0 < 0. By the convergence of the multipliers, we thus have

νk
1m0
− ξk

m0
αk

m0
< 0 and νk

2m0
− ξk

m0
(2− αk

m0
) < 0 , (2.22)

for sufficiently large k ∈ N. However, since νk
1m0
≥ 0 and νk

2m0
≥ 0, by (2.22) it follows

that

ξk
m0

> 0 and 2 > αk
m0

> 0

for every k ∈ N that is large enough. Since Lemma 2.6 implies IΦ(xk, tk)∩ (I1∩I2)(xk) = ∅
and considering the values of αj for j ∈ IΦ(xk, tk)∩(I1\I2)(xk) or j ∈ IΦ(xk, tk)∩(I2\I1)(xk)
respectively, for k large enough it follows that m0 ∈ IΦ(xk, tk)\(I1∪I2)(xk). Hence, νk

1m0
=

0 and νk
2m0

= 0 for all k ∈ N being sufficiently large. Therefore,

0 > ν̄1m0 = − lim
k→∞

(ξk
m0
αk

m0
) and 0 > ν̄2m0 = − lim

k→∞
(ξk

m0
(2− αk

m0
)) . (2.23)

As 0 ≤ αk
m0
≤ 2, there cannot exist a subsequence (ξk

m0
)k∈K of (ξk

m0
) that converges to

zero.

Suppose there exist a subsequence (αk
m0

)k∈K that converges to zero. Then ((2−αk
m0

))k∈K →
2 as k → ∞. This, however, contradicts (2.23), since then either ξk

m0
(2 − αk

m0
)→ ∞ or

ξk
m0
αk

m0
→ 0 for k ∈ K and k → ∞. By Lemma 2.5 it therefore follows in addition

that there exists no subsequence (xk)k∈K of (xk) that satisfies (xk
1m0
− xk

2m0
)/tk → 1

for k ∈ K and k → ∞. The same arguments imply that there exists no subsequence
αk

m0
→ 2 with k ∈ K ⊆ N, in other words, there exists no subsequence (xk)k∈K with

(xk
1m0
− xk

2m0
)/tk → −1 as k → ∞ and for k ∈ K. Furthermore, it follows that (ξk

m0
) has

to be bounded.

Because the MPEC-LICQ holds in x̄, for sufficiently large k ∈ N we can construct a
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2.3 Convergence

sequence (dk) ⊆ R
n+2p such that

∇hi(x
k)Tdk = 0, i ∈ {1, . . . , q}

∇gj(x
k)Tdk = 0, j ∈ Ig(x̄)
dk
1j = 0, j ∈ I1(x̄)\{m0}
dk
2j = 0, j ∈ I2(x̄)\{m0}

dk
1m0

= 1,

dk
2m0

= − αk
m0

(2−αk
m0

)
.

These dk are well defined and bounded, because there exists an ε > 0 such that ε <
αk

m0
< 2− ε. Moreover, these directions are contained in the corresponding sets of critical

directions SR(t)(x
k, λk,µk,νk

1 ,ν
k
2 ,ξ

k,tk), as

∇Φm0(x
k
1 , x

k
2 , tk)

T dk = αk
m0
d1m0 + (2− αk

m0
)d2m0 = 0 .

The twice continuous differentiability of f, g and h and the convergence of λk and µk imply
that the first three parts (2.24), (2.25) and (2.26) of the right-hand side of

dkT ∇2
xxLR(tk)(x

k, λk, µk, νk
1 , ν

k
2 , ξ

k) dk = dkT∇2
xxf(xk)dk (2.24)

−
∑

j∈Ig(x̄)

dkT∇2
xxgj(x

k)λk
j d

k (2.25)

−
q
∑

i=1

dkT∇2
xxhi(x

k)µk
i d

k (2.26)

+

p
∑

j=1

dkT

(
0 0
0 ∇2

yyΦj(x
k
1 , x

k
2 , tk)

)

ξk
j d

k , (2.27)

where y := (x1, x2), are bounded for k →∞. Furthermore, for (2.27), we have

∑p
j=1 d

kT

(
0 0
0 ∇2

yyΦj(x
k
1 , x

k
2 , tk)

)

ξk
j d

k =
∑

j∈Ik
Φ\(Ik

1∪Ik
2 ) cj(x

k, tk) ξ
k
j (dk

1j − dk
2j)

2

= cm0(x
k, tk) ξ

k
m0

(dk
1m0
− dk

2m0
)2

= cm0(x
k, tk) ξ

k
m0

(1 +
αk

m0

(2−αk
m0

)
)2

< cm0(x
k, tk) ξ

k
m0
,

where

cj(x, t) =

{
0 |x1j − x2j| ≥ t
−1

t θ
′′(

x1j−x2j

t ) |x1j − x2j| < t

and Ik
Φ = IΦ(xk, tk) and Ik

1 ∪ Ik
2 = (I1 ∪ I2)(xk). Since we have shown that (xk) has no

subsequence with |xk
1m0
− xk

2m0
|/tk → 1 for k ∈ K ⊆ N and k → ∞ and θ′′ is continuous

and strictly positive on (−1, 1), it follows that we can find a δ > 0 such that

θ′′

(

xk
1m0
− xk

2m0

tk

)

> δ
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2 New Relaxation Scheme for MPECs

for all k ∈ N sufficiently large. Hence,

lim
k→∞

cm0(x
k, tk) = − lim

k→∞

1

tk
θ′′

(

xk
1m0
− xk

2m0

tk

)

< − lim
k→∞

δ

tk
= −∞ .

However, as (ξk
m0

) > ε for some strictly positive ε, this implies

p
∑

j=1

dkT

(
0 0
0 ∇2Φj(x

k
1 , x

k
2 , tk)

)

ξk
j d

k < cm0(x
k, tk)ξ

k
m0
→ −∞

for the last term (2.27) and hence

dkT∇2
xxLR(tk)(x

k, λk, µk, νk
1 , ν

k
2 , ξ

k)dk → −∞ ,

for k →∞ which contradicts the assumption that the SOSC holds in each xk.
Finally, if m /∈ Iinf

Φ , then there exists a k0 ∈ N, such that ξk
m = 0 for all k > k0. Hence

ν̄1m = lim
k→∞

(νk
1m − ξk

mα
k
m) = lim

k→∞
νk
1m ≥ 0

and
ν̄2m = lim

k→∞
(νk

2m − ξk
m(2− αk

m)) = lim
k→∞

νk
2m ≥ 0 ,

such that if ν̄1m ≥ 0 and ν̄1m ≥ 0 for all m ∈ (I1 ∩ I2)(x̄) ∩ Iinf
Φ , then x̄ is strongly

stationary. The inverse direktion clearly holds, as x̄ is not strongly stationary if either
ν̄1m < 0 or ν̄1m < 0 for at least one m ∈ (I1 ∩ I2)(x̄) ∩ Iinf

Φ ⊆ (I1 ∩ I2)(x̄).

As B-stationary points that satisfy the MPEC-LICQ are strongly stationary, it is of
particular interest, what can be proven, if the assumptions of Theorem 2.3 were relaxed.
In particular, we are interested in a relaxation of the constraint qualification. As we will see,
assuming that a weaker condition, namely the MPEC-CRCQ, does hold we can still prove
convergence to a C-stationary point. Although replacing the MPEC-LICQ by the MPEC-
CRCQ the convergence of the sequence of multipliers cannot be established anymore.

The original Constant Rank Constraint Qualification for NLPs as introduced in [Jan84]
can be defined as follows.

Definition 2.3. Let x̄ be feasible for (1.13). Then the CRCQ (Constant Rank Constraint
Qualification) is said to hold in x̄, if for any subsets Kg ⊆ Ig(x̄) and Kh ⊆ Ih(x̄) the family

{∇gj(y) | j ∈ Kg} ∪ {∇hj(y) | j ∈ Kh}

has the same rank as the family

{∇gj(x̄) | j ∈ Kg} ∪ {∇hj(x̄) | j ∈ Kh}

for any y in a neighbourhood of x̄.

The following definition of the MPEC-CRCQ corresponds to the original CRCQ applied
to RNLP (estimated in x̂).
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2.3 Convergence

Definition 2.4. Let x̂ be feasible for the MPEC. Then the MPEC-CRCQ (MPEC-Constant
Rank Constraint Qualification) is said to hold in x̂, if for any Kg ⊆ Ig(x̂), K1 ⊆ I1(x̂),
K2 ⊆ I2(x̂) and Kh ⊆ {1, . . . , q} there exists a neighbourhood U(x̂) such that for any
y ∈ U(x̂) the family of gradient vectors

{∇gj(y) | j ∈ Kg} ∪ {∇hj(y) | j ∈ Kh} ∪ {e1j | j ∈ K1} ∪ {e2j | j ∈ K2} ,

has the same rank as the family

{∇gj(x̂) | j ∈ Kg} ∪ {∇hj(x̂) | j ∈ Kh} ∪ {e1j | j ∈ K1} ∪ {e2j | j ∈ K2} .

Next, we further need an auxiliary lemma for the proof of the next theorem.

Lemma 2.10. Let x be a stationary point of the NLP

min f(x)
subject to h(x) = 0

g(x) ≥ 0.

Then there exist feasible multipliers (λ̄, µ̄), such that the family

∇gj(x) j ∈ I+
g (x, λ̄)

∇hj(x) j ∈ {i ∈ Ih | µ̄ 6= 0}

is linearly independent.

Proof. As x is assumed to be stationary, there exist multipliers (λ, µ), such that

∇f(x)−
∑

j∈Ig(x)

λj∇gj(x)−
∑

j∈Ih(x)

µj∇hj(x) = 0 , λj ≥ 0 (2.28)

If we substitute µj := µ+
j −µ−j in (2.28) and claim that µ+

j , µ
−
j ≥ 0, then finding multipliers

satisfying (2.28) corresponds to finding a solution to

Az = b, z ≥ 0

where the columns of A correspond to the gradient vectors ∇gj with j ∈ Ig(x), ∇hj and
−∇hj, b = ∇f(x) and z = (λ, µ+, µ−). Applying a main result of Linear Optimization (see
for example Chapter 3.1 in [Pad99]) we obtain the conclusion.

Furthermore, we will make use of another definition to abbreviate the notation of the
proof of the next theorem.

Definition 2.5. Let λ ∈ R
m then the support of λ is defined as

supp(λ) := { j ∈ {1, . . . ,m} |λj 6= 0 } .

Now we have provided all necessary information that we need to prove the following
convergence result.
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2 New Relaxation Scheme for MPECs

Theorem 2.4. Let (tk) ⊆ R
+ be a sequence that satisfies tk → 0, further let (xk) ⊆ R

n+2p

be a sequence of stationary points of R(tk) that satisfies xk → x̄ and suppose the MPEC-
CRCQ holds in x̄. Then x̄ is a C-stationary point of (1.19).

Proof. Let xk be a stationary point of R(tk). Since g(x) is continuous, Ig(x
k) ⊆ Ig(x̄)

for sufficiently large k, as well as I1(x
k) ⊆ I1(x̄) and I2(x

k) ⊆ I2(x̄). Hence, as xk is
stationary for R(tk), there exist λk, µk, νk

1 , νk
2

−∇f(xk) +
∑

i∈Ig(x̄)

λk
i∇gi(x

k) +

q
∑

j=1

µk
j∇hj(x

k)

+
∑

m∈I1(x̄)

νk
1me1m +

∑

m∈I2(x̄)

νk
2me2m (2.29)

−
∑

m∈IΦ(xk ,tk)

ξk
m(αk

me1m + (2− αk
m)e2m) = 0 .

If we define
γk
1j := αk

j ξ
k
j and γk

2j := (2− αk
j ) ξ

k
j

for all k ∈ N and for all j ∈ {1, . . . , p}, then γk
1j ≥ 0 and γk

2j ≥ 0. Moreover,

γk
1j > 0 ⇐⇒ αk

j > 0 and ξk
j > 0 =⇒ j ∈ IΦ(xk, tk)\I2(xk)

γk
2j > 0 ⇐⇒ αk

j < 2 and ξk
j > 0 =⇒ j ∈ IΦ(xk, tk)\I1(xk)

(2.30)

Hence, for sufficiently large k ∈ N

supp(γk
1 ) ⊆ IΦ(xk, tk)\I2(xk) ⊆ I1(x̄)

supp(γk
2 ) ⊆ IΦ(xk, tk)\I1(xk) ⊆ I2(x̄) .

(2.31)

Since
supp(λk) ⊆ Ig(x̄), supp(µk) ⊆ Ih(x̄)

supp(νk
1 ) ⊆ I1(x̄), supp(νk

2 ) ⊆ I2(x̄) ,
(2.32)

we can then write (2.29) as

−∇f(xk) +
∑

j∈supp(λk)

λk
j∇gj(x

k) +
∑

j∈supp(µk)

µk
j∇hj(x

k)

+
∑

j∈supp(νk
1 )

νk
1je1j +

∑

j∈supp(νk
2 )

νk
2je2j (2.33)

+
∑

j∈supp(γk
1 )

γk
1j(− e1j) +

∑

j∈supp(γk
2 )

γk
2j(− e2j) = 0 .

As a consequence of Lemma 2.10, we can find a multiplier vector (λ̄k, µ̄k, ν̄k
1 , ν̄k

2 , γ̄k
1 , γ̄k

2 )
for every xk, such that (2.33) is satisfied and the family

{∇gj(x
k) |j ∈ supp(λ̄k) } ∪ {∇hj(x

k) | supp(µ̄k)} ∪ {e1j | supp(ν̄k
1 )}

∪{e2j | supp(ν̄k
2 )} ∪ {− e1j | supp(γ̄k

1 )} ∪ {− e2j | supp(γ̄k
2 )} (2.34)
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is linear independent. Furthermore,

supp(λ̄k) ⊆ supp(λk), supp(µ̄k) ⊆ supp(µk)

supp(ν̄k
1 ) ⊆ supp(νk

1 ), supp(ν̄k
2 ) ⊆ supp(νk

2 ),

supp(γ̄k
1 ) ⊆ supp(γk

1 ), supp(γ̄k
2 ) ⊆ supp(γk

2 ) .

(2.35)

The linear independence of the family implies that

supp(ν̄k
1 ) ∩ supp(γ̄k

1 ) = ∅ and supp(ν̄k
2 ) ∩ supp(γ̄k

2 ) = ∅ . (2.36)

By (2.31), (2.32) and (2.35) we have that

supp(ν̄k
1 ) ∪ supp(γ̄k

1 ) ⊆ I1(x̄) and supp(ν̄k
2 ) ∪ supp(γ̄k

2 ) ⊆ I2(x̄) . (2.37)

Next, we distinguish two cases: either the sequence ((λ̄k, µ̄k, ν̄k
1 , ν̄k

2 , γ̄k
1 , γ̄k

2 )) does have a
bounded subsequence or it does not have one.

Let us first consider the case that it does not have a bounded subsequence. This implies
that the sequence ((λ̄k, µ̄k, ν̄k

1 , ν̄k
2 , γ̄k

1 , γ̄k
2 )) is not bounded either. Hence, we can find an

index k0 ∈ N, such that ‖ (λ̄k, µ̄k, ν̄k
1 , ν̄

k
2 , γ̄

k
1 , γ̄

k
2 ) ‖ > 0 for all k ≥ k0. We therefore consider

the normalized (thus bounded) sequence of multipliers (starting with index k = k0)

(λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , γ̃

k
1 , γ̃

k
2 ) =

(λ̄k, µ̄k, ν̄k
1 , ν̄

k
2 , γ̄

k
1 , γ̄

k
2 )

‖ (λ̄k, µ̄k, ν̄k
1 , ν̄

k
2 , γ̄

k
1 , γ̄

k
2 ) ‖ .

As this sequence is bounded, it has a convergent subsequence

(λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , γ̃

k
1 , γ̃

k
2 )κ∈K −→ (λ̃, µ̃, ν̃1, ν̃2, γ̃1, γ̃2) .

Moreover,

supp(λ̃) ⊆ supp(λ̃k) = supp(λ̄k),
supp(µ̃) ⊆ supp(µ̃k) = supp(µ̄k),
supp(ν̃1) ⊆ supp(ν̃k

1 ) = supp(ν̄k
1 ),

supp(ν̃2) ⊆ supp(ν̃k
2 ) = supp(ν̄k

2 ),
supp(γ̃1) ⊆ supp(γ̃k

1 ) = supp(γ̄k
1 ),

supp(γ̃2) ⊆ supp(γ̃k
2 ) = supp(γ̄k

2 ),

(2.38)

holds for all k ∈ K that are large enough. Therefore, for all k ∈ K sufficiently large, by
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(2.33) and the continuity of ∇f(x), ∇h(x) and ∇g(x) we get

0 = lim
κ∈K

κ→∞



−∇f(xκ)

ωκ
+
∑

i∈Ig(x̄)

λ̄κ
i

ωκ
∇gi(x

κ) +
∑

j∈Ih(x̄)

µ̄κ
j

ωκ
∇hj(x

κ)

+
∑

j∈I1(x̄)

ν̄κ
1j

ωκ
e1j +

∑

j∈I2(x̄)

ν̄κ
2j

ωκ
e2j

+
∑

j∈I1(x̄)

γ̄κ
1j

ωκ
(− e1j) +

∑

j∈I2(x̄)

ν̄κ
2j

ωκ
(− e2j)





=
∑

j∈supp(λ̃)

λ̃j∇gj(x̄) +
∑

j∈supp(µ̃)

µ̃j∇hj(x̄) +

∑

j∈supp(ν̃1)

ν̃1je1j +
∑

j∈supp(ν̃2)

ν̃2je2j + (2.39)

∑

j∈supp(γ̃1)

γ̃1j(− e1j) +
∑

j∈supp(γ̃2)

γ̃2j(− e2j)

where ωκ = ‖(λ̄κ, µ̄κ, ν̄κ
1 , ν̄κ

2 , γ̄
κ
1 , γ̄

κ
2 )‖. As ‖(λ̃, µ̃, ν̃1, ν̃2, γ̃1, γ̃2)‖ = 1, there have to exist

some entries of (λ̃, µ̃, ν̃1, ν̃2, γ̃1, γ̃2) that do not vanish. Hence,

{∇gj(x̄) |j ∈ supp(λ̃) } ∪ {∇hj(x̄) | supp(µ̃)} ∪ {e1j | supp(ν̃1)}
∪{e2j | supp(ν̃2)} ∪ {− e1j | supp(γ̃1)} ∪ {− e2j | supp(γ̃2)}

is linear dependent. Then it follows by (2.38) that the family

{∇gj(x̄) |j ∈ supp(λ̄k) } ∪ {∇hj(x̄) | supp(µ̄k)} ∪ {e1j | supp(ν̄k
1 )}

∪{e2j | supp(ν̄k
2 )} ∪ {− e1j | supp(γ̄k

1 )} ∪ {− e2j | supp(γ̄k
2 )} (2.40)

is linear dependent for all k ∈ K that are sufficiently large. Now as x̄ satisfies the MPEC-
CRCQ, there exists a neighbourhood U(x̄), such that for any y ∈ U(x̄) it follows by (2.40),
(2.32), (2.35), (2.36) and (2.37) that the family of (2.40) evaluated in y has the same rank.
Therefore it is also linear dependent.
Furthermore, as xk converges to x̄, there exists a k1 ∈ N, such that xk lies within U(x̄) for
all k > k1. This however implies that

{∇gj(x
k) |j ∈ supp(λ̄k) } ∪ {∇hj(x

k) | supp(µ̄k)} ∪ {e1j | supp(ν̄k
1 )}

∪{e2j | supp(ν̄k
2 )} ∪ {− e1j | supp(γ̄k

1 )} ∪ {− e2j | supp(γ̄k
2 )}

is linear dependent for all k ∈ N sufficiently large which contradicts the linear independence
of the family of gradients of (2.34).

We therefore may assume that the sequence of multipliers (λ̄k, µ̄k, ν̄k
1 , ν̄k

2 , γ̄
k
1 , γ̄

k
2 ) has a

bounded subsequence which implies that it has also a convergent subsequence

(λ̄k, µ̄k, ν̄k
1 , ν̄

k
2 , γ̄

k
1 , γ̄

k
2 )k∈K −→ (λ∗, µ∗, ν∗1 , ν

∗
2 , γ

∗
1 , γ

∗
2) .
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By the continuity of ∇f(x), ∇h(x) and ∇g(x) and (2.33) these limit multipliers satisfy

−∇f(x̄) +
∑

i∈Ig(x̄)

λ∗i∇gi(x̄) +

q
∑

j=1

µ∗j∇hj(x̄)

+
∑

j∈I1(x̄)

ν̂1je1j +
∑

j∈I2(x̄)

ν̂2je2j = 0 (2.41)

with

ν̂1j :=







ν∗1 j ∈ supp(ν∗1)
−γ∗1 j ∈ supp(γ∗1)

0 elsewise
ν̂2j :=







ν∗2 j ∈ supp(ν∗2)
−γ∗2 j ∈ supp(γ∗2)

0 elsewise .
(2.42)

Because of the convergence of the subsequence

supp(ν∗1) ⊆ supp(ν̄k
1 ) and supp(γ∗1) ⊆ supp(γ̄k

1 ),

as well as
supp(ν∗2) ⊆ supp(ν̄k

2 ) and supp(γ∗2) ⊆ supp(γ̄k
2 )

for all k ∈ K that are sufficiently large. Hence, by (2.36)

supp(ν∗1) ∩ supp(γ∗1) = ∅ and supp(ν∗2) ∩ supp(γ∗2) = ∅ ,

which together with (2.37) implies that the multipliers ν̂1 and ν̂2 are well-defined. Thus
by Lemma 2.4 x̄ is weakly stationary with multipliers (λ∗, µ∗, ν̂1, ν̂2). Suppose it is not
C-stationary, then there exists at least one index j0 ∈ (I1 ∩ I2)(x̄) with either ν̂1j0 < 0 and
ν̂2j0 > 0 or ν̂1j0 > 0 and ν̂2j0 < 0. Suppose without loss of generality that ν̂1j0 < 0 and
ν̂2j0 > 0, then by the convergence of

(λ̄k, µ̄k, ν̄k
1 , ν̄

k
2 , γ̄

k
1 , γ̄

k
2 )k∈K ,

it follows that
j0 ∈ supp(γ̄k

1 ) and j0 ∈ supp(ν̄k
2 )

for k ∈ K sufficiently large. Then, however, by (2.35)

j0 ∈ supp(γk
1 ) and j0 ∈ supp(νk

2 ),

for all k ∈ K being large enough. It follows together with (2.31) and (2.32) that

j0 ∈ IΦ(xk, tk)\I2(xk) and j0 ∈ I2(xk)

for all k ∈ K sufficiently large. This obviously constitutes a contradiction. Hence, x̄ has to
be C-stationary.

�

Next, we describe an example that demonstrates that, in order to proof M-stationarity
of a limit point x∗, we would need further conditions.
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Example 2.1.

min 1
2 ((x1 − 1)2 + (x2 − 1)2)

subject to 0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ

Consider the sequence (xk
1 , x

k
2) = (ϑk, ϑk) with ϑk ↘ 0, which is a sequence of KKT-points

for R(tk) for a sequence (tk) with tk ↘ 0 ( determined such that Φ(ϑk, ϑk, tk) = 0 for all
k), as

(
ϑk − 1

ϑk − 1

)

+ ξk

(
1

1

)

=

(
0

0

)

with ξk = 1−ϑk, ν
k
1 = 0 and νk

2 = 0. The vector (xk
1 , x

k
2) converges to (x̄1, x̄2) = (0, 0) which

clearly satisfies the MPEC-CRCQ. The MPEC multipliers (ν̂1, ν̂2) that we can construct
accordingly to Theorem 2.4 from the limits of νk

1 , νk
2 , ξk and αk are (ν̂1, ν̂2) = (−1,−1).

In contrast to the next example, for this example we cannot construct multipliers (ν̂1, ν̂2)
that satisfy the M-stationarity condition ν̂1ν̂2 = 0 or ν̂1 > 0 and ν̂2 > 0. Thus (0, 0) is
C-stationary.

However, the next example demonstrates that it would be a valuable task to proof M-
stationarity without the need of the MPEC-LICQ, as the limit point x̄ in the next example
is M-stationary though it does not satisfy the MPEC-LICQ and Theorem 2.3 cannot be
applied.

Example 2.2.

min x2 − 2x1

subject to x2 − x1 ≥ 0 : λ
0 ≤ x1 ⊥ x2 ≥ 0 : ν1, ν2, ξ

The solution of this MPEC is (x̄1, x̄2) = (0, 0) and the MPEC-CRCQ is satisfied in (x̄1, x̄2),
though not the MPEC-LICQ.
Consider the sequence (xk

1 , x
k
2) = (ϑk, ϑk) with ϑk ↘ 0, which is a sequence of KKT-points

for R(tk) for a sequence (tk) with tk ↘ 0 (such that Φ(ϑk, ϑk, tk) = 0 for all k), as

(−2

1

)

− λk

(−1

1

)

+ ξk

(
1

1

)

=

(
0

0

)

,

with λk = 1.5 and ξk = 0.5. In the limit these multipliers lead to the MPEC multipliers
λ∗ = 1.5, ν̂1 = −α∗ξ∗ = −0.5 and ν̂2 = −(2 − α∗)ξ∗ = −0.5. Hence (0, 0) is at least
C-stationary.

However, for (x̄1, x̄2) = (0, 0) the active gradients (−1, 1)T , (1, 0)T and (0, 1)T satisfy
a linear dependency, such that by substituting either (1, 0)T or (0, 1)T we can construct
MPEC multipliers with either λ∗ = 2, ν̂1 = 0 and ν̂2 = −1 or λ∗ = 1, ν̂1 = −1 and ν̂2 = 0
both satisfying the M-stationarity condition.

Remark 2.3. Notice that Theorem 2.3 as well as Theorem 2.4 can be extended to the
convergence of a sequence (xk) that satisfies (2.14) only approximately, that is

∇xLR(t)(x
k, λk, µk, νk

1 , ν
k
2 , ξ

k) = εk

for a sequence (εk) with εk ↘ 0.
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2.4 Extensions

In this section we consider two possible alternatives of the relaxation, we have discussed in
the previous sections. The idea of the first alternative is to merge the ”relaxing constraints”
Φj(x1, x2, t) ≤ 0 with j ∈ {1, . . . p} into one single constraint Φ(x1, x2, t)

T e ≤ 0, such that
R(t) becomes

min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2, t)
T e ≤ 0 .

where Φ(x1, x2, t) : Rp × R
p × R

+
0 → R

p and e ∈ R
p is the vector of all ones. The single

constraint Φ(x1, x2, t)
T e ≤ 0 hence conforms to the condition

p
∑

j=1

Φj(x1, x2, t) ≤ 0.

This idea has been discussed for example by Fletcher et al. in [FLRS06] for the exact
bilinear reformulation of the complementarity constraint (see Section 1.4) and by Scholtes
in [Sch01] for the relaxed bilinear reformulation. This extension, however, does not maintain
the characteristics of our relaxation method, as we will explain now.

In the context of a reformulation of the complementarity constraints in terms of x1jx2j

it is reasonable to consider this extension. The conditions x1 ≥ 0 and x2 ≥ 0 imply that
each product x1jx2j is nonnegative. Hence, due to the fact that the summands cannot
even out each other xT

1 x2 ≤ 0 implies that x1jx2j ≤ 0 for all j ∈ {1, . . . , p}. Accordingly
xT

1 x2−t ≤ 0 implies that x1jx2j−t ≤ 0 for all j ∈ {1, . . . , p}. For the bilinear reformulations
we can therefore replace the p constraints x1jx2j ≤ 0 by one single constraint xT

1 x2 ≤ 0
or x1jx2j − t ≤ 0 by xT

1 x2 − t ≤ 0, respectively, and maintain (or tighten) the feasibility
properties of the reformulated problem.

Applying this idea to our relaxation method we obtain the difficulty that the conditions
x1 ≥ 0 and x2 ≥ 0 do not imply either sign of Φj(x1, x2, t). Hence, the summands might
even out each other and Φj(x1, x2, t) ≤ 0 cannot be guaranteed by Φ(x1, x2, t)

T e ≤ 0 for
all j ∈ {1, . . . , p}.

Consider for example the case p = 2 and let (x11, x21) = (0, 0). Then Φ1(x1, x2, t) =
Φ1(0, 0, t) = −tθ(0) < 0 and the constraint Φ(x1, x2, t)

T e ≤ 0 is also satisfied if 0 <
Φ2(x1, x2, t) ≤ tθ(0). Figure 2.4 illustrates the set of points (x12, x22) that satisfy (x12, x22) ≥
0 and Φ2(x1, x2, t) ≤ tθ(0).

Hence, for all t > 0, we loose the guarantee of the exact feasibility of points that satisfy
|x1j − x2j | ≥ t. Since this is one of the main properties of the relaxed problem R(t) to
distinguish it from NLP (t), we do not further investigate this extension of our approach
here.

The second idea that comes into ones mind concerns the relaxation parameter. So far we
considered a relaxed nonlinear program R(t) that is parameterized by a scalar parameter
t ∈ R. However, as we will see later in Chapter 4, it is sometimes more favourable to
use a parameter vector t = (t1, . . . , tp) ∈ (R+)p instead of a scalar one. In this case we
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Figure 2.2: Contour of Φ2(x1, x2, t) = tθs(0) with θs(z) as defined by (2.2) and feasible
region (concerning Φ2) for t = 0.5.

use an independent parameter tj ∈ R
+ for each constraint Φj(x1, x2, t) ≤ 0. The relaxed,

parametrized problem then has the form

min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2, t) ≤ 0 ,

(2.43)

where Φ(x1, x2, t) : Rp ×R
p × (R+

0 )p → R
p,

Φj(x1, x2, t) := x1j + x2j − ϕj(x1j , x2j , tj)

and ϕj(x1j , x2j , tj) as defined in Section 2.1. We then have

∇xΦj(x1, x2, t) = αj e1j + (2− αj) e2j (2.44)

with

αj :=
∂Φj(x1, x2, t)

∂x1j
=







0 x1j ≥ x2j + tj
2 x1j ≤ x2j − tj
1− θ′(x1j−x2j

tj
) otherwise

Although we have to save and update a possibly large parameter vector t ∈ R
p, the ad-

vantage of this alternative is that we can adapt the parameter values individually for each
constraint Φj(x1, x2, t) ≤ 0. Moreover, if we undertake some slight modifications, the theo-
retical results of the foregoing two sections do also hold for these alternatively relaxed
programs R(t).

Next, we briefly discuss the modifications of the assumptions and the adjusted results
for most of the results of the previous sections, before we state the alternative variants of
Theorem 2.1 and Corollary 2.1 for (2.43).
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Considering Lemma 2.1, we only have to replace the conditions max(x̂1j , x̂2j) < t and
max(x̂1j , x̂2j) > t by max(x̂1j , x̂2j) < tj or max(x̂1j , x̂2j) > tj, respectively.

Replacing the condition 0 ≤ t1 < t2 in Lemma 2.2 by the conditions 0 ≤ t1j ≤ t2j for all
j ∈ {1, . . . , p}, the conclusion Z(t1) ⊆ Z(t2) still holds.

Accordingly, the statement of Lemma 2.3 can be transferred to problem (2.43), if we
replace the condition t ∈ [0, t̂ ] by 0 ≤ tj ≤ t̂j for all j ∈ {1, . . . , p}.

Furthermore, Lemma 2.4 can easily be adjusted by replacing tk → 0 by ‖tk‖ → 0 and
the conclusion Z =

⋂∞
k=1Z(tk) holds.

In Lemma 2.6 we need to adapt the bounds on the variables xij with i = 1, 2, thus xij ≥ t
by xij ≥ tj and xij < t by xij < tj and the conclusion holds.

Now, considering the results of Section 2.2, we generally replace the condition t ∈
(0, τ(x∗)] by 0 < tj ≤ max(x∗1j , x

∗
2j) for all j ∈ {1, . . . , p}\(I1 ∩ I2)(x∗) and tj > 0 for

all j ∈ (I1 ∩ I2)(x∗) and the corresponding conclusions hold.
The corresponding variant of Theorem 2.1 for problem (2.43) can be stated as follows.

As the proof follows the same ideas of the proof of Theorem 2.1, we will only give a brief
sketch of it.

Theorem 2.5. Let x∗ be feasible for (1.19), then

1. if x∗ is a strongly stationary point of the MPEC (1.19) that satisfies the RNLP-
SOSC, then x∗ is a stationary point of R(t) for every t ∈ R

p that satisfies 0 < tj ≤
max(x∗1j , x

∗
2j) for all j ∈ {1, . . . , p}\(I1 ∩ I2)(x∗) and tj > 0 for all j ∈ (I1 ∩ I2)(x∗),

which satisfies the SOSC for R(t). Thus, it is a strict local minimum of R(t).

2. if x∗ is a stationary point for R(t) that satisfies the SOSC, then x∗ is also a strongly
stationary point of the MPEC (1.19) that satisfies the RNLP-SOSC. Therefore, it is
also a strict local minimum of (1.19) .

Proof. First the stationarity of x∗ results from corresponding variants of Lemma 2.7 or
respectively of Lemma 2.9 as explained above.

Hence, it remains to show, that the second order conditions in x∗ imply each other.
Therefore, we again compare the second derivative with respect to x∗ of the Lagrangian
functions of the MPEC (1.22) with the suitable variant for problem (2.43). If the parameter
t satisfies 0 < tj ≤ max(x∗1j , x

∗
2j) for all j ∈ {1, . . . , p}\(I1 ∩ I2)(x∗), then by view of (2.44)

the second derivatives ∇2
xxΦj(x

∗
1, x

∗
2, t) vanish. On the other hand, as x∗ is feasible for the

MPEC, by tj > 0 for all j ∈ (I1 ∩ I2)(x∗) it follows that Φj(x1, x2, t) < 0 (confer (2.7)),
such that for j ∈ (I1 ∩ I2)(x∗), the corresponding multiplier satisfies ξ∗j = 0. Thus, as for
the original problem, again both Lagrangian functions are equal.

Notice then, that by (2.44) the proof that S̄(x∗, λ∗,µ∗, ν̂1,ν̂2) is equal to the set of critical
directions in x∗ of (2.43) can be done in the same way as in the proof of Theorem 2.1.
Hence we obtain the result.

The corresponding Corollary has the form:

Corollary 2.2. Let x∗ be a strongly stationary point of (1.19) that satisfies the RNLP-
SOSC. Then there exists an ε > 0, such that for every t ∈ R

p that satisfies 0 < tj ≤
max(x∗1j , x

∗
2j) for all j ∈ {1, . . . , p}\(I1 ∩ I2)(x∗) and tj > 0 for all j ∈ (I1 ∩ I2)(x∗), x∗ is

a strict local minimum in Bε(x
∗) of R(t), which even satisfies the SOSC.
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We finish this section by considering the convergence results of Section 2.3. Replacing
the scalar sequence (tk) ⊆ R

+
0 by a convergent sequence (tk) ⊆ (R+

0 )p, the statements of
Theorem 2.3 can directly be applied to problem (2.43). The only changes that have to
be made in the proof of the theorem concerns the sequence (xk). Considering (2.44) we
have to show that there exists no subsequence with |xk

1m0
− xk

2m0
|/tkm0

→ 1 as k →∞ with
k ∈ K ⊆ N. This, however, can be done in the same way as in the proof of Theorem 2.3.

Finally, the convergence result of Theorem 2.4 also still holds, if the scalar parameter tk
is replaced by a parameter vector tk.

2.5 Comparison

As we mentioned in the beginning of this chapter, our new relaxation scheme can be in-
terpreted as a combination of the exact bilinear reformulation of Fletcher et al. [FLRS06]
and the relaxed bilinear reformulation proposed by Scholtes [Sch01]. We chose this regu-
larization scheme as we think the relaxed bilinear reformulation is the representative of the
variety of regularization and smoothing methods that is closest to our approach, because
it relaxes the feasible set of original MPEC on the one hand, but on the other hand the
original feasible set is still completely contained in the feasible set of the corresponding
NLP (t) (confer Section 1.4).

In this section, we therefore compare the theoretical results and properties we presented in
the previous sections with the results of these two approaches. We begin with a comparison
of our scheme to the approach using the exact bilinear reformulation (again confer Section
1.4).

The advantage of that approach is the equality of the set of the strongly stationary
points of the original MPEC (1.19) and the set of the stationary points of the reformulated
problem (1.33). This result is due to the fact that the feasible sets of both problems
are equal and that the multipliers of strongly stationary points are nonnegative for the
degenerate components.

It is therefore clear, that this result cannot exactly be established for our relaxation,
since for any strictly positive parameter t the feasible set of (1.19) is in general a proper
subset of the feasible set of R(t). However, Lemma 2.7 and Lemma 2.9 provide comparable
results.

The main differences to the corresponding result in [FLRS06] concerns either the admis-
sible size of the parameter t or the feasibility assumption concerning a stationary point
x∗(t) of R(t).

One main disadvantage of the direct approach of Fletcher et al. is the fact that the
method can only be guaranteed to work close to strongly stationary points. This is due to
the fact that B-stationary points, that are not strongly stationary, do not correspond to a
stationary point of the reformulated problem (1.33). However, as we have seen in Section
1.3, if the MPEC-LICQ fails to hold, strong stationarity is not a necessary condition for
a point x∗ to be B-stationary. Hence, the exact bilinear reformulation is not a suitable
approach to solve MPECs that do not have strongly stationary but B-stationary points.
One such problem is Example 1.1 (here the complementarity constraint is reformulated
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using the exact bilinear reformulation):

min x2 − x1

subject to x2
1 + x2

2 − 2x2 ≤ 0 : λ
0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ

The solution of this MPEC is (x∗1, x
∗
2) = (0, 0), which is a B-stationary point that is M-

stationary, but not strongly stationary. First note, that (0, 0) is not a stationary point of
the reformulated problem as

(−1

1

)

+ λ∗
(

0

−2

)

−
(
ν∗1
ν∗2

)

+ ξ∗
(

0

0

)

=

(
0

0

)

cannot be satisfied by a multiplier vector (λ∗, ν∗1 , ν
∗
2 , ξ

∗) ≥ 0.

Moreover, even if the method produces feasible iterates that converge to the solution x∗,
the corresponding KKT-residuals will not fall below a given tolerance unless the multiplier
estimates of ξ∗ are becoming very large. This demonstrates that the method might either
fail or might become numerically unstable for problems such as Example 1.1 (compare also
the numerical results at the end of Section 4.3).

The other method we want to compare our relaxation scheme with, is the relaxed bilinear
reformulation. Comparing the main convergence results given in [Sch01] (see also Section
1.4) with the ones we proved in the previous section it becomes clear, that Theorem 1.4
and Theorem 2.3 are very similar. However, comparing Theorem 1.5 with Theorem 2.1 or
further Corollary 2.1, it turns out that these two results given in Section 2.2 are stronger
than Theorem 1.5. For our relaxation scheme the assumptions are weaker and the piecewise
smooth function x(t), for t being small enough, is identical to the strongly stationary point
x̄, that is x(t) = x̄ for t ∈ [0, τ(x̄)]. We exemplify this difference of the results by the
following example (see also [Sch01]):

Example 2.3.

min 1
2 ((x1 − 1)2 + (x2 − 1)2)

subject to 0 ≤ x1 ⊥ x2 ≥ 0 : ν1, ν2, ξ

There exist two strongly stationary points (1, 0) and (0, 1) with MPEC multipliers (0,−1)
and (−1, 0), respectively.

We consider the strongly stationary point (1, 0). If we reformulate the problem using the
relaxed bilinear reformulation, then the stationary points x(t) must satisfy

(
x1(t)− 1

x2(t)− 1

)

−
(
ν1(t)

ν2(t)

)

+ ξ(t)

(
x2(t)

x1(t)

)

=

(
0

0

)

, (2.45)

where (ν1(t), ν2(t), ξ(t)) are the corresponding multipliers for NLP (t) that must additionally
satisfy (ν1(t), ν2(t), ξ(t)) ≥ 0. If we insert the strongly stationary point (1, 0) into (2.45),
then we obtain (

0

−1

)

−
(
ν1(t)

ν2(t)

)

+ ξ(t)

(
0

1

)

=

(
0

0

)

. (2.46)
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Since for t > 0 the constraint x1(t)x2(t) − t ≤ 0 is inactive for (x1(t), x2(t)) = (1, 0), we
have that ξ(t) = 0. Thus (1, 0) is not a stationary point of the corresponding NLP (t) for
any t > 0, as (2.46) cannot be satisfied.

By condition (2.45) for t < 1/4 we can derive the smooth function x : R
+ → R

2 of
stationary points x(t) = 1/2(1 +

√
1− 4t, 1 −

√
1− 4t) that satisfy (2.45). Clearly x(t)

converges to (1, 0) as t approaches zero.

In contrast to that (1, 0) is a stationary point of the corresponding R(t) for any 0 ≤ t ≤ 1
as (

0

−1

)

−
(
ν1(t)

ν2(t)

)

+ ξ(t)

(
0

2

)

=

(
0

0

)

.

is satisfied by ν1(t) = 0, ν2(t) = 0 and ξ(t) = 1/2. Here ξ(t) > 0 is admissible, as
x1(t) = 1 ≥ t and hence Φ(x1(t), x2(t), t) ≤ 0 is active.

The illustrated example demonstrates that although the MPEC does have strongly sta-
tionary points that in addition satisfy strict complementarity, in contrast to our relaxation
scheme, the regularization scheme discussed in [Sch01] and [RW04] might yield the solution
only in the limit t→ 0.

Next, we want to consider MPECs that do not have B-stationary points that are also
strongly stationary. A suitable example is

Example 2.4. ( scholtes4)

min x1 + x2 − x0

subject to −4x1 + x0 ≤ 0 : λ1

−4x2 + x0 ≤ 0 : λ2

0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ

The solution of this MPEC is (x∗0, x
∗
1, x

∗
2) = (0, 0, 0) with MPEC multipliers either (λ∗1, λ

∗
2,

ν̂1, ν̂2) =(3/4, 1/4,−2, 0) or (λ∗1, λ
∗
2, ν̂1, ν̂2) =(1/4, 3/4, 0,−2). The first equation of the

KKT-conditions (see (1.16)) for the corresponding NLP (t) corresponds to





−1
1
1



+ λ1(t)





1
−4
0



+ λ2(t)





1
0
−4



−





0
ν1(t)
ν2(t)



+ ξ(t)





0
x2(t)
x1(t)



 =





0
0
0



 ,

which is satisfied by the smooth function x(t) =
√
t(4, 1, 1). Furthermore, as t approaches

zero, x(t) converges to the M-stationary point (0, 0, 0). However, if we consider the corre-
sponding multiplier vector (λ1(t), λ2(t), ν1(t), ν2(t), ξ(t)) = (1/2, 1/2, 0, 0, 1/

√
t) then we

notice that at the same time as t converges to zero and x(t) approaches the solution, the
multiplier ξ(t) diverges.

The unboundedness of the corresponding multiplier vector, as illustrated by the previous
example, might cause numerical difficulties. Furthermore, it is not a special feature of this
example but an inevitable consequence, if the relaxed bilinear reformulation produces a
sequence xk that converges to a B-stationary point that is not strongly stationary.

62
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Lemma 2.11. Let (tk) ⊆ R
k be a sequence that satisfies tk → 0 and let (xk) ⊆ R

n+2p

be a sequence of stationary points of NLP (tk) that converges to a point x̄ that is not
strongly stationary. Then any sequence of corresponding multipliers (λk, µk, νk

1 , ν
k
2 , ξ

k) is
unbounded.

Proof. Assume there exists a bounded sequence of multipliers (λk, µk, νk
1 , ν

k
2 , ξ

k) associated
with the sequence of stationary points xk. Then, (λk, µk, νk

1 , ν
k
2 , ξ

k) has a convergent
subsequence

(λk, µk, νk
1 , ν

k
2 , ξ

k)κ∈K −→ (λ̃, µ̃, ν̃1, ν̃2, ξ̃)

with k ∈ K ⊆ N. As xk is stationary and converges to x̄ and, since f, g and h are assumed
to be twice continuously differentiable,

0 = lim
κ∈K
κ→∞



f(xk)−
m∑

j=1

λk
j∇gj(x

k) −
q
∑

i=1

µk
i∇hi(x

k)

−
p
∑

j=1

νk
1j e1j −

p
∑

j=1

νk
2j e2j

+

p
∑

j=1

ξk
j x

k
2j e1j +

p
∑

j=1

ξk
j x

k
1j e2j





= f(x̄)−
m∑

j=1

λ̃j∇gj(x̄) −
q
∑

i=1

µ̃i∇hi(x̄)

−
p
∑

j=1

(ν̃1j − ξ̃j x̄2j) e1j −
p
∑

j=1

(ν̃2j − ξ̃jx̄1j) e2j .

Hence, we can choose (λ̃, µ̃, γ̃1, γ̃2) with γ̃1j =(ν̃1j − ξ̃jx̄2j) and γ̃2j =(ν̃2j − ξ̃jx̄1j) for
j ∈ {1, . . . , p} as a multiplier vector for x̄. That (λ̃, µ̃, γ̃1,γ̃2) satisfies the complementarity
condition and λ̃ satisfies the nonnegativity conditions follows by the corresponding condi-
tions for the multipliers (λk, µk, νk

1 , ν
k
2 , ξ

k) and the relation of the active sets in xk and in
x̄. Finally, consider the limit multipliers γ̃1j and γ̃2j for j ∈ (I1 ∩ I2)(x̄) and note that as
for all these indices

γ̃1j = lim
κ∈K

κ→∞

νk
1j − ξk

j x
k
2j = ν̃1j ≥ 0 and γ̃2j = lim

κ∈K
κ→∞

νk
2j − ξk

j x
k
1j = ν̃2j ≥ 0 .

Hence, we have found a multiplier vector such that x̄ is a strongly stationary point in
contradiction to our assumption.

In contrast to the previous result, we can prove that for the new relaxation scheme the
sequence of multipliers (λk, µk, νk

1 , ν
k
2 , ξ

k) of a sequence of stationary points of R(tk) is
bounded, provided the family of constraint gradients corresponding to the strictly positive
entries of (νk

1 , ν
k
2 , ξ

k) are linearly independent and the sequences (λk) and (µk) are bounded.
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2 New Relaxation Scheme for MPECs

Lemma 2.12. Let (tk) ⊆ R
+ be a sequence that satisfies tk → 0 and let (xk) ⊆ R

n+2p be
a sequence of stationary points of R(tk) that converges to x̄. Furthermore, let (λk, µk, νk

1 ,
νk
2 , ξ

k) be a corresponding sequence of multipliers of xk and assume that the family

{e1j | j ∈ supp(νk
1 )} ∪ {e2j | j ∈ supp(νk

2 )} ∪ {−αk
j e1j − (2− αk

j ) e2j | j ∈ supp(ξk)}
(2.47)

is linear independent for each k ∈ N. Finally, suppose that the the sequences (λk) and (µk)
are bounded. Then the sequence (λk, µk, νk

1 , ν
k
2 , ξ

k) is also bounded.

Proof. As xk → x̄ and f is assumed to be continuously differentiable, it holds

lim
k→∞

∂f

∂xij
(xk) =

∂f

∂xij
(x̄) (2.48)

for i = 1, 2 and for all j ∈ {1, . . . , p}. Furthermore, since each xk is a stationary point of
R(tk), we can represent ∇f(xk) by the active constraint gradients and the corresponding
multipliers (λk, µk, νk

1 , ν
k
2 , ξ

k). Hence,

∣
∣
∣
∣

∂f

∂x1j
(xk)

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

(
m∑

i=1

λk
i∇gi(x

k) +

q
∑

i=1

µk
i∇hi(x

k)

)

n+j

+ (νk
1j − ξk

j α
k
j )

∣
∣
∣
∣
∣
∣

for each j ∈ {1, . . . , p}. By the boundedness of (λk) and (µk) and the differentiability
assumptions for g and h there exists an M ∈ R

+ such that

∣
∣
∣
∣

∂f

∂x1j
(xk)

∣
∣
∣
∣
≥ −M + | νk

1j − ξk
jα

k
j | (2.49)

and accordingly
∣
∣
∣
∣

∂f

∂x2j
(xk)

∣
∣
∣
∣
≥ −M + |(νk

2j − ξk
j (2− αk

j ))| (2.50)

for all j ∈ {1, . . . , p} and all k ∈ N.

Next, we prove that either νk
1j = 0 and νk

2j = 0 or ξk
j = 0 for every j ∈ {1, . . . , p} and for

every k ∈ N.

First, suppose that xk
1j ≥ tk, then it holds that νk

1j = 0 and j ∈ I2(x
k) ∩ IΦ(xk, tk),

which implies αk
j = 0. Therefore, (−αk

j e1j − (2− αk
j ) e2j) = −2e2j , such that by the linear

independence of (2.47), it follows that either νk
2j = 0 or ξk

j = 0.

Accordingly, if xk
2j ≥ tk, then νk

2j = 0 and, since in this case αk
j = 2, (−αk

j e1j − (2 −
αk

j ) e2j) = −2e1j . Thus, by the linear independence of (2.47), it follows that either νk
1j = 0

or ξk
j = 0.

Hence, in both cases (xk
1j ≥ tk or xk

2j ≥ tk) either νk
1j = 0 and νk

2j = 0 or ξk
j = 0.

If xk
1j < tk and xk

2j < tk, then by Lemma 2.6 it follows that at most either j ∈ IΦ(xk, tk)

or j ∈ (I1 ∪ I2)(xk) but not both. Hence, again either νk
1j = 0 and νk

2j = 0 or ξk
j = 0.

Using this information we will now prove the boundedness of (νk
1j), (νk

2j) and (ξk
j ).
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Assume that (νk
1j) is not bounded. Then there exists a subsequence (νk

1j)k∈K with νk
1j > 0

for all k ∈ K and νk
1j → ∞. As νk

1j > 0 and by the previous considerations ξk
j = 0 for all

k ∈ K. However, by (2.49) it then follows

lim
k∈K

k→∞

∣
∣
∣
∣

∂f

∂x1j
(xk)

∣
∣
∣
∣
≥ −M + lim

k∈K
k→∞

|νk
1j | =∞ ,

which contradicts (2.48). Analogously we obtain a contradiction if (νk
2j) is assumed to be

unbounded.
Now assume that (ξk

j ) is unbounded. Then there exists again a subsequence (ξk
j )k∈K

satisfying ξk
j > 0 for all k ∈ K (such that νk

1j = 0 and νk
2j = 0 for all k ∈ K) and ξk

j →∞.

If there exists a δ > 0, such that αk
j > δ holds for all k ∈ K, then

lim
k∈K

k→∞

∣
∣
∣
∣

∂f

∂x1j
(xk)

∣
∣
∣
∣
≥ −M + lim

k∈K
k→∞

| − ξk
j α

k
j | > −M + δ lim

k∈K
k→∞

ξk
j =∞ ,

which again contradicts (2.48).
Finally, assume there does not exist a δ > 0 such that αk

j > δ holds for all k ∈ K. Then

there exists, however, a subsequence (αk
j )k∈L with αk

j → 0 and k ∈ L ⊆ K. Since then

(2− αk
j )→ 2 for k ∈ L ⊆ K, it follows that

lim
k∈L

k→∞

∣
∣
∣
∣

∂f

∂x2j
(xk)

∣
∣
∣
∣
≥ −M + lim

k∈L
k→∞

| − ξk
j (2− αk

j ) | = −M + 2 lim
k∈L

k→∞

ξk
j =∞ ,

which also contradicts (2.48), such that (λk, µk, νk
1 , ν

k
2 , ξ

k) has to be bounded.

Next, consider Example 2.3 and Example 2.4 and note, that in both cases a sequence
of stationary points of a sequence of problems NLP (tk) satisfies x1(tk)x2(tk) − tk = 0 for
all k ∈ N. Hence, it is of interest to have an estimate of the maximum distance of points
satisfying x1(tk)x2(tk)− tk = 0 to points satisfying the complementarity condition.

To derive such an estimate, we first transform the original coordinate system by rotating
the coordinate system by 45◦ and obtain new coordinates u and v with:

u(x1, x2) = x1 − x2 and v(x1, x2) = x1 + x2 .

The inverse transformation is given by

x1(u, v) =
1

2
(u+ v) and x2(u, v) =

1

2
(v − u) .

Next, we describe the curve s(x1, x2) := x1x2 − t = 0 in terms of u and v

s̃(u, v) := s(x1(u, v), x2(u, v)) =
1

4
(u+ v)(v − u)− t =

1

4
(v2 − u2)− t = 0 .

As implicit function ṽ(u), such that s̃(u, ṽ(u)) = 0 holds, we get ṽ(u) =
√
u2 − 4t. To

evaluate an upper bound for the maximum distance of points (x1, x2) with x1x2− t = 0 to

65



2 New Relaxation Scheme for MPECs

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a)
√

u2 + 4t and |u|

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b) h(u) =
√

u2 + 4t − |u|

Figure 2.3: Functions
√
u2 + 4t, |u| and h(u) for u ∈ [−1, 1] and t = 0.1

points that satisfy x1x2 = 0, we consider the distance of points (u, |u|) to points (u, v) =
Π(u, |u|), where Π(u, |u|) denotes the projection of (u, |u|) onto the curve (u, ṽ(u)). This
distance is bounded by |h(u)| for all u ∈ R, where h(u) := ṽ(u)− |u|. Figure 2.3 illustrates
the curves (u, |u|), (u, ṽ(u)) and (u, h(u)), respectively for u ∈ [−1, 1] and t = 0.1.

Since
h(u) = ṽ(u)− |u| =

√

u2 − 4t− |u| < 2
√
t for all u ∈ R\{0}

and h(0) = 2
√
t, it follows that the maximum distance of points (u, |u|) to points (u, v) =

Π(u, |u|) is bounded above by 2
√
t. Moreover, because this upper bound is reached for

(u, |u|) = (0, 0), it cannot be tightened any further.
To obtain a corresponding estimate for our relaxation scheme, we consider the curve

ŝ(u, v) := Φ(x1(u, v), x2(u, v), t) = v − tθ
(u

t

)

= 0 .

for u ∈ [−t, t]. Hence, ŝ(u, v̂(u)) = 0 holds for v̂(u) = tθ
(

u
t

)
and u ∈ [−t, t].

To evaluate the maximum distance of points with Φ(x1, x2, t) = 0 to points that satisfy
x1x2 = 0, we only have to consider the distance of points (u, |u|) to points (u, v) = Π(u, |u|),
where Π(u, |u|) now denotes the projection of (u, |u|) onto the curve (u, v̂(u)) with u ∈
[−t, t]. Again similar as for the relaxed bilinear reformulation this distance is bounded by
|g(u)| for all u ∈ [−t, t], where g(u) := v̂(u)− |u|. Figure 2.4 illustrates the curves (u, |u|),
(u, v̂(u)) and (u, h(u)), respectively for u ∈ [−1, 1] and t = 1.

Applying Assumptions 2.1 we get that g(u) must also have its maximum in u = 0. As
g(0) = tθ(0) the distance directly depends on the function θ. For the two examples of θ we
proposed in Section 2.1, we get

tθs(0) =
2t

π
sin

(
3π

2

)

+ t =

(

− 2

π
+ 1

)

t <
1

2
t

and

tθp(0) =
3

8
t .

To obtain the maximum distance in the original coordinate system, we have to scale these
values by 1/2

√
2. However, this scaling does not alter the order. Hence, the maximum
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Figure 2.4: Functions θs(u), |u| and g(u) for u ∈ [−1, 1] and t = 1

distance estimate of the relaxed bilinear approach is of order O(
√
t), whereas for our

relaxation scheme we obtain an estimate of order O(t). Again, consider Example 2.4
and note that for the stationary points x∗(t) of NLP (t) we get the rate of convergence
‖x∗(t) − x∗‖ =

√
2
√
t = O(

√
t), whereas for the stationary points x∗(t) of R(t) we have

‖x∗(t)− x∗‖ = 1/2
√

2 θ(0) t = O(t).
Finally, we consider the order of convergence depending on t of the product x1(t)x2(t).

Since x1(t)x2(t) ≤ t for the relaxed bilinear approach, the convergence of x1(t)x2(t) is of
order O(t).

For our relaxation scheme we have by contrast for pairs (x1(t), x2(t)) with |x1(t)−x2(t)| <
t, that is u(x1(t), x2(t)) ∈ (−t, t),

x1(t)x2(t) ≤ x1(u, ṽ(u))x2(u, ṽ(u)) =
1

4

(

t2θ2
(u

t

)

− u2
)

=
1

4
t2
(

θ2
(u

t

)

−
(u

t

)2
)

≤ 1

4
t2 .

Hence, we get the order O(t2).
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3 New Relaxation in Combination with NLP
Methods

3.1 SQP Methods

In this chapter we consider the behaviour of two important methods to solve nonlinear
programs, namely Sequential Quadratic Programming (SQP) and Interior Point Methods
(IPM), if we combine them with the new relaxation scheme we introduced in the previous
chapter.

In the first section we are concerned with the local convergence properties of a general
SQP method applied to problem R(t). We will show that a general local SQP method
applied to the relaxed problem R(t) will generate a quadratically convergent sequence
of iterates that converges to a strongly stationary point x∗ of the original MPEC under
suitable assumptions.

Afterwards, in the second section, we consider a modified two-sided relaxation scheme,
which forms a combination of the relaxation we discussed in Chapter 2 with the two-sided
relaxation scheme proposed by DeMiguel et al. in [DFNS05] (see also Section 1.4).

3.1.1 A Brief Introduction to SQP Methods

Sequential Quadratic Programming methods belong to the most important algorithms to
solve NLPs. As the name already reveals, these methods are based on the successive
solution of quadratic programs (QP). These QPs form an approximation of the NLP in a
current iterate xk. In this subsection we give a brief sketch of a general SQP algorithm,
explain some of the main ideas behind it and finally mention some convergence results,
which we will need in the subsequent convergence analysis of the SQP method applied to
our problem R(t).

Since we want to introduce a general SQP method, in this section we consider a standard
NLP of the form (1.13). The quadratic programs that are successively solved by an SQP
algorithm for (1.13) are of the form

mind q(d) = ∇f(xk)T d+
1

2
dTHkd

subject to h(xk) +∇h(xk)T d = 0 (3.1)

g(xk) +∇g(xk)Td ≥ 0 ,

where Hk denotes the Hessian matrix ∇2
xxL(xk, λk, µk) (confer (1.17)), xk denotes the

current iterate and λk and µk denote the current multiplier estimates. The constraints of
this QP are the linearizations of the (nonlinear) constraints of (1.13). The objective function
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nearly corresponds to a second order Taylor approximation of the objective function of
(1.13) in xk. However, the constant term f(xk) is left out and instead of the Hessian matrix
of f in xk the Hessian matrix of L(xk, λk, µk) with respect to x is used. The application of
this alternative approximation is motivated by the Lagrange-Newton iteration for nonlinear
programs with equality constraints (see Section 5.5.2 in [GK02] for further details). Similar
to Quasi-Newton methods, the exact Hessian matrix ∇2

xxL(xk, λk, µk) is often substituted
by a suitable symmetric approximation of it.

In each outer iteration of the SQP method the solution of such a QP yield a new search
direction d and associated multipliers λqp and µqp. A new solution estimate is then obtained
by setting xk+1 = xk +d and taking λqp and µqp as new multiplier estimates λk+1 and µk+1,
respectively. Hence, a general local SQP algorithm is of the form:

Algorithm 3.1: Local SQP Algorithm

Choose initial values for x0 ∈ R
n, λ0 ∈ R

m and µ0 ∈ R
q.1

repeat

Compute local minimizer dk of (3.1) that is closest to the origin and compute2

associated multipliers λk
qp and µk

qp.

Update the iterate and the multipliers:3

xk+1 ← xk + dk

λk+1 ← λk
qp

µk+1 ← µk
qp

k ← k + 14

until (xk, λk, µk) satisfies the KKT conditions.

In general, the quadratic subprograms are solved either by an active set strategy or by
Interior Point Methods. Since for the local SQP algorithm it can only be guaranteed to yield
a convergent sequence of iterates, if the initial point (x0, λ0, µ0) is close enough to a solution
of the NLP (see Theorem 3.1), most SQP algorithms incorporate a globalization strategy.
The most popular approaches to promote global convergence of an SQP algorithm concern
linesearch methods applied to a suitable penalty or merit function, trust-region approaches
or most recently filter methods (see chapter 15 in [CGT00]).

A main local convergence result for SQP methods (Theorem 15.2.2 in [CGT00]) is:

Theorem 3.1. Suppose that the second derivatives of f , g and h exist and are Lipschitz
continuous in some neighbourhood Ω of a stationary point x∗ of (1.13) with multipliers λ∗

and µ∗. Assume that the LICQ and the SOSC hold in (x∗, λ∗, µ∗) and furthermore that
λ∗j 6= 0 for all j ∈ Ig(x∗). Then the following holds:

1. Consider any sequence (λk, µk) converging to (λ∗, µ∗). Then there exists a neighbour-
hood X ⊂ Ω of x∗ for which the sequence (xk) generated by Algorithm 3.1 converges
q-superlinearly to x∗ from any starting point x0 ∈ X . Furthermore, if

‖(λk, µk)− (λ∗, µ∗)‖ = O(‖xk − x∗‖),

then the convergence is q-quadratic.
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3.1 SQP Methods

2. Let (xk) and (dk) be the sequences generated by Algorithm 3.1 and let (λk+1, µk+1)
be the Lagrange multipliers associated with dk. Then there is a neighbourhood X ⊂ Ω
of x∗ and another neighbourhood Y of (λ∗, µ∗) for which the sequence ((xk, λk, µk))
converges q-quadratically to (x∗, λ∗, µ∗) from any starting point ((x0, λ0, µ0)) ∈ X×Y.

3. In either case, the set of constraints that are active at x∗ are precisely those that are
active for the quadratic subproblem (3.1) at dk for large enough k.

3.1.2 Local Convergence for R(t)

In this section we will prove that Algorithm 3.1 applied to R(t) will generate a sequence of
iterates xk that converges to a strongly stationary point x∗, if the starting point is close to
x∗.

However, we know by Lemma 2.6 that the LICQ in general fails to hold near x∗ for
t ∈ (0, τ(x∗)). Hence, although we have proven in the previous chapter that a strongly
stationary point x∗ is also a strict local solution of R(t), provided the MPEC-LICQ and
the RNLP-SOSC hold in x∗, Theorem 3.1 is not directly applicable to R(t).

To prove the convergence behaviour of the SQP algorithm applied to R(t), we will there-
fore make use of an auxiliary problem P (t). This problem nearly corresponds to R(t),
though in contrast to R(t), it satisfies the assumptions of Theorem 3.1 under suitable con-
ditions. For this reason, the local SQP algorithm applied to P (t) generates a convergent
sequence of iterates. We will show that Algorithm 3.1 applied to R(t) generates the same se-
quence of solutions dk of the corresponding QPs. This implies that the sequences of iterates
for P (t) and R(t) must coincide, thus the convergence behaviour can be transferred to R(t).

A helpful Lemma concerning the representation of the active sets of a current iterate xk

that is close to a strongly stationary point x∗ is:

Lemma 3.1. Let x∗ be a strongly stationary point of (1.19) and assume that t ∈ (0, τ(x∗))
(τ(x∗) defined as in Definition 2.1). Then there exists an ε > 0 such that for any x ∈
Z(t) ∩ Bε(x

∗) it holds
(I1\I2)(x∗) = I1(x) ∩ IΦ(x, t)

and
(I2\I1)(x∗) = I2(x) ∩ IΦ(x, t) .

Proof. Consider j ∈ (I1\I2)(x∗). Then, since t ∈ (0, τ(x∗)), we have t < x∗2j . We can
therefore find an ε > 0 such that if x ∈ Bε(x

∗), then t < x2j. By the feasibility of x for
R(t) it follows that j ∈ I1(x) ∩ IΦ(x, t). Hence,

(I1\I2)(x∗) ⊆ I1(x) ∩ IΦ(x, t) . (3.2)

Analogously it can be proved that

(I2\I1)(x∗) ⊆ I2(x) ∩ IΦ(x, t) . (3.3)

For the inverse direction we assume that there exists an index j0 ∈ I1(x) ∩ IΦ(x, t) with
j0 /∈ (I1\I2)(x∗). Then either j0 ∈ (I1 ∩ I2)(x∗) or j0 ∈ (I2\I1)(x∗). If j0 ∈ (I1 ∩ I2)(x∗),
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then by x ∈ Z(t) ∩ Bε(x
∗) it follows that x1j0 < t and x2j0 < t, which by Lemma 2.6

(2) contradicts j0 ∈ I1(x) ∩ IΦ(x, t). If j0 ∈ (I2\I1)(x∗) then by (3.3) it follows that
j0 ∈ (I2(x)∩IΦ(x, t))∩(I1(x)∩IΦ(x, t)). This however contradicts Lemma 2.6 (2). Thus, if
x is feasible for R(t) and close enough to x∗ then (I1\I2)(x∗) = I1(x)∩IΦ(x, t). Accordingly
we can prove that (I2\I1)(x∗) = I2(x) ∩ IΦ(x, t).

The next Lemma illustrates and extends Lemma 2.6. It states that the LICQ is inherently
not satisfied for R(t) close to a strongly stationary point x∗, if there exists at least one
nondegenerate complementarity pair and explains the reason for it.

Lemma 3.2. Let x∗ be a strongly stationary point of (1.19) and let t ∈ (0, τ(x∗)). Then
there exists an ε > 0 such that for any x ∈ Z(t) ∩ Bε(x

∗)

1. if (I1 ∩ I2)(x∗) 6= {1, . . . , p} then the family of active constraint gradients is linearly
dependent.

2. If x∗ satisfies the MPEC-LICQ, then the linear dependence of the family of active
constraint gradients is based on the existence of a pair of positive linear dependent
vectors for each j ∈ {1, . . . , p}\(I1 ∩ I2)(x∗):

e1j and − 2e1j for j ∈ (I1\I2)(x∗)
e2j and − 2e2j for j ∈ (I2\I1)(x∗).

Thus, if only one representative of each such pair is chosen, then the resulting family
is linear independent.

Proof. First by Lemma 3.1 we can find an ε > 0, such that (I1\I2)(x∗) = I1(x) ∩ IΦ(x, t)
and (I2\I1)(x∗) = I2(x) ∩ IΦ(x, t) holds for all x ∈ Z(t) ∩ Bε(x

∗). Furthermore, taking
into account the special form of ∇xΦ(x1, x2, t), we obtain as family of active constraint
gradients for such x

∇hj(x) j ∈ {1, . . . , q}
∇gj(x) j ∈ Ig(x)

e1j and − 2e1j j ∈ (I1\I2)(x∗)
e2j and − 2e2j j ∈ (I2\I1)(x∗) (3.4)

e1j j ∈ (I1 ∩ I2)(x∗) ∩ I1(x)
e2j j ∈ (I1 ∩ I2)(x∗) ∩ I2(x)

−αj e1j − (2− αj) e2j j ∈ (I1 ∩ I2)(x∗) ∩ IΦ(x, t) ,

which is clearly linear dependent if (I1 ∩ I2)(x∗) 6= {1, . . . , p}. By the continuity of g we
have Ig(x) ⊆ Ig(x

∗) for all x that are close enough to x∗. Thus, if the MPEC-LICQ is
satisfied in x∗, then the family

∇hj(x
∗) j ∈ {1, . . . , q}

∇gj(x
∗) j ∈ Ig(x)
e1j j ∈ (I1\I2)(x∗) (3.5)

e2j j ∈ (I2\I1)(x∗)
e1j j ∈ (I1 ∩ I2)(x∗)
e2j j ∈ (I1 ∩ I2)(x∗) .
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is linear independent.

Consider a matrix A whose column vectors are the gradient vectors of (3.5). Then A
has full column rank and ATA is invertible. Replacing the columns ∇hj(x

∗) by ∇hj(x) for
all j ∈ {1, . . . , q} and ∇gj(x

∗) by ∇gj(x) for all j ∈ Ig(x), we obtain a slightly perturbed
matrix Ā, which is close to A. Therefore, by the perturbation lemma (see Lemma 5.23 in
[GK02]), we deduce that ĀT Ā is also invertible and it follows that Ā must have full column
rank.

Finally, consider again (3.4) and note that by Lemma 2.6 at most either j ∈ IΦ(x, t) or
j ∈ (I1 ∪ I2)(x) but not both, if x1j < t and x2j < t. Hence, if we choose ε small enough,
then for all j ∈ (I2 ∩ I1)(x∗) it holds IΦ(x, t) ∩ (I1 ∪ I2)(x) = ∅. Therefore, if one chooses
only one representative of each pair

e1j and − 2e1j for j ∈ (I1\I2)(x∗)
e2j and − 2e2j for j ∈ (I2\I1)(x∗),

then the resulting family

∇hj(x) j ∈ {1, . . . , q}
∇gj(x) j ∈ Ig(x)

either e1j or − 2e1j j ∈ (I1\I2)(x∗)
either e2j or − 2e2j j ∈ (I2\I1)(x∗) (3.6)

e1j j ∈ (I1 ∩ I2)(x∗) ∩ I1(x)
e2j j ∈ (I1 ∩ I2)(x∗) ∩ I2(x)

−αj e1j − (2− αj) e2j j ∈ (I1 ∩ I2)(x∗) ∩ IΦ(x, t)

partly corresponds to a subset of the columns of Ā. Only for indices j ∈ (I2 ∩ I1)(x∗) ∩
IΦ(x, t) the two linear independent vectors e1j and e2j have been replaced by a linear
combination of both of them, namely −αj e1j − (2 − αj) e2j . However, as this does not
disturb the linear independence, the resulting family of active constraint gradients is linear
independent.

The results of Lemma 3.2 imply that, although we have shown that a strongly stationary
point x∗ is also a stationary point of R(t) if t ∈ (0, τ(x∗)) (see Section 2.2), we cannot
directly apply the Convergence Theorem 3.1 to problem R(t) in general. However, it gives
us a hint how to handle the absence of the LICQ in x∗ for R(t).

Consider the auxiliary problem

P (t) min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1j = 0, x2j ≥ 0 j ∈ (I1\I2)(x∗)
x2j = 0, x1j ≥ 0 j ∈ (I2\I1)(x∗)
x1j ≥ 0, x2j ≥ 0 j ∈ (I1 ∩ I2)(x∗)
Φj(x1, x2, t) ≤ 0 j ∈ (I1 ∩ I2)(x∗) .
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In the following, we will prove that if the MPEC-LICQ and the RNLP-SOSC are satisfied
in a strongly stationary point x∗, then the SQP algorithm 3.1 applied to P (t) will yield a
locally convergent sequence (xk).

First, we prove that each strongly stationary point x∗ of (1.19) is a stationary point of
P (t) (determined for this strongly stationary point x∗).

Lemma 3.3. Let x∗ be a strongly stationary point of (1.19) with multipliers λ∗, µ∗, ν̂1 and
ν̂2. Assume further that t ∈ (0, τ(x∗)), then x∗ is a stationary point for P (t) (associated
with x∗) with multipliers λ∗, µ∗, ν̃1 := ν̂1, ν̃2 := ν̂2, and ξ̃ := 0.

Proof. As x∗ is feasible for (1.19) it is clearly also feasible for P (t). For P (t) the multipliers
ν̃1j for j ∈ (I1\I2)(x∗) as well as the multipliers ν̃2j for j ∈ (I2\I1)(x∗) are allowed to be
of either sign. Moreover, ν̂1j ≥ 0 as well as ν̂2j ≥ 0 for j ∈ (I1 ∩ I2)(x∗). Hence, the
multipliers λ∗, µ∗, ν̃1 = ν̂1 and ν̃2 = ν̂2 and ξ̃ = 0 satisfy the KKT-conditions for P (t) and
x∗ is a stationary point of P (t).

Next, we show, that the LICQ as well as the second order sufficient condition can be
transferred to P (t).

Lemma 3.4. Suppose x∗ is a strongly stationary point of (1.19) and assume the MPEC-
LICQ holds in x∗. Furthermore, assume that t ∈ (0, τ(x∗)). Then there exists an ε > 0
such that the LICQ holds in x for all x that are feasible for P (t) and satisfy x ∈ Bε(x

∗).

Proof. If t ∈ (0, τ(x∗)) and x is close enough to x∗, then the family of active constraint
gradients for P (t) in x is

∇hj(x) j ∈ {1, . . . , q}
∇gj(x) j ∈ Ig(x)

e1j j ∈ (I1\I2)(x∗)
e2j j ∈ (I2\I1)(x∗) (3.7)

e1j j ∈ (I1 ∩ I2)(x∗) ∩ I1(x)
e2j j ∈ (I1 ∩ I2)(x∗) ∩ I2(x)

−αj e1j − (2− αj) e2j j ∈ (I1 ∩ I2)(x∗) ∩ IΦ(x, t) .

The linear independence of (3.7) now follows by Lemma 3.2 (confer 3.5).

Lemma 3.5. Let x∗ be a strongly stationary point of (1.19) and let t ∈ (0, τ(x∗)). Further-
more, assume that the RNLP-SOSC holds in x∗. Then the SOSC for P (t) is also satisfied
in x∗.

Proof. Since x∗ is a strongly stationary point of (1.19), by Lemma 3.3 it is a stationary point
of P (t) with multipliers that ν̃1 := ν̂1, ν̃2 := ν̂2, and ξ̃ := 0. Moreover, all second partial
derivatives of Φj(x1, x2, t) ≤ 0 with respect to x vanish except for the indices j ∈ {1, . . . , p}
with |x1j − x2j | < t, thus except for indices j ∈ (I1 ∩ I2)(x∗). Hence,

∇2
xxLP (t)(x

∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃) = ∇2
xxLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) . (3.8)
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Comparing the set of critical directions SP (t)(x
∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃, t) of P (t) with the

corresponding set SR(t)(x
∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗, t) of R(t), we note that the two sets differ
only in the conditions for j ∈ (I1\I2)(x∗) and j ∈ (I2\I1)(x∗), respectively. However, for
indices j ∈ (I1\I2)(x∗) we have s1j = 0 for all s ∈ SP (t)(x

∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃, t), as well as

we have s2j = 0 for all s ∈ SP (t)(x
∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃, t) for indices j ∈ (I2\I1)(x∗). Hence,

SP (t)(x
∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃, t) ⊆ SR(t)(x

∗, λ∗, µ∗, ν∗1 , ν
∗
2 , ξ

∗, t) = S̄(x∗, λ∗,µ∗,ν̂1,ν̂2) (confer
Theorem 2.1). The RNLP-SOSC in x∗ therefore implies that the SOSC does also hold in
x∗ for problem P (t).

Now, if we assume that x∗ is a strongly stationary point of (1.19) at which the MPEC-
LICQ and the RNLP-SOSC are satisfied and if t ∈ (0, τ(x∗)), then problem P (t) satisfies
almost all the conditions that are necessary to guarantee the fast local convergence of
Algorithm 3.1, if applied to P (t). However, to prove the local convergence we first need
the following result concerning the Lipschitz-continuity of the second derivative of Φj.

Lemma 3.6. Let Φj(x1, x2, t) be defined as in Section 2.1 and let t > 0. Furthermore,
suppose θ satisfies Assumptions 2.1 and let θ′′ be Lipschitz-continuous on D ) [−1, 1].
Then ∇2

xxΦj(x1, x2, t) is Lipschitz-continuous on R
n+2p.

Proof. First we proof that if each partial derivative ∂2Φ`(x1, x2, t)/∂xi∂xj is Lipschitz-
continuous on R

n+2p, then this is also true for ∇2
xxΦ`(x1, x2, t).

Consider a map F : Rn → R
m×n, with component functions fij(x) then

F (x) =
n∑

i=1

m∑

j=1

fij(x)Eij ,

where Eij denotes the matrix that has all zero entries except for the ijth entry which is set
equal to one. Now, if we assume that fij(x) is Lipschitz-continuous on R

n with Lipschitz
constant Lij for all i ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}, then there exists a constant L,
such that for all x, y ∈ R

n

‖F (x)− F (y)‖ =

∥
∥
∥
∥
∥
∥

n∑

i=1

m∑

j=1

(fij(x)− fij(y))Eij

∥
∥
∥
∥
∥
∥

≤
n∑

i=1

m∑

j=1

| fij(x)− fij(y) | ‖Eij‖

≤
n∑

i=1

m∑

j=1

Lij ‖x− y‖ ‖Eij‖

= ‖x− y‖
n∑

i=1

m∑

j=1

Lij‖Eij‖ = L‖x− y‖ ,

where different norms can be handled by the equivalence of norms of Rn (see for example
[Kos93]). Hence, F is Lipschitz-continuous.

75



3 New Relaxation in Combination with NLP Methods

Next we consider the second partial derivatives ∂2Φ`(x1, x2, t)/∂xi∂xj and prove, that
they are Lipschitz-continuous for all x, y ∈ R

n+2p. Consider the definition of Φ`(x1, x2, t)
and note that the second derivatives of Φ`(x1, x2, t) with respect to x all vanish except
for the case that |x1` − x2`| < t. Hence, assume that at least either |x1` − x2`| < t or
|y1` − y2`| < t. Furthermore, the only nonvanishing components of ∂2Φ`(x1, x2, t)/∂xi∂xj

for such x with |x1` − x2`| < t are

∣
∣
∣
∣

∂2Φ`

∂x2
1`

∣
∣
∣
∣
=

∣
∣
∣
∣

∂2Φ`

∂x2
2`

∣
∣
∣
∣
=

∣
∣
∣
∣

∂2Φ`

∂x1`∂x2`

∣
∣
∣
∣
=

1

t
θ′′
(
x1` − x2`

t

)

.

Next, we distinguish two cases: either |x1`−x2`| < t as well as |y1`− y2`| < t holds or only
one of these two conditions holds.

First assume |x1` − x2`| < t as well as |y1` − y2`| < t holds. Then, as θ′′ is supposed to
be Lipschitz-continuous on D ) [−1, 1], there exists an L ∈ R

+ such that

∣
∣
∣
∣

∂2Φ`

∂x2
1`

(x)− ∂2Φ`

∂x2
1`

(y)

∣
∣
∣
∣

=

∣
∣
∣
∣

1

t
θ′′
(
x1` − x2`

t

)

− 1

t
θ′′
(
y1` − y2`

t

)∣
∣
∣
∣

≤ Lθ

t

∣
∣
∣
∣

(
x1` − x2`

t

)

−
(
y1` − y2`

t

)∣
∣
∣
∣

≤ Lθ

t2
(|x1` − y1`|+ |x2` − y2`|)

≤ L ‖x− y‖ .

Next, suppose |x1` − x2`| < t and (y1` − y2`) ≥ t, then again there exists an L ∈ R
+, such

that
∣
∣
∣
∣

∂2Φ`

∂x2
1`

(x)− ∂2Φ`

∂x2
1`

(y)

∣
∣
∣
∣

=

∣
∣
∣
∣

1

t
θ′′
(
x1` − x2`

t

)

− 0

∣
∣
∣
∣

=
1

t

∣
∣
∣
∣
θ′′
(
x1` − x2`

t

)

− θ′′
(
t

t

)∣
∣
∣
∣

≤ Lθ

t

∣
∣
∣
∣

(
x1` − x2`

t

)

−
(
t

t

)∣
∣
∣
∣

≤ Lθ

t2
((y1` − y2`)− (x1` − x2`))

≤ Lθ

t2
(|x1` − y1`|+ |x2` − y2`|)

≤ L ‖x− y‖ .

The same can be proved similarly for (y1` − y2`) ≤ −t (then we choose θ′′(−t/t)) and
accordingly for ∂2Φ`/∂x

2
2` as well as for ∂2Φ`/∂x1`∂x2`. Hence, applying the first part of

the proof , we obtain the Lipschitz-continuity of ∇2
xxΦl.

Now we can apply the Convergence Theorem 3.1 to Problem P (t).
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Theorem 3.2. Let x∗ be a strongly stationary point of (1.19) and assume that the MPEC-
LICQ and the RNLP-SOSC hold in x∗. Furthermore, assume that there exists a neigh-
bourhood of x∗ in which the second derivatives of f , g and h are Lipschitz-continuous and
suppose θ′′ is Lipschitz-continuous on an open set D ⊇ [−1, 1]. Moreover, assume that
t ∈ (0, τ(x∗)) and

λ∗j > 0 j ∈ Ig(x∗)
ν̂1j > 0 j ∈ (I1 ∩ I2)(x∗)
ν̂2j > 0 j ∈ (I1 ∩ I2)(x∗) .

Then there exists an ε > 0 such that for any starting point (x0, λ0, µ0, ν0
1 , ν

0
2 , ξ

0) ∈
Bε((x

∗, λ∗, µ∗, ν̂1, ν̂2, 0)) Algorithm 3.1 applied to P (t) generates a sequence of iterates
((xk, λk, µk, νk

1 , ν
k
2 , ξ

k)) that converges q-quadratically to (x∗, λ∗, µ∗, ν̂1, ν̂2, 0). Moreover,
the sequence (xk) converges q-superlinearly to x∗.

Proof. By Lemma 3.3, x∗ is a stationary point of P (t) with multipliers (x∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃)
that satisfy ν̃1 := ν̂1, ν̃2 := ν̂2, and ξ̃ := 0. Moreover, by Lemma 2.6 and the condition
t > 0, any index j ∈ (I1 ∩ I2)(x∗) satisfies j /∈ IΦ(x∗, t). Hence, the multipliers (λ∗, µ∗, ν̃1,
ν̃2, 0) of x∗ for P (t) satisfy strict complementarity. By Lemma 3.6, Lemma 3.4 and Lemma
3.5 it follows that the assumptions for Theorem 3.1 are satisfied. Thus, by the second
part of it, the generated sequence ((xk, λk, µk, νk

1 , ν
k
2 , ξ

k)) converges q-quadratically to
(x∗, λ∗, µ∗, ν̃1, ν̃2, ξ̃) and by the first part of Theorem 3.1 it follows that (xk) converges
q-superlinearly to x∗.

Knowing that Algorithm 3.1 applied to P (t) yields a sequence of iterates xk that satisfy
fast local convergence in the vicinity of a local minimizer x∗, we are now interested in the
question whether we can transfer this result to our problem R(t). We therefore compare
the corresponding QPs in a current iterate xk. If we can deduce, that solving the QP of
R(t) determined in xk yields the same step d as solving the corresponding QP of P (t), then
we can transfer the convergence result of Theorem 3.2 and obtain fast local convergence to
x∗ for R(t).

The QP of R(t) determined in a current iterate xk with multipliers λk, µk, νk
1 , ν

k
2 and

ξk has the form

QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k)

mind q
R(t)

(d) = ∇f(xk)Td+
1

2
dTHkd

subject to h(xk) +∇h(xk)Td = 0

g(xk) +∇g(xk)Td ≥ 0

xk
1j + d1j ≥ 0 j ∈ {1, . . . , p}
xk

2j + d2j ≥ 0 j ∈ {1, . . . , p}
Φj(x

k
1 , x

k
2 , t) +∇xΦj(x

k
1 , x

k
2 , t)

T d ≤ 0 j ∈ {1, . . . , p} ,

whereHk denotes the matrix∇2
xxLR(t)(x

k, λk, µk, νk
1 , ν

k
2 , ξ

k). The corresponding quadratic

approximation of P (t) in the same iterate xk, which is close to the strongly stationary point

77



3 New Relaxation in Combination with NLP Methods

x∗, has the form

QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k)

mind q
P (t)

(d) = ∇f(xk)T d+
1

2
dT Ĥkd

subject to h(xk) +∇h(xk)T d = 0

g(xk) +∇g(xk)Td ≥ 0

d1j = 0, xk
2j + d2j ≥ 0 j ∈ (I1\I2)(x∗)

d2j = 0, xk
1j + d1j ≥ 0 j ∈ (I2\I1)(x∗)

xk
1j + d1j ≥ 0, xk

2j + d2j ≥ 0, j ∈ (I1 ∩ I2)(x∗)
Φj(x

k
1 , x

k
2 , t) +∇xΦj(x

k
1 , x

k
2 , t)

T d ≤ 0 j ∈ (I1 ∩ I2)(x∗) ,

where Ĥk denotes the matrix ∇2
xxLP (t)(x

k, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) with

LP (t)(x, λ, µ, ν1, ν2, ξ) = f(x)−∑m
j=1 λjgj(x)−

∑q
i=1 µihi(x)

−νT
1 x1 − νT

2 x2 +
∑

j∈(I1∩I2)(x∗) ξjΦj(x1, x2, t) .
(3.9)

Consider a strongly stationary point x∗ of (1.19) and assume that t ∈ (0, τ(x∗)). Then by
Lemma 3.1 (I1\I2)(x∗) ⊆ I1(x) ∩ IΦ(x, t), if x is sufficiently close to x∗.

Now compare problem QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) with QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k)
and note that if xk is close to x∗, then we have only exchanged the two inequalities d1j ≥ 0
and ∇xΦj(x

k
1 , x

k
2 , t)

T d = 2d1j ≤ 0 by one inequality, namely d1j = 0 for all j ∈ (I1\I2)(x∗),
since xk

1j = 0 and Φj(x
k
1 , x

k
2 , t) = 0 for all j ∈ (I1\I2)(x∗). The same applies accordingly to

indices j ∈ (I2\I1)(x∗).
Furthermore, compare the feasible regions of P (t) and of R(t) in a small neighbourhood

of x∗ and note that they are identical.
Suppose that we determine QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) close to a strongly station-
ary point x∗, where the MPEC-LICQ is satisfied, then QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) is
consistent.

Lemma 3.7. Let x∗ be a strongly stationary point of (1.19), where the MPEC-LICQ is
satisfied. Furthermore, let t ∈ (0, τ(x∗)). Then there exists an ε > 0, so that QPP (t)(xk,
λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) is consistent for any xk ∈ Z(t) ∩Bε(x
∗).

Proof. Let xk ∈ Z(t)∩Bε(x
∗), then Lemma 3.4 implies that the LICQ holds in x for P (t).

We can therefore find a vector d ∈ R
n+2p that satisfies

∇hj(x)
T d = 0 j ∈ {1, . . . , q}

∇gj(x)
T d = 0 j ∈ Ig(x)
d1j = 0 j ∈ (I1\I2)(x∗)
d2j = 0 j ∈ (I2\I1)(x∗) (3.10)

d1j = 0 j ∈ (I1 ∩ I2)(x∗) ∩ I1(x)
d2j = 0 j ∈ (I1 ∩ I2)(x∗) ∩ I2(x)

−αj d1j − (2− αj)d2j = 0 j ∈ (I1 ∩ I2)(x∗) ∩ IΦ(x, t) .
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Hence, d satisfies the constraints of QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) that correspond to the
active constraints in x of P (t).

Concerning the remaining inequality constraints of QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k), cor-
responding to the inactive inequality constraints of P (t), we can find a δ > 0 such that for
any d ∈ R

n+2p the vector δd satisfies these inequality constraints of QPP (t)(xk, λ̃k, µ̃k,
ν̃k
1 , ν̃

k
2 , ξ̃

k). Since this holds in particular for d ∈ R
n+2p that satisfies (3.10), it follows that

QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) is consistent.

Remark 3.1. By Lemma 3.7 it clearly follows that for all xk close to a strongly stationary
point of (1.19), where the MPEC-LICQ is satisfied, the problems QPR(t)(xk, λk, µk, νk

1 ,
νk
2 , ξ

k) are also consistent.

Next we prove that the feasible regions and the objective functions of the problems
QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) and QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k) are equal under suitable
conditions. These results will then be used to prove that the two QPs have the same
solutions.

Lemma 3.8. Let x∗ be a strongly stationary point of (1.19) and t ∈ (0, τ(x∗)). Then there
exists an ε > 0 such that if xk ∈ Z(t)∩Bε(x

∗), then the feasible regions of QPP (t)(xk, λ̃k,
µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) and of QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k) are identical.

Proof. Let first d ∈ R
n+2p be feasible for QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k). Then, for
xk ∈ Z(t)∩Bε(x

∗), the inequalities xk
1j + d1j ≥ 0 and xk

2j + d2j ≥ 0 are clearly satisfied for

all j ∈ {1, . . . , p}. Furthermore, xk
1j > t, xk

2j = 0 and d2j = 0 for all j ∈ (I2\I1)(x∗). Thus,

Φj(x
k
1 , x

k
2 , t) = 0 and ∇Φj(x

k
1 , x

k
2 , t)

T d = 2d2j = 0

for all j ∈ (I2\I1)(x∗). Hence Φj(x
k
1 , x

k
2 , t) +∇Φj(x

k
1 , x

k
2 , t)

T d = 0 for all j ∈ (I2\I1)(x∗).
Accordingly it can be proved that Φj(x

k
1 , x

k
2 , t)+∇xΦj(x

k
1 , x

k
2 , t)

Td = 0 for all j ∈ (I1\I2)(x∗).
For all j ∈ (I1 ∩ I2)(x∗), these constraints are directly satisfied, since d is feasible for
QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k). Hence, d is feasible for QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k).
Now suppose d ∈ R

n+2p be feasible for QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k). Then, in order
to prove that d is feasible for QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k), we have to show that d1j = 0
for all j ∈ (I1\I2)(x∗) and d2j = 0 for all j ∈ (I2\I1)(x∗).

Since t < τ(x∗) and xk ∈ Z(t) we can find an ε > 0, such that if xk ∈ Bε(x
∗), then

xk
1j = 0 for all j ∈ (I1\I2)(x∗) (confer Lemma 3.1). Hence, by the feasibility of d for

QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k), it follows that d1j ≥ 0 for all j ∈ (I1\I2)(x∗). Moreover,

0 ≥ Φj(x1, x2, t) +∇Φj(x1, x2, t)
T d = 2d1j

for all j ∈ (I1\I2)(x∗). Therefore, d1j = 0 for all j ∈ (I1\I2)(x∗). Accordingly we can
prove that d2j = 0 for all j ∈ (I2\I1)(x∗). Thus d is feasible for QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 ,

ξ̃k).

Lemma 3.9. Let x∗ be a strongly stationary point of (1.19) and t ∈ (0, τ(x∗)). Then
there exists an ε > 0, such that if xk ∈ Z(t) ∩ Bε(x

∗), then the corresponding problems
QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) and QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k) have the same objective
function, provided that λ̃k = λk and µ̃k = µk, as well as ξ̃k

j = ξk
j for j ∈ (I1 ∩ I2)(x∗).
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Proof. The objective functions of QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) and QPR(t)(xk, λk, µk,
νk
1 , ν

k
2 , ξ

k) differ only in their quadratic term, thus in Hk and Ĥk. Comparing these two
matrices for xk ∈ Z(t) ∩ Bε(x

∗) and keeping in mind, that for t ∈ (0, τ(x∗)) the second
derivatives of Φj(x1, x2, t) vanish for all j ∈ {1, . . . , p}\(I1∩I2)(x∗), it follows thatHk = Ĥk,
provided that λ̃k = λk and µ̃k = µk, as well as ξ̃k

j = ξk
j for all j ∈ (I1 ∩ I2)(x∗).

Having proved that the feasible regions and the objective functions of both problems
QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) and QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k) are equal in the vicinity
of a strongly stationary point, we can now use this information to show that the solutions
d of both problems, that are closest to the origin, are also equal.
Furthermore, we will make use of the following sensitivity result, that corresponds to The-
orem 3.2.7 of [CGT00]:

Theorem 3.3. Consider the problem

min f(x, p)

subject to h(x, p) = 0
g(x, p) ≥ 0 ,

(3.11)

where p is a set of parameters, and (3.11) is (1.13) when p = 0. Suppose that the second
derivatives of f, g and h are jointly continuous functions of x and p and that the LICQ and
the SOSC hold as well as λ∗j 6= 0 for all j ∈ Ig(x∗) holds at (x∗, λ∗, µ∗). Then there is some
open set P containing the origin and some open neighbourhood X×Y of (x∗, λ∗, µ∗) for
which the continuous function (x∗(p), λ∗(p), µ∗(p)), with (x∗(0), λ∗(0), µ∗(0)) = (x∗, λ∗,
µ∗), also satisfies the LICQ, the SOSC and strict complementarity of the multipliers λ∗(p)
for all p ∈ P. Furthermore, x∗(p) is the only strict local minimizer of (3.11) in X , (λ∗(p),
µ∗(p)) is the unique vector of Lagrange multipliers at this point and (Ih ∪ Ig)(x∗(p)) =
(Ih ∪ Ig)(x∗).

Lemma 3.10. Let x∗ be a strongly stationary point of (1.19) with multipliers (λ∗, µ∗, ν̂1,
ν̂2) and let t ∈ (0, τ(x∗)). Furthermore, suppose the MPEC-LICQ and the RNLP-SOSC
are satisfied in x∗. Then there exists an ε > 0, such that if xk ∈ Z(t) ∩ Bε(x

∗) and the
corresponding multiplier estimates for P (t) satisfy (λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) ∈ Bε((λ
∗, µ∗, ν̂1,

ν̂2, 0)), where (λ∗, µ∗, ν̂1, ν̂2, 0) denotes the multiplier vector of x∗ for P (t), and it holds

λ∗j > 0 j ∈ Ig(x∗)
ν̂1j > 0 j ∈ (I1 ∩ I2)(x∗)
ν̂2j > 0 j ∈ (I1 ∩ I2)(x∗) ,

then

1. the solution dk of QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) is the only strict local solution in
the vicinity of d = 0. Moreover, the corresponding multipliers are unique.

2. The same dk is also the only strict local solution for QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k)
in the vicinity of d = 0 provided that λ̃k = λk and µ̃k = µk, as well as ξ̃k

j = ξk
j for

the indices j ∈ (I1 ∩ I2)(x∗).
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Proof. Consider a current iterate xk and its multiplier estimates (λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k). Then
QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) can be interpreted as a perturbation of QPP (t)(x∗, λ∗,
µ∗, ν̂1, ν̂2, 0). Define the perturbation parameters px := xk − x∗ and pλ := (λ̃k, µ̃k, ν̃k

1 ,
ν̃k
2 , ξ̃

k)− (λ∗, µ∗, ν̂1, ν̂2, 0). Then by Lemma 3.3 and Lemma 3.5, the vector d = 0 solves
QPP (t)(x∗ + px, (λ∗, µ∗, ν̂1, ν̂2, 0)+ pλ) for the perturbation parameters (px, pλ) = (0, 0)
with corresponding multipliers (λ∗, µ∗, ν̃1, ν̃2, 0). By Lemma 3.4 and Lemma 3.5 it follows
moreover, that Theorem 3.3 can be applied. We therefore conclude that the solution
dk = d(px, pλ) is the only strict local minimizer of QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) in the
vicinity of d(0, 0) = 0. Furthermore, it follows by Theorem 3.3 that the LICQ and the
SOSC hold in dk for QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) and its multipliers are accordingly
unique.

By Lemma 3.8 the vector dk is also feasible for QPR(t)(xk, λk, µk, νk
1 , ν

k
2 , ξ

k). Moreover
since dk is a strict local minimum of QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k), there exists an ε̄ such
that by Lemma 3.9 we have

q
R(t)

(d) = q
P (t)

(d) > q
P (t)

(dk) = q
R(t)

(dk)

for all feasible d ∈ Bε̄(d
k). Thus dk is also a strict local minimum of QPR(t)(xk, λk, µk,

νk
1 , ν

k
2 , ξ

k).
Now suppose dk is not unique for QPR(t)(xk, λk, µk, νk

1 , ν
k
2 , ξ

k) in the vicinity of d = 0.
Then there exists another vector d̄ in the vicinity of d = 0 that is feasible for QPP (t)(xk,
λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) by Lemma 3.8 and minimizes the objective function of QPP (t)(xk, λ̃k,
µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k) by Lemma 3.9. This, however, contradicts the uniqueness of the solution dk

for QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k).

Finally, we conclude that the local SQP algorithm 3.1 generates a convergent sequence,
if applied to R(t) in the vicinity of a strongly stationary point x∗.

Theorem 3.4. Let x∗ be a strongly stationary point of (1.19) and assume that the MPEC-
LICQ and the RNLP-SOSC hold in x∗. Furthermore, assume that there exists some neigh-
bourhood of x∗ in which the second derivatives of f , g and h are Lipschitz-continuous and
suppose θ′′ is Lipschitz-continuous on an open set D ⊇ [−1, 1]. Moreover, assume that
t ∈ (0, τ(x∗)) and

λ∗j > 0 j ∈ Ig(x∗)
ν̂1j > 0 j ∈ (I1 ∩ I2)(x∗)
ν̂2j > 0 j ∈ (I1 ∩ I2)(x∗) .

Then it holds that

1. there exists a neighbourhood ε > 0 such that for any starting point (xk, λk, µk, νk
1 , ν

k
2 ,

ξk) ∈ Bε((x
∗, λ∗, µ∗, νb

1, ν
b
2, ξ

b)) Algorithm 3.1 applied to R(t) generates a sequence
of iterates (xk) that converges q-superlinearly to x∗.

2. If the family

{∇gj(x
k) |j ∈ supp(λk) } ∪ {∇hj(x

k) | j ∈ supp(µk)} ∪ {e1j | j ∈ supp(νk
1 )}

∪{e2j | j ∈ supp(νk
2 )} ∪ {−αk

j e1j − (2− αk
j ) e2j | j ∈ supp(ξk)}
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of the associated multiplier estimates for the local solutions dk for QPR(t) is linear
independent for each subsequent k ∈ N, then the sequence ((xk, λk, µk, νk

1 , ν
k
2 , ξ

k))
converges q-quadratically to (x∗, λ∗, µ∗, νb

1, ν
b
2, ξ

b), respectively, where the multipliers
λ∗, µ∗, νb

1, ν
b
2, and ξb are defined as in Definition 2.2.

Proof. Starting with (xk, λk, µk, νk
1 , ν

k
2 , ξ

k) we can construct multipliers λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 and

ξ̃k for the associated problem P (t), such that the corresponding QPR(t)(xk, λk, µk, νk
1 , ν

k
2 ,

ξk) and QPP (t)(xk, λ̃k, µ̃k, ν̃k
1 , ν̃

k
2 , ξ̃

k) satisfy the assumptions of Lemma 3.10. Hence, the
solution dk of QPR(t)(xk, λk, µk, νk

1 , ν
k
2 , ξ

k) corresponds to the solution of QPP (t)(xk, λ̃k,
µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k). Furthermore, since the associated problem QPP (t) satisfies the LICQ, it
follows that the new multiplier estimates λk+1, µk+1, νk+1

1 , νk+1
2 and ξk+1 and λ̃k+1, µ̃k+1,

ν̃k+1
1 , ν̃k+1

2 , and ξ̃k+1 satisfy λ̃k+1 = λk+1 and µ̃k+1 = µk+1, as well as ξ̃k+1
j = ξk+1

j for all
j ∈ (I1 ∩ I2)(x∗) (suppose these conditions are not satisfied, then we obtain a nontrivial
linear combination of zero of the active constraint gradients, which contradicts the LICQ
for QPP (t)(xk, λ̃k, µ̃k, ν̃k

1 , ν̃
k
2 , ξ̃

k)). Hence we can apply Lemma 3.10 to the next pair
of QPs, which are QPR(t)(xk+1, λk+1, µk+1, νk+1

1 , νk+1
2 , ξk+1) and QPP (t)(xk+1, λ̃k+1,

µ̃k+1, ν̃k+1
1 , ν̃k+1

2 , ξ̃k+1). Thus, the sequence (xk) that is generated applying Algorithm
3.1 to R(t) close to x∗ corresponds to the sequence that would be generated by applying
Algorithm 3.1 to the associated P (t) close to x∗. Therefore we obtain the same convergence
behaviour for the sequence (xk) for R(t) as we would obtain for P (t).

If the family

{∇gj(x
k) |j ∈ supp(λk) } ∪ {∇hj(x

k) | j ∈ supp(µk)} ∪ {e1j | j ∈ supp(νk
1 )}

∪{e2j | j ∈ supp(νk
2 )} ∪ {−αk

j e1j − (2− αk
j ) e2j | j ∈ supp(ξk)}

is linear independent for each subsequent k ∈ N, then by Lemma 3.2 the associated multi-
pliers of QPR(t)(xk, λk, µk, νk

1 , ν
k
2 , ξ

k) satisfy λk+1 = λ̃k+1, µk+1 = µ̃k+1 and

νk+1
1j = (ν̃k+1

1j )+ for j ∈ {1, . . . , p}
νk+1
2j = (ν̃k+1

2j )+ for j ∈ {1, . . . , p}

ξk+1
j =







(− ν̃k+1
1j

2 )+ j ∈ (I1\I2)(x∗)

(− ν̃k+1
2j

2 )+ j ∈ (I2\I1)(x∗)
ξ̃k+1
j j ∈ (I1 ∩ I2)(x∗) .

By the q-quadratic convergence of (xk, λ̃k+1, µ̃k+1, ν̃k+1
1 , ν̃k+1

2 , ξ̃k+1), these multipliers
converge to the basic multipliers as defined in Definition 2.2. Furthermore, the sequence
((xk, λk, µk, νk

1 , ν
k
2 , ξ

k)) converges q-quadratically to (x∗, λ∗, µ∗, νb
1, ν

b
2, ξ

b), respectively.

Having discussed some convergence properties of a local SQP algorithm applied to the
relaxed problemR(t), we are now interested in the application of an Interior Point algorithm
to problem R(t), as these algorithms form another important class of optimization methods
for NLPs.
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3.2 An Interior Point Method

In the following, we want to apply an Interior Point Method to solve (1.19). Therefore, we
demonstrate how the two-sided relaxation scheme proposed by DeMiguel et al. [DFNS05]
(confer Section 1.4) can be combined with the new relaxation scheme we discussed in
Chapter 2. Combining these two relaxation schemes, we can then apply an Interior Point
Method, which produces a sequence of iterates that converge superlinearly in the vicinity
of a strongly stationary point.

The two-sided relaxation scheme of DeMiguel et al. differs from the one-sided scheme of
Scholtes [Sch01] in the fact that not only the condition x1x2 = 0 is relaxed by x1x2 ≤ δc
for δc, being a positive parameter, but also the two bound constraints x1 ≥ 0 and x2 ≥ 0
are relaxed by x1 ≥ −δ1 and x2 ≥ −δ2 with δ1 and δ2 being again two positive parameters.
Depending on the sign of corresponding multiplier estimates, either δ1 or δ2, respectively,
is approaching zero or δc approaches zero, but not both. This procedure ensures, that the
strictly feasible region of the resulting problem is not empty even in the limit (in contrast to
the one-sided regularization scheme by Scholtes). This property of the two-sided relaxation
scheme is in particular valuable, since we want to apply an Interior Point Method, where
we need a strict interior of the feasible region.

3.2.1 Modified Strictly Feasible Relaxation Scheme

If we apply the two-sided relaxation scheme of [DFNS05] in combination with the relaxation
scheme discussed in Chapter 2 to (1.19), then the resulting relaxed nonlinear problem has
the form

min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1 ≥ −δ1
x2 ≥ −δ2

Φ(x1, x2, t) ≤ δc ,

(3.12)

where Φ(x1, x2, t) : R2p × (R+
0 ) p → Rp, Φj(x1, x2, t) := x1j + x2j − ϕj(x1j , x2j , tj) and

ϕj(x1j , x2j , tj) as defined in Section 2.1. Note, that for tj = 0 we have

ϕj(x1j , x2j , 0) = |x1j − x2j | .

Figure 3.2.1 illustrates the feasible region of a complementarity pair (x1, x2) ∈ R
2 for

problem (3.12).
Next, we introduce slack variables s = (sg, s1, s2, sc) ∈ R

m+3p to obtain the nonlinear
program

R(δ, t) minx,s f(x)
subject to h(x) = 0

sg − g(x) = 0
s1 − x1 = δ1
s2 − x2 = δ2

sc + Φ(x1, x2, t) = δc
s ≥ 0 .

(3.13)
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Figure 3.1: Feasible Region of the relaxed problem (3.12) for a complementarity pair
(x1, x2) ∈ R

2.

The KKT-conditions for R(δ, t) can be written as the system of nonlinear equations

∇xLR(δ,t)(x, s, µ, v) = ∇f(x)−∇h(x)µ−∇xC(x, s, t)v = 0 (3.14)

min(si, vi) = 0 (3.15)

h(x) = 0 (3.16)

C(x, s, t) + (0, δ1, δ2, δc)
T = 0 , (3.17)

with v := (λ, ν1, ν2, ξ), LR(δ,t)(x, s, µ, v) = f(x)−∑q
i=1 µihi(x)−

∑m+3p
j=1 vjCj(x, s, t),

C(x, s, t) = −







sg − g(x)
s1 − x1

s2 − x2

sc + Φ(x1, x2, t)







and ∇xC(x, s, t) denotes the transposed Jacobian of C(x, s, t) with respect to x, thus

∇xC(x, s, t) =





∇x0g(x) 0 0 0
∇x1g(x) I 0 −D1

∇x2g(x) 0 I −D2





with I denoting the unit matrix and D1 = ∇x1Φ(x1, x2, t) and D2 = ∇x2Φ(x1, x2, t) as in
Section 2.1.

Remark 3.2. Note that

∇2
xxLR(δ,t)(x, s, µ, v) = ∇2

xxLR(t)(x, λ, µ, ν1, ν2, ξ). (3.18)
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Since the method is based on solving R(δ, t) for suitable values of the parameters δ and
t in order to solve (1.19), we first need to relate the stationary points of R(δ, t) to the
strongly stationary points of (1.19).

Theorem 3.5. Let x∗ be a strongly stationary point of (1.19) with multipliers λ∗, µ∗, ν̂1

and ν̂2 and let (δ∗, t∗) satisfy the following conditions

δ∗ij = 0 if ν̂ij > 0, (3.19)

δ∗ij > 0 if ν̂ij ≤ 0, (3.20)

δ∗cj = 0 if ν̂1j < 0 or ν̂2j < 0, (3.21)

δ∗cj > 0 if ν̂1j ≥ 0 and ν̂2j ≥ 0, (3.22)

0 ≤ t∗j ≤ |x∗1j − x∗2j | if ν̂1j < 0 or ν̂2j < 0, (3.23)

t∗j > 0 if ν̂1j ≥ 0 and ν̂2j ≥ 0, (3.24)

for i = 1, 2 and j = 1, . . . , p. Then,

δ∗1j + δ∗cj > 0 and δ∗2j + δ∗cj > 0 . (3.25)

Moreover, if we define

s∗ := (g(x∗), x∗1 + δ∗1 , x
∗
2 + δ∗2 , δ

∗
c − Φ(x∗1, x

∗
2, t

∗)) (3.26)

(ν∗1 , ν
∗
2 ) := ([ν̂1]

+, [ν̂2]
+) (3.27)

ξ∗j :=







(

− ν̂1j

2

)+
j ∈ (I1\I2)(x∗)

(

− ν̂2j

2

)+
j ∈ (I2\I1)(x∗)

0 j ∈ (I1 ∩ I2)(x∗) ,

(3.28)

then (x∗, s∗) is a stationary point of R(δ∗, t∗) with the corresponding multiplier (µ∗, λ∗,
ν∗1 , ν

∗
2 , ξ

∗). Furthermore, if x∗ satisfies the MPEC-LICQ and the SSOSC, then (x∗, s∗)
satisfies the LICQ and the SOSC for R(δ∗, t∗). Moreover, if gj(x

∗) + λ∗j > 0, then s∗ and
v∗ = (λ∗, ν∗1 , ν

∗
2 , ξ

∗), satisfy strict complementarity.

Proof. First we prove condition (3.25). As x∗ is assumed to be strongly stationary, ν̂1j > 0
and ν̂2j < 0 or ν̂2j > 0 and ν̂1j < 0, respectively, cannot hold. Hence, by view of (3.19)-
(3.22), condition (3.25) holds.

Next, we show that (x∗, s∗, µ∗, λ∗, ν∗1 , ν
∗
2 , ξ

∗) with s∗, ν∗1 , ν∗2 and ξ∗ defined by (3.26)-
(3.28) is a stationary point of R(δ∗, t∗), thus satisfies (3.14)-(3.17). First, (3.16) is satisfied
by the feasibility of x∗ for (1.19). Furthermore, the definition of s∗ implies C(x∗, s∗, t∗) = 0.
Condition (3.14) results from the corresponding equation of (1.23), the conditions (3.19)-
(3.24) and the definitions (3.26)-(3.28).

The definitions (3.27) and (3.28) imply the nonnegativity of ν∗1 , ν∗2 and ξ∗. For s∗1 and s∗2
we further have s∗ij = x∗ij+δ

∗
ij ≥ 0 for i = 1, 2 and for all j ∈ {1, . . . , p}. As Φj(x

∗
1, x

∗
2, t

∗) ≤ 0
for all x∗ that are feasible for (1.19) and t∗ ≥ 0, it holds s∗cj = δ∗cj − Φj(x

∗
1, x

∗
2, t

∗) ≥ 0.
It remains to show that s∗ and v∗ = (λ∗, ν∗1 , ν

∗
2 , ξ

∗) are complementary. The comple-
mentarity of s∗gj = gj(x

∗) and λ∗j follows directly by the stationarity conditions (1.23).
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Next, suppose ν∗ij > 0, then by (3.27), it follows that ν̂ij > 0, such that x∗ij = 0 by (1.23).
Therefore, by (3.19) we have s∗ij = x∗ij + δ∗ij = 0 for i = 1, 2, whereas if ν∗ij = 0, then by
(3.20) s∗ij = x∗ij + δ∗ij ≥ δ∗ij > 0.

If ξ∗j > 0, then by (3.28) and (3.21) it follows that δ∗cj = 0 and t∗j ≤ |x∗1j − x∗2j|, thus
by a suitable variant of Lemma 2.1 (confer Section 2.4) Φj(x

∗
1, x

∗
2, t

∗) = 0 and therefore
s∗cj = δ∗cj − Φj(x

∗
1, x

∗
2, t

∗) = 0. Suppose ξ∗j = 0, then by (3.28) and (3.22) it follows that
δ∗cj > 0 and again, as Φ(x∗1, x

∗
2, t

∗) ≤ 0 for all x∗ that are feasible for (1.19) and t∗ ≥ 0,
s∗cj = δ∗cj − Φj(x

∗
1, x

∗
2, t

∗) ≥ δ∗cj > 0.
As we have just shown that s∗i and ν∗i are strictly complementary for i = 1, 2 and s∗c and

ξ∗ are strictly complementary, condition (3.15) is also satisfied and hence (x∗, s∗, λ∗, µ∗,
ν∗1 , ν∗2 , ξ

∗) is a stationary point of R(δ∗, t∗). Moreover, if gj(x
∗) + λ∗j > 0 for j ∈ {1, . . . , p}

then s∗ and v∗ satisfy strict complementarity.
Next, we proof that if the MPEC-LICQ holds in x∗, then the LICQ holds in (x∗, s∗)

for R(δ∗, t∗). Therefore, assume the MPEC-LICQ holds in x∗ for (1.19). Then, by the
definition of the MPEC-LICQ, the family of active constraint gradients

∇hi(x
∗) i ∈ {1, . . . , q},

∇gj(x
∗) j ∈ Ig(x

∗),
en+j j ∈ I1(x

∗),
en+p+j j ∈ I2(x

∗),

(3.29)

is linearly independent. If we can prove that the LICQ holds in x∗ for

min f(x)
subject to h(x) = 0

g(x) = 0
x1 ≥ −δ∗1
x2 ≥ −δ∗2

Φ(x1, x2, t
∗) ≤ δ∗c ,

(3.30)

then it follows that the LICQ holds in (x∗, s∗) for R(δ∗, t∗). (The introduction of slack
variables does not alter the property that the LICQ is satisfied.)

First, note that if δ∗cj > 0, then by Φj(x
∗
1, x

∗
2, t

∗) ≤ 0 for all feasible x∗ and t∗ ≥ 0,
the corresponding inequality of (3.30) is strictly satisfied. Thus, if δ∗cj > 0 holds for all
j ∈ {1, . . . , p}, then the LICQ for (3.30) directly follows by the MPEC-LICQ. Hence,
assume δ∗cj = 0 for at least one j ∈ {1, . . . , p}. Then by (3.21) either ν̂1j < 0 or ν̂2j < 0,
such that j ∈ (I1\I2)(x∗) or j ∈ (I2\I1)(x∗) and in both cases δ∗ij > 0 for i = 1, 2.
Therefore, x∗ij ≥ 0 > −δ∗ij. Furthermore, we have ∇Φj(x

∗
1, x

∗
2, t

∗) = 2 e1j for j ∈ (I1\I2)(x∗)
and ∇Φj(x

∗
1, x

∗
2, t

∗) = 2 e2j for j ∈ (I2\I1)(x∗), such that the family of active constraint
gradients of (3.30) is

∇hi(x
∗) i ∈ {1, . . . , q},

∇gj(x
∗) j ∈ Ig(x

∗),
en+j j ∈ I1(x

∗)+,
2en+j j ∈ I1(x

∗)−,
en+p+j j ∈ I2(x

∗)+,
2en+p+j j ∈ I2(x

∗)−,
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which is linearly independent by the linear independence of the family of gradient vectors
of (3.29).

Finally, we show that the SSOSC in x∗ for (1.19) implies the SOSC in (x∗, s∗) for R(δ∗, t∗).
Again it is sufficient to proof the SOSC for (3.30). Note that x∗ is a stationary point of (3.30)
with multipliers µ∗, λ∗, ν∗1 ,ν∗2 , and ξ∗. Moreover, as a result of (3.28), (3.23) and (3.24)
and the definition of Φ(x1, x2, t), either ξ∗j = 0 or all second derivatives with respect to x of

Φj(x
∗
1, x

∗
2, t

∗) vanish. Hence, the part of ∇2
xxLR(δ,t)(x

∗, s∗, λ∗, µ∗, ν∗1 , ν
∗
2 , ξ

∗) corresponding
to Φ(x1, x2, t) vanishes completely (see also the proof of Theorem 2.1). Thus, it remains
to show that the set of critical directions is a subset of S̃(x∗, λ∗,µ∗, ν̂1, ν̂2). The conditions
∇hi(x

∗)Td = 0 for i ∈ {1, . . . , q} and∇gj(x
∗)Td = 0 for j ∈ I+

g (x∗, λ∗) are directly satisfied.
Moreover, if ν̂1j 6= 0, then by (3.19) and (3.21)-(3.24) and the definition of ν∗1 and ξ∗, it
follows that either j ∈ I1(x∗, ν∗1 )+ and δ∗1j = 0 or j ∈ IΦ(x∗, t∗, ξ∗)+ and δ∗cj = 0. This,
however, implies that either x∗1j = 0 = −δ∗1j and ν∗1j > 0 or Φj(x

∗
1, x

∗
2, t

∗) = 0 = −δ∗cj
and ξ∗j > 0. Thus for all critical directions d of (3.30) in x∗, in both cases d1j = 0 for all
j ∈ {1, . . . , p} with ν̂1j 6= 0. The same implications show that d2j = 0 for all j ∈ {1, . . . , p}
with ν̂2j 6= 0 for all critical directions d of (3.30) in x∗. Thus, by view of (3.18) and by
Theorem 2.1

dT∇xxLR(δ,t)(x
∗, s∗, λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗) d > 0

for all critical directions of (3.30).

Remark 3.3. Note that the multipliers λ∗, µ∗, ν∗1 , ν∗2 , and ξ∗ of Theorem 3.5 correspond to
the basic multipliers of Definition 2.2.

Next, we prove a result concerning the inverse direction of Theorem 3.5.

Corollary 3.1. Suppose δ∗ ∈ (R+)3p satisfies condition (3.25) and t∗ ∈ (R+)p. Moreover,
assume (x∗, s∗) is a stationary point of R(δ∗, t∗) with multipliers v∗ = (λ∗, µ∗, ν∗1 , ν

∗
2 , ξ

∗)
that satisfies min(x∗1j , x

∗
2j) = 0 for all j ∈ {1, . . . , p}. Then, x∗ is a strongly stationary

point of (1.19) with multipliers λ∗, µ∗ and

ν̂1j := ν∗1j − α∗
j ξ

∗
j

ν̂2j := ν∗2j − (2− α∗
j ) ξ

∗
j ,

(3.31)

with

α∗
j :=

∂Φj(x
∗
1, x

∗
2, t

∗)

∂x1j
.

Proof. The feasibility of x∗ for (1.19) follows by the feasibility for R(δ∗, t∗) and the assump-
tion that min(x∗1j , x

∗
2j) = 0 for all j ∈ {1, . . . , p}. It remains to show that ∇xLMPEC(x∗, λ∗,

µ∗, ν̂1, ν̂2) = 0 and to check the conditions on the multipliers ν̂1 and ν̂2.
Comparing ∇xLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) = 0 with (3.14) and considering the values of ν̂1

and ν̂2 as defined by (3.31), it follows that ∇xLMPEC(x∗, λ∗, µ∗, ν̂1, ν̂2) = 0 is satisfied.

The complementarity conditions concerning the multipliers λ∗, ν̂1 and ν̂2 are satisfied
by view of (3.15). The nonnegativity of ν̂1j and ν̂2j for j ∈ (I1 ∩ I2)(x∗) follows by the
nonnegativity of ν∗1 , ν∗2 and ξ∗ = 0 for j ∈ (I1 ∩ I2)(x∗), since by t ∈ (R+)p and Lemma 2.1
it follows that Φj(x

∗
1, x

∗
2, t

∗) < 0.
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Our aim is to provide a suitable choice of δ∗ and t∗, such that computing a stationary
point of R(δ∗, t∗), we obtain a strongly stationary point of (1.19). At the same time, since
we want to apply an Interior Point Method to solve R(δ∗, t∗), we are interested in a strict
interior of the feasible region of R(δ∗, t∗).

From Corollary 3.1 we can deduce that if δ∗ satisfies (3.25) and t∗ ∈ (R+)p, then
a stationary point x∗ of R(δ∗, t∗) is strongly stationary for (1.19), provided x∗ satisfies
min(x∗1j , x

∗
2j) = 0 for all j ∈ {1, . . . , p}.

On the one hand, if we choose δ∗ > 0 and t∗ > 0, then (3.25) and t ∈ (R+)p is satisfied
and the feasible region of R(δ∗, t∗) has a strict interior. By this choice, though, we might
not be able to guarantee that a stationary point x∗ of R(δ∗, t∗) satisfies min(x∗1j , x

∗
2j) = 0

for all j ∈ {1, . . . , p}.
On the other hand, if we choose δ∗ = 0 and t∗ = 0, then the feasibility of a stationary

point x∗ for R(δ∗, t∗) implies that min(x∗1j , x
∗
2j) = 0 for all j ∈ {1, . . . , p}. However, in this

case the feasible region of R(δ∗, t∗) does not have a strict interior. Hence, we have to decide
appropriately which entries of δ∗ should be set equal to zero to obtain min(x∗1j , x

∗
2j) = 0

for all j ∈ {1, . . . , p} and which ones should remain strictly positive to maintain a strict
interior.

Theorem 3.5 provides an indication how δ∗ should possibly be chosen. Here we take the
sign of the multipliers of a strongly stationary point x∗ as an indicator which components
of δ∗ should be equal to zero. However, as we do not know the sign of the multipliers in
advance, we start with a strictly positive parameter δk > 0 compute a stationary point xk

and decide by the sign of the associated multiplier estimates, which parameter entries we
have to reduce.

Accordingly, as we do not know the appropriate values of t∗ to guarantee min(x1j , x2j) =
0 for all j ∈ {1, . . . , p} in advance, we start with a strictly positive tk and update tk

according to the values of the multiplier and the solution estimates we obtained by solving
R(δk, tk).

Next, we describe how to update δk and tk. As mentioned before, we start with a para-
meter vector (δk, tk) consisting of strictly positive entries. Then we compute a correspond-
ing new stationary point yk+1 := (xk+1, sk+1, µk+1, vk+1), thus it satisfies (3.14)-(3.17) for
(δk, tk), and corresponding multiplier estimates of ν̂k+1

1 and ν̂k+1
2 for the strongly stationary

point by (confer Corollary 3.1)

ν̂k+1
1j := νk+1

1j − αk+1
j ξk+1

j

ν̂k+1
2j := νk+1

2j − (2 − αk+1
j ) ξk+1

j

, (3.32)

with αk+1
j := ∂Φj/∂x1j (xk+1

1 , xk+1
2 , tk). By these new estimates, we then decide which

parameter entries should be reduced:

Let the residual function r(y, δ, t) of the KKT-conditions be defined as

r(y, δ, t) :=







∇xLR(δ,t)(y)

Sv
h(x)

C(x, s, t) + (0, δ1, δ2, δc)
T
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with y := (x, s, µ, v) and S := diag(si) ∈ R
(m+3p)×(m+3p). Then the conditions (3.14)-

(3.17) are satisfied, if r(y, δ, t) = 0 and (s, v) ≥ 0. Since the limit should satisfy r(y∗, δ∗, t∗) =
0 with y∗ := (x∗, s∗, µ∗, v∗), we test the optimality of yk+1 not by the residual r(yk+1, δ

k, tk)
but by r(yk+1, δ

k∗
, tk), which is the KKT-residual for R(δk∗

, tk) where δk∗
is an auxiliary

parameter vector. This parameter vector is assumed to be a better approximation of δ∗,
as we set those entries equal to zero that are presumed to converge to zero. Hence,

δ
(k+1)∗

ij = 0 if δk+1
ij < δk

ij , (3.33)

δ
(k+1)∗

ij = δk+1
ij if δk+1

ij = δk
ij , (3.34)

δ
(k+1)∗

cj = 0 if δk+1
cj < δk

cj, (3.35)

δ
(k+1)∗

cj = δk+1
cj if δk+1

cj = δk
cj. (3.36)

As we will see by Theorem 3.6, if the reduction of the corresponding parameter entries is
sufficient, then the new iterates yk+1 are improved solution estimates, and if we start with
an iterate yk that is close enough to a solution y∗ satisfying r(y∗, δk∗

, tk) = 0, then the
auxiliary sequence (δk∗

) remains constant, that is δ(k+1)∗ = δk∗
for all subsequent k ∈ N.

In our update algorithm, we will further make use of an upper and lower bound of the
KKT-residual r(yk+1, δ

k∗
, tk):

r̄∗k+1 := ‖r(yk+1, δ
k∗

, tk)‖1−ζ and r∗k+1 := ‖r(yk+1, δ
k∗

, tk)‖1+ζ (3.37)

for a fixed parameter 0 < ζ < 1. The upper bound r̄∗k+1 is used to decide which parameter

values of (δk, tk) are to reduce and the lower bound r∗k+1 is used to guarantee sufficient
reduction of the corresponding entries. Algorithm 3.2 represents the resulting parameter
update-rule as described above.

3.2.2 Local Convergence Analysis

As we want to consider an Interior Point algorithm applied to (3.12), instead of solving the
exact Newton equation

J(yk, t
k)∆yk = −r(yk, δ

k, tk) ,

where

J(y, t) := ∇yr(y, δ, t)
T =







H(x, s, µ, v) −∇h(x) −∇xC(x, s, t)
V S

∇h(x)T
∇xC(x, s, t)T −I






,

with
H(x, s, µ, v) := ∇2

xxLR(δ,t)(x, s, µ, v)

and V := diag(vi) ∈ R
(m+3p)×(m+3p), we consider the solution of the system

J(yk, t
k)∆yk = −r(yk, δ

k, tk, π) := −







∇xLR(δ,t)(y)

Sv − πe
h(x)

C(x, s, tk) + (0, δkT
)T






, (3.38)
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Algorithm 3.2: Update Rule

Input: δk, δk∗
, yk+1

Set fixed parameters κ, ζ ∈ (0, 1).

Compute r̄∗k+1 and r∗k+1.1

Compute ν̂k+1
1 and ν̂k+1

2 .2

Update δk, δk∗
and tk:3

for j = 1, . . . , p do

for i = 1, 2 do

if ν̂k+1
ij > r̄∗k+1 then

δk+1
ij ← min(κ δk

ij , r
∗
k+1)

δ
(k+1)∗

ij ← 0

else

δk+1
ij ← δk

ij

δ
(k+1)∗

ij ← δk
ij

if ν̂k+1
1j < −r̄∗k+1 or ν̂k+1

2j < −r̄∗k+1 then

δk+1
cj ← min(κ δk

cj , r
∗
k+1)

δ
(k+1)∗

cj ← 0

if tkj > |xk+1
1j − xk+1

2j | then

tk+1
j ← 0.5 |xk+1

1j − xk+1
2j |

else

δk+1
cj ← δk

cj

δ
(k+1)∗

cj ← δk
cj

tk+1
j ← tkj

where the r(yk, δ
k, tk, π) corresponds to the KKT-residual of the barrier problem

min f(x)− π∑m+3p
j=1 ln(sj)

subject to h(x) = 0

C(x, s, tk) + (0, δkT
)T = 0 .

(3.39)

Furthermore, as we presumably have to truncate the computed Newtonstep ∆yk to
maintain the strict positivity of s and v, we introduce a steplength parameter σ. Motivated
by DeMiguel et al. (or further by Yamashita and Yabe [YY96]), in our algorithm we use
the steplength

σ = min

(

min

(

1, γ min
∆sj<0

−sj

∆sj

)

,min

(

1, γ min
∆vj<0

−vj

∆vj

))

. (3.40)
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Algorithm 3.3: Interior Point Algorithm for Two-Sided Relaxed MPEC

Initialize variables (x0, s0, µ0, v0) with s0, v0 > 0 and relaxation parameters δ0, t0; set1

δ0
∗

= δ0; choose barrier parameter π0 > 0, fixed parameters 0 < κ, ζ, γ̄ < 1, a
starting steplength parameter γ̄ ≤ γ0 < 1 and a convergence tolerance ε.
repeat

Solve (3.38) for ∆yk.2

Determine steplength σk by (3.40)3

Compute the new iterate yk+1:4

yk+1 ← yk + σk∆yk.

Update relaxation parameters δk, tk and δk∗
by Algorithm 3.2.5

Update barrier and steplength parameter by6

πk+1 ← min(κπk, r
∗
k+1)

γk+1 ← max(γ̄, 1− πk+1)

k ← k + 17

until ‖r(yk+1, δ
(k+1)∗ , tk+1, 0)‖ < ε

For the local convergence analysis we will make use of the following general assumptions.
Furthermore, x∗ is supposed to be a strongly stationary point of (1.19).

Assumptions 3.1.

(A1) The second derivatives of the functions f, h and g are Lipschitz continuous.

(A2) θ satisfies Assumptions 2.1 and θ′′ is Lipschitz-continuous on an open set D ⊇ [−1, 1]

(A3) The point x∗ satisfies the MPEC-LICQ for (1.19).

(A4) It holds gi(x
∗) + λ∗i > 0 for all i ∈ Ig(x∗), with (λ∗, µ∗, ν̂1, ν̂2) being the multipliers of

x∗.

(A5) The point (x∗, λ∗, µ∗, ν̂1, ν̂2) satisfies the SSOSC for (1.19).

Before we start with the convergence analysis for Algorithm 3.3, we first need two more
auxiliary results.

Lemma 3.11. Let x∗ be a strongly stationary point of (1.19) and let (δ∗, t∗) satisfy (3.19)-
(3.24). Let y∗ := (x∗, s∗, µ∗, v∗) with s∗ and v∗ satisfying the conditions of Theorem 3.5.
Furthermore, assume (A1)-(A5) hold in x∗. Then there exists an ε > 0 and an L > 0 such
that

1. ‖r(y, δ∗, t∗)− r(y∗, δ∗, t∗)‖ ≤ L ‖y − y∗‖ for all y ∈ Bε(y
∗) and

2. ‖J(y, t∗)− J(y∗, t∗)‖ ≤ L ‖y − y∗‖ for all y ∈ Bε(y
∗).

3. J(y, t∗) is nonsingular for all y ∈ Bε(y
∗).
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Proof. By Assumption (A1) the second derivatives with respect to x and s of hj(x) are
Lipschitz continuous for all j ∈ {1, . . . , q} as well as of Cj(x, s, t

∗) for j ∈ {1, . . . ,m+ 2p}.
Hence, it remains to show that Cj(x, s, t

∗) is locally twice continuously differentiable with
respect to x and s for all j ∈ {m + 2p + 1, . . . ,m + 3p} and moreover that the Lipschitz
continuity of θ′′ on D ⊇ [−1, 1] implies the Lipschitz continuity of the second derivative of
Cj(x, s, t

∗). Since Cj(x, s, t
∗) is linear in s we only have to consider the Lipschitz-continuity

of ∇2
xxCj(x, s, t

∗) for all j ∈ {m+ 2p+ 1, . . . ,m+ 3p}.
We consider two cases: first assume that t∗j = 0, then Φj(x1, x2, t

∗) = x1j + x2j −|x1j −
x2j |. Thus all second partial derivatives of Φj(x1, x2, t

∗) vanish (hence the second derivative
of Φj(x1, x2, t

∗) is Lipschitz continuous) for all x that satisfy |x1j − x2j | 6= 0. However, as
t∗ satisfies (3.23) and (3.24) and x∗ is a strongly stationary point, there exists an ε such
that |x1j − x2j | 6= 0 for all x ∈ Bε(x

∗) and for all j ∈ {1, . . . , p} with t∗j = 0.
Next, suppose t∗j > 0, then (A2) and Lemma 3.6 imply that the second derivative of

Φj(x1, x2, t
∗) is Lipschitz continuous for all x ∈ Bε(x

∗). Thus, all Cj(x, s, t
∗) are twice

Lipschitz-continuously differentiable with respect to x and s and the first two statements
follow directly.

By (A1)-(A5) and Theorem 3.5 it follows that the LICQ, the SOSC and strict com-
plementarity are satisfied in (x∗, s∗, µ∗, v∗). Hence (see for example Theorem 14 of
[FC68]), J(y∗, t∗) is nonsingular. The perturbation lemma (see for example Lemma 5.23
in [GK02]) then implies that there exists an ε > 0 such that J(y, t∗) is nonsingular for all
y ∈ Bε(y

∗).

Lemma 3.12. Let x∗ be a strongly stationary point of (1.19) with multipliers (λ∗, µ∗, ν̂1,
ν̂2). Then there exists an ε > 0 such that if xk ∈ Bε(x

∗), tkj > 0 for all j ∈ {1, . . . , p} and

tkj ≤ 0.5 |xk
1j − xk

2j| for all j ∈ {1, . . . p} with either ν̂1j < 0 or ν̂2j < 0, then tk satisfies
(3.23) and (3.24).

Proof. To prove that tk satisfies (3.23) and (3.24), we have to show that |x∗1j − x∗2j | ≥ tkj
for all j ∈ {1, . . . p} with either ν̂1j < 0 or ν̂2j < 0. Since x∗ is supposed to be strongly
stationary, the condition ν̂1j < 0 or ν̂2j < 0 implies that either j ∈ (I1\I2)(x∗) or j ∈
(I2\I1)(x∗). By xk ∈ Bε(x

∗), we therefore have

|xk
1j − xk

2j | ≥ |x∗1j − x∗2j | − 2ε > 0 ,

if 0 < ε is small enough. Thus,

|x∗1j − x∗2j| ≥ |xk
1j − xk

2j | − 2ε ≥ 0.5|xk
1j − xk

2j | ≥ tkj

holds, if ε ≤ |x∗1j−x∗2j|/6. Hence, if ε is small enough, then tk satisfies (3.23) and (3.24).

Now we can prove the following theorem concerning the values of δk∗
, determined by the

Update Rule, in the vicinity of a strongly stationary point x∗.

Theorem 3.6. Let x∗ be a strongly stationary point of (1.19) with multipliers (λ∗, µ∗,
ν̂1, ν̂2) and suppose (A1)-(A5) hold. Let further δk∗

satisfy (3.19)-(3.22) and assume that
δk∗

j = δk
j > 0 for all j ∈ {1, . . . , p} with δk∗

j 6= 0. Moreover, assume that tkj > 0 for all

j ∈ {1, . . . , p} and tkj ≤ 0.5 |xk
1j − xk

2j | for all j ∈ {1, . . . , p} with either ν̂1j < 0 or ν̂2j < 0.
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Let y∗k = (x∗, sk∗
, µ∗, v∗) be the corresponding stationary point of R(δk∗

, tk), and suppose
that ‖yk+1 − y∗k‖ < ‖yk − y∗k‖. Then there exists an ε > 0 such that if yk ∈ Bε(y

∗
k), then

Algorithm 3.2 yields δ(k+1)∗ = δk∗
and tk+1 = tk.

Proof. First note that r(y∗k, δ
k∗
, tk) = 0 by the definition of y∗k. Next, we choose ε > 0 small

enough such that Lemma 3.12 implies that tk satisfies (3.23) and (3.24).
Furthermore, by the assumptions of the theorem and by Lemma 3.11, it follows that

there exists an ε > 0, such that we can find an L > 0 with

‖r(yk+1, δ
k∗

, tk)‖ = ‖r(yk+1, δ
k∗

, tk)− r(y∗k, δk∗

, tk)‖ ≤ L ‖yk+1 − y∗k‖

for all yk+1 ∈ Bε(y
∗
k). Defining c̄ := L1−ζ , we obtain

r̄∗k+1 = ‖r(yk+1, δ
k∗

, tk)‖1−ζ ≤ c̄‖yk+1 − y∗k‖1−ζ . (3.41)

By Lemma 3.11 we also know that r(yk+1, δ
k∗
, tk) is continuously differentiable with respect

to y in the vicinity of y∗k and that J(y∗k, t
k) is regular, hence ‖J(y∗k, t

k)−1‖ ≤ c̃. Then, by
Taylor approximation we get

r(yk+1, δ
k∗

, tk)− r(y∗k, δk∗

, tk) = J(y∗k, t
k)(yk+1 − y∗k) +O(‖yk+1 − y∗k‖2) .

Hence, there exists an M > 0 so that

‖yk+1 − y∗k‖ ≤ ‖J(y∗k, t
k)−1‖‖r(yk+1, δ

k∗

, tk)‖+M‖yk+1 − y∗k‖2 .

This implies that if ‖yk − y∗k‖ is small enough, then there exists a constant c > 0 with

c‖yk+1 − y∗k‖1−ζ ≤ ‖r(yk+1, δ
k∗

, tk)‖1−ζ = r̄∗k+1. (3.42)

Let ν̂k+1
ij and ν̂ij for i = 1, 2 and j ∈ {1, . . . , p} be defined by (3.32). Then,

|ν̂k+1
1j − ν̂1j | = |(νk+1

1j − αk+1
j ξk+1

j )− (ν∗1j − α∗
jξ

∗
j )|

≤ |νk+1
1j − ν∗1j|+ |αk+1

j ξk+1
j − α∗

jξ
∗
j |

≤ |νk+1
1j − ν∗1j|+ |αk+1

j ||ξk+1
j − ξ∗j |+ |αk+1

j − α∗
j ||ξ∗j |

≤ 3 ‖yk+1 − y∗k‖+ |αk+1
j − α∗

j ||ξ∗j | ,

(3.43)

since |αk+1
j | ≤ 2. Accordingly,

|ν̂k+1
2j − ν̂2j| ≤ 3 ‖yk+1 − y∗k‖+ |αk+1

j − α∗
j ||ξ∗j | .

To prove, that Algorithm 3.2 yields δ(k+1)∗ = δk∗
, we consider the three cases ν̂ij > 0,

ν̂ij < 0 and ν̂ij = 0 (i = 1, 2) individually. As the arguments for ν̂1j and ν̂2j are similar, we
will consider these cases only for ν̂1.
First, assume ν̂1j > 0, then ξ∗ = 0, because δk∗

satisfies (3.19)-(3.22). Hence, by (3.43)

|ν̂k+1
1j − ν̂1j| ≤ 3 ‖yk+1 − y∗k‖ (3.44)
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and therefore by (3.41)

ν̂k+1
1j = ν̂1j + (ν̂k+1

1j − ν̂1j) ≥ ν̂1j − 3 ‖yk+1 − y∗k‖ > c̄‖yk+1 − y∗k‖1−ζ ≥ r̄∗k+1 (3.45)

if ‖yk+1 − y∗k‖ is small enough.
Next, suppose ν̂1j = 0. Then (3.44) holds, since ξ∗j = 0, and we get

|ν̂k+1
1j | = |ν̂k+1

1j − ν̂1j | ≤ 3 ‖yk+1 − y∗k‖ < c‖yk+1 − y∗k‖1−ζ ≤ r̄∗k+1 (3.46)

by (3.42) and again for ‖yk+1 − y∗k‖ being small enough.
Furthermore, notice that by (3.45) and (3.46) tkj might only be changed by Algorithm

3.2, if either ν̂1j < 0 or ν̂2j < 0, thus either j ∈ (I1\I2)(x∗) or j ∈ (I2\I1)(x∗). Therefore,
if ε is small enough, then (confer the proof of Lemma 3.12)

|xk+1
1j − xk+1

2j | ≥ |x∗1j − x∗2j | − 2ε ≥ |xk
1j − xk

2j | − 4ε > 0.5|xk
1j − xk

2j | ≥ tkj .

Hence, for all j ∈ {1, . . . , p} with either ν̂1j < 0 or ν̂2j < 0

|xk+1
1j − xk+1

2j | > tkj , (3.47)

such that Algorithm 3.2 yields tk+1
j = tkj for all j ∈ {1, . . . , p}.

Now concerning the update of δk∗

j for j ∈ {1, . . . , p} with ν̂1j < 0, note that by the

assumptions of the theorem and by (3.47) we have αk+1
j = 2 = α∗

j . Therefore, inequality
(3.44) holds by (3.43). Hence, again for ‖yk+1 − y∗k‖ being small enough and by (3.41)

ν̂k+1
1j ≤ ν̂k+1

1j − (ν̂k+1
1j − ν̂1j) + 3 ‖yk+1 − y∗k‖ = ν̂1j + 3 ‖yk+1 − y∗k‖

< −c̄‖yk+1 − y∗k‖1−ζ ≤ −r̄∗k+1

(3.48)

Then (3.45), (3.46) and (3.48) imply δ
(k+1)∗

j = 0 if and only if δk∗

j = 0 which further

implies that δ
(k+1)∗

j = δk∗

j for all j ∈ {1, . . . , 3p}.

Remark 3.4. Note, that by Theorem 3.6 it also follows that y∗k+1 = y∗k.

The following theorem now shows that, although we slightly change the relaxed problem
R(δk, tk) in each iteration by updating the relaxation parameters δk and tk, we can still
achieve locally superlinear convergence.

Theorem 3.7. Let (x∗, λ∗, µ∗, ν̂1, ν̂2) be a strongly stationary point of (1.19) and sup-
pose (A1)-(A5) hold. Assume that δk∗

satisfies (3.19)-(3.22) and δk∗

j = δk
j > 0 for

all j ∈ {1, . . . , p} with δk∗

j > 0 and let tk be as in Theorem 3.6. Furthermore, let

y∗k = (x∗, s∗k, µ
∗, v∗) be the stationary point of R(δk∗

, tk). Then, there exists an ε > 0
and a C > 0, such that if Algorithm 3.3 is started with y0 ∈ Bε(y

∗
k) and

‖δk − δk∗‖ < C ‖yk − y∗k‖1+ζ (3.49)

πk < C ‖yk − y∗k‖1+ζ (3.50)

1− γk < C ‖yk − y∗k‖1+ζ (3.51)
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then y∗k+` = y∗k for all ` ∈ N and

‖yk+1 − y∗k‖ = o (‖yk − y∗k‖)

for all subsequent k ∈ N.

Proof. The main objective of this proof is to show, that ‖yk+1 − y∗k‖ = o(‖yk − y∗k‖), as
we can then deduce that the theorem can be applied for each subsequent iterate yk+` with
` ∈ N and we hence obtain the superlinear convergence for the complete sequence (yk+`).
By (A1)-(A5), Theorem 3.5 and Lemma 3.11 we conclude that r(y, δk, tk) is differentiable
and J(y, tk) is nonsingular for ‖y − y∗k‖ sufficiently small. Furthermore, for such y there
exists a constant c̃ > 0 with ‖J(y, tk)−1‖ ≤ c̃.

Let r∗k := r(yk, δ
k∗
, tk, 0) and define

%∗k := (0, πk e, 0, δk∗ − δk) ,

then r(yk, δ
k, tk, πk) = r∗k − %∗k and

yk+1 − y∗k = yk − y∗k − σk J(yk, t
k)−1r(yk, δ

k, tk, πk)

= (1− σk)(yk − y∗k)
+σkJ(yk, t

k)−1
(
J(yk, t

k)(yk − y∗k)− r∗k + %∗k
)

= (1− σk)(yk − y∗k) + σkJ(yk, t
k)−1%∗k

+σkJ(yk, t
k)−1

(
J(yk, t

k)(yk − y∗k)− r∗k
)
.

(3.52)

In the following, we seek bounds depending on ‖yk − y∗k‖ for each term of the right-hand
side of (3.52). By the assumptions, Theorem 3.5 and Lemma 5 of [YY96] it follows that for
our choice of the steplength σk there exists a positive constant c1 such that 0 ≤ 1 − σk ≤
1− γk + c1‖∆yk‖. Hence,

‖(1 − σk)(yk − y∗k)‖ ≤ (1− γk + c1‖∆yk‖)‖yk − y∗k‖ (3.53)

As ‖J(y, tk)−1‖ ≤ c̃, we also have

‖∆yk‖ ≤ ‖J(y, tk)−1‖‖r(yk, δ
k, tk, πk)‖ ≤ c̃ (‖r∗k‖+ ‖%∗k‖) (3.54)

Furthermore, by r(y∗k, δ
k∗
, tk, 0) = 0 and by Lemma 3.11 it follows that

‖r∗k‖ ≤ ‖r∗k − r(y∗k, δk∗

, tk, 0)‖ ≤ c2‖yk − y∗k‖ (3.55)

and by (3.49) and (3.50)

‖%∗k‖ ≤ ‖δk − δk∗‖+ ‖πk e‖ ≤ c3‖yk − y∗k‖1+ζ . (3.56)

Then, substituting (3.54)-(3.56) in (3.53) we get an upper bound for the first term of the
right-hand side of (3.52)

‖(1 − σk)(yk − y∗k)‖ ≤ (C + c̃ c1c3)‖yk − y∗k‖2+ζ + c̃ c1c2‖yk − y∗k‖2 . (3.57)
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The second term of the right-hand side of (3.52) is bounded by ‖J(yk, t
k)−1‖ ≤ c̃, the

boundedness of σk and (3.56), thus

‖σkJ(yk, t
k)−1%∗k‖ ≤ c4‖yk − y∗k‖1+ζ . (3.58)

The last term of the right-hand side of (3.52) can be bounded using Taylor approximation
and again ‖J(yk, t

k)−1‖ ≤ c̃
∥
∥
∥σkJ(yk, t

k)−1(J(yk, t
k) (yk − y∗k)− r∗k)

∥
∥
∥ ≤ c5‖yk − y∗k‖2 . (3.59)

Finally, substituting (3.57), (3.58) and (3.59) into (3.52) we obtain the upper bound for
‖yk+1 − y∗k‖:

‖yk+1 − y∗k‖ ≤ c̄ ‖yk − y∗k‖1+ζ (3.60)

This, however implies that ‖yk+1 − y∗k‖ < ‖yk − y∗k‖, provided ‖yk − y∗k‖ is small enough
and by Theorem 3.6 we get δ(k+1)∗ = δk∗

as well as tk+1 = tk, thus y∗k+1 = y∗k.
Furthermore, if ‖yk − y∗k‖ < ε and ε is small enough, then

‖yk+1 − y∗k‖ ≤ c̄ ‖yk − y∗k‖1+ζ ≤ c̄ ε1+ζ ≤ ε

and, by Algorithm 3.2 and Step 6 of Algorithm 3.3, it follows with Lemma 3.11 that there
exists a constant L > 0 such that

πk+1 ≤ r∗k ≤ L ‖yk+1 − y∗k‖1+ζ

and
‖δk+1 − δ(k+1)∗‖ ≤ L ‖yk+1 − y∗k‖1+ζ .

Hence, we can apply Theorem 3.7 iteratively to each new yk+` with ` ∈ N, which completes
the proof.

Since the method we presented here forms a variant of the method proposed by DeMiguel
et al. the algorithms and in parts the theorems (and their proofs) of this section resemble
those ones presented in [DFNS05].

Remark 3.5. The numerical results DeMiguel et al. report in [DFNS05] for the problems
ex9.2.2, ralph1 and scholtes4 (confer Section 4.3) give reason to the conjecture that, since
they use

x1j ≥ −δ1j , x2j ≥ −δ2j , x1jx2j ≤ δcj .
as relaxed reformulation of the complementarity condition, they are confronted with the
same problems concerning MPECs that do not have strongly stationary solutions (as are
for example ex9.2.2, ralph1 and scholtes4) that we discussed before in Section 2.5 for the
relaxed and the exact bilinear reformulation. In view of our discussion in Section 2.5, we
further conjecture that we will not face these difficulties if the new relaxation scheme is
used instead of the bilinear reformulation, thus if we solve (3.12).
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In this chapter we present the numerical results we obtained using the new relaxation
scheme introduced and analysed in Chapter 2. We have tested the relaxation scheme on a
test set taken from the collection of test problems called MacMPEC, which is maintained
by Leyffer and freely available [Ley00]. We used the modeling language AMPL and the
NLP solver filterSQP to solve the problems. In Section 4.1 we will briefly introduce both
software packages followed by some information about the test problems. In Section 4.2 we
first analyse a simple outer algorithm, before we explain two failures this simple algorithm
produces for some of the test problems. We then present a modified algorithm in which we
try to avoid or handle these failures. The second part of Section 4.2 gives then information
about the numerical results of the modified algorithm in particular in comparison to the
simple outer algorithm. Finally, in the last section we compare the results of the modified
algorithm to results we obtained for the relaxed bilinear approach by Scholtes [Sch01] and
for the exact bilinear approach by Fletcher et al. [FLRS06], both described in Section 1.4.

4.1 Software and Test Problems

In the following, we will briefly introduce the software and the set of test problems we used
for our numerical experiments.

FilterSQP

To test the proposed relaxation scheme, we used the SQP solver filterSQP, which was de-
veloped by Fletcher and Leyffer [FL98]. Other SQP solvers namely SNOPT [GMS02, GMS05]
and DONLP2 [Spe98], were also tested on a preliminary subset of test problems, though as
the outcomes were approximately the same we concentrated on filterSQP. In filterSQP

the SQP method is combined with a trust-region and a filter approach. Filter methods
provide an alternative to penalty function methods to promote global convergence as they
allow the full Newton step and one does not need to find a suitable penalty parameter
[FLT07]. The difference of a filter method compared to a penalty function method can
briefly be explained as follows:

Solving a Nonlinear Programming problem of the form

minimize f(x)
subject to c(x) ≤ 0

comprises two targets: the minimization of the objective function f(x) and of the constraint
violation, which could be measured for example by h(x) := ‖ [c(x)]+‖. Using a penalty
function these two objectives are combined into one single function and the second one
is weighted with an increasing penalty parameter as feasibility has to be achieved in the
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solution. Instead of combining it, filter methods treat the NLP as a biobjective optimization
problem [FLT07], where either the objective function value f(x) or some measure of the
infeasibility of x has to be decreased sufficiently, compared to a test set of previously
determined iterates called the filter.

Next, we explain the software package filterSQP and the filter method used therein
more explicitly. filterSQP solves NLPs of the form [FL98]

minimize f(x)

subject to lbx ≤ x ≤ ubx
lbc ≤ c(x) ≤ ubc

(4.1)

by solving a sequence of quadratic approximations of (4.1) in the current iterate xk within a
trust-region that is determined by the condition ‖d‖∞ ≤ ρ, with ρ denoting the trust-region
radius. The QPs thus have the form

minimize qk(d)

subject to lbx ≤ xk + d ≤ ubx
lbc ≤ c(xk) +∇c(xk)Td ≤ ubc
‖d‖∞ ≤ ρ ,

(4.2)

where qk(d) := ∇f(xk)Td+ 1
2d

T∇2
xxL(xk, λk)d corresponds to the quadratic approximation

of the Lagrangian function L(x, λ) of (4.1). In contrast to other solver filterSQP uses
the exact Hessian ∇2

xxL(xk, λk). The QPs (4.2) are solved by bqpd, which is a robust QP
solver that is based on a null-space active set method (for more information see [Fle00]).

The solution dk of (4.2) gives a next trial iterate xk+1 = xk + dk and it is tested, if xk+1

can be accepted by the filter. The filter consists of a list of pairs (f(x`), h(x`)) of previous
iterates x`, that are not dominated by any other pair. The concept of domination was
adopted from multiobjective optimization and is defined in [FL02a] as follows:

Definition 4.1. A pair (f(x`), h(x`)) is said to dominate another pair (f(xk), h(xk)) if
and only if both f(x`) ≤ f(xk) and h(x`) ≤ h(xk).

Concerning the basic filter SQP algorithm (Algorithm 1 in [FL02a]), the trial iterate
xk+1 will be accepted by the filter, if the pair (f(xk+1), h(xk+1)) is not dominated by any
other pair of the current filter. Algorithmic extensions of the basic filter SQP algorithm
that are incorporated in filterSQP concern a Second Order Correction (SOC) step, an
upper bound on the constraint violation, the elemination of blocking entries from the filter,
a sufficient reduction test and a North-West and South-East corner rule. However, we will
not further discuss these extensions here but refer the interested reader to [FL02a].

If the trial point xk+1 is accepted by the filter, it is chosen to be the new iterate. The pair
(f(xk+1), h(xk+1)) is then added to the filter and pairs (f(x`), h(x`)) that are dominated
by (f(xk+1), h(xk+1)) are removed from the filter. If xk+1 is rejected by the filter, then
the trail step dk is discarded, the trust-region radius is reduced and the QP (4.2) is solved
again.
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Reducing the trust-region radius, though, might cause an infeasible QP, if the current
iterate is not feasible for (4.1). Therefore, filterSQP incorporates a feasibility restoration
phase, which aims to minimize the constraint violation by applying a trust region SQP
method to solve the problem

minimize
∑

j∈J (cj(x))
+

subject to cj(x) ≤ 0 j ∈ J ⊥ ,
(4.3)

where the sets J and J⊥ partition the nonlinear constraints into those ones that cannot
be satisfied for the current QP (that is cj(x

k) +∇cj(xk)Td > 0, j ∈ J ) and those that
can be satisfied. For more details about the restoration phase and filterSQP in general,
we refer to [FL98] and [FL02a].

The MacMPEC collection of MPECs [Ley00], we used for the testings of our algorithms,
is a collection of MPECs formulated in AMPL (A Mathematical Programming Language)
[FGK03]. Therefore, we retained this algebraic modeling language to reformulate and solve
the test problems.

AMPL

Using a modeling language like AMPL has the advantage that we can formulate the problems
in an algebraic form close to the mathematical notation, instead of the computational form
that is expected by the specific solver we intend to apply to our test problems. The
translation into the solver’s specific form is done by the modeling language. This is not
only in particular advantageous if there is a large list of problems that have to be changed,
but also if one wants to apply different solvers to the same problem.

AMPL translates the problem into a representation that suits as input for many solvers. It
communicates the problem’s data to a solver by writing suitable files, which are then read
in by the solver. The chosen solver is run as a separate program and is invoked by AMPL’s
solve command. Finally, AMPL expects the solver to write a solution file with a termination
message, which is then read in by AMPL and used for the output of the problem’s solution.
For further information on AMPL we refer the reader to [FGK90], [Gay97] and the book
[FGK03].

We solved the test problems on a computer with 4 Dual Core AMD Opteron processors
with 2.2 GHz and 32 GB RAM running a 64 bit version of Red Hat Linux (release 5.1
(Tikanga)). Furthermore, we used the GNU C compiler gcc (gcc version 4.1) for the AMPL

Library and the AMPL solver interface for filterSQP with the option -O and we used the
GNU Fortran 77 compiler g77 (gcc version 3.4) for filterSQP again with the option -O.

Test Problem Set MacMPEC

In order to test our new relaxation scheme, we solved 133 MPECs, that we have taken from
MacMPEC, which is a collection of test problems maintained by S. Leyffer [Ley00]. The
test problems are taken from a variety of sources as for example [Sch01], [KOZ98],[FJQ99]
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or [JR99]. The problems vary in their size, type and origin, in other words academic or
real life problem. Table 4.1 displays a summary of some main features of the problems
contained in our set of test problems.

nr. of variables total nr. of constr. nr. of compl. constr.

type 0-9 10-99 ≥ 100 0-9 10-99 ≥ 100 0-9 10-99 ≥ 100

LL 4 32 16 3 29 20 16 22 14
LQ – 1 – – 1 – 1 – –
QL 15 14 14 15 14 14 22 10 11
QQ 3 – – 3 – – 3 – –
L\ Q U 8 – 1 8 – 1 8 – 1
O 1 14 10 1 13 11 12 9 4

sum 31 61 41 30 57 46 62 41 30

Table 4.1: Short description of the test set

The abbreviations of the first column have the following meanings:

LL : Linear objective function and linear constraint functions
LQ : Linear objective function and quadratic constraint functions
QL : Quadratic objective function and linear constraint functions
QQ : Quadratic objective function and quadratic constraint functions

L\QU : Linear or quadratic objective function and no general constraints
O : Other types of Programs.

The classification has been taken from [Ley00], where one can find it in more detail. The fi-
nal numbers of variables and constraints vary from the numbers given in Table 4.1, because
the number of constraints for R(t) include three more constraints for each complementar-
ity condition (two bound constraints and one nonlinear constraint). However, the exact
numbers can be found in the Table A.2 - Table A.4 in the Appendix. Moreover, in some
cases we had to add slack variables or additional constraints, in order to obtain an MPEC
of the form (1.19). For example, if a problem contains a complementarity constraint of the
form

0 ≤ G(x) ⊥ H(x) ≥ 0 , (4.4)

where G(x) and H(x) are two scalar functions, then we introduced slack variables, such
that (4.4) becomes

G(x)− s1 = 0
H(x)− s2 = 0
0 ≤ s1 ⊥ s2 ≥ 0 .

We also added variables and constraints in the case that the original MPEC contains a
mixed complementarity constraint which can be described by the variational inequality

l ≤ G(x) ≤ u and H(x)(y −G(x)) ≥ 0 ∀ y ∈ [l, u] (4.5)
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and corresponds to the conditions

G(x) = l and H(x) ≥ 0
or G(x) = u and H(x) ≤ 0
or l < G(x) < u and H(x) = 0

(see also [FFG99]). We restated (4.5) by adding auxiliary variables sij (i, j = 1, 2) and two
complementarity constraints of the simple form as in (1.19). Hence (4.5) becomes

G(x)− l − s11 = 0
u−G(x)− s12 = 0

H(x)− (s21 − s22) = 0
0 ≤ s11 ⊥ s21 ≥ 0
0 ≤ s12 ⊥ s22 ≥ 0.

Examples of the MacMPEC test set, that contain such constraints are each of the gnash

problems (see [Ley00] and the Appendix).

4.2 Algorithm

The theoretical results of the previous chapters motivate the approach to solve an MPEC of
the form (1.19), by solving a sequence of nonlinear programs R(tk) for a positive, descending
sequence (tk) until the complementarity condition is sufficiently satisfied.

To derive the outer algorithm that we will compare with the relaxed and the exact
bilinear approach, we start off with a simple outer algorithm, discuss its performance for
some varying parameter choices and two possible functions θ (which are used to describe
problem R(t), see Section 2.1). Then we explain the two main failures that occurred for
some of the problems for these runs in more detail and give suitable modifications that
might prevent these failures. Thus, we end up with the modified algorithm, which we will
then analyse.

4.2.1 Outer Algorithm

The simplest outer algorithm representing our relaxation method solves a sequence of

R(tk) min f(x)
subject to h(x) = 0

g(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2, tk) ≤ 0 ,

(see Chapter 2) using the NLP solver as a black box. Hence, we start with an initial
NLP R(t0), let filterSQP solve this problem up to a given accuracy and check whether
the solution x∗(tk) satisfies the complementarity condition. If this is the case, we stop,
as according to Lemma 2.9 we have found a (approximately) strongly stationary point of
the MPEC. If the complementarity condition is not sufficiently satisfied, we update the
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Algorithm 4.1: Simple Outer Algorithm

Choose an initial vector (x0, λ0, µ0, ν0
1 , ν

0
2 , ξ

0), an initial parameter t0 > 0, an1

update parameter σ ∈ (0, 1), tolerance parameters εC > 0 and εSQP > 0 and a
minimal parameter value δmin

repeat

Solve R(tk) up to the given accuracy determined by εSQP.2

Update the relaxation parameter tk :3

tk+1 ← max(σtk, δmin)

Set k ← k + 14

until compl(x∗(tk)) ≤ εC

parameter and solve R(tk+1). We continue this iterative process until we have found a
solution vector x∗(tk) that lies sufficiently close to the feasible region of the MPEC.

For the numerical tests, we present as next, we implemented Algorithm 4.1 as an AMPL

script starting filterSQP. We used

compl(x) =

√
√
√
√

p
∑

j=1

min(x1j , x2j)2 ,

as a measure for the feasibility of an iterate x concerning the complementarity constraints.
Next, before we begin with the discussion of this algorithm, we briefly introduce the per-
formance figures we will use later on to illustrate and analyse our results.

Performance Figures

As our test set contains a large number of problems, we will use some figures in addition to
summary tables to illustrate and analyse the results we obtained for the different methods
and algorithm variants we tested. These figures are based on the performance profile that
was introduced by Dolan and Moré [DM02].

Let S be the set of methods for (1.19) or variants of Algorithm 4.1 that we wish to
compare. Moreover, let P denote our test set. To compare the different variants or methods
of S, we first compare them for each single problem p ∈ P. Therefore, we choose a
performance measure and compute the ratios of the performance of each particular variant
or method s for each problem p compared to the best performance result obtained for the
problem p by any variant or method s ∈ S.

For our comparisons, we chose the number of SQP iterations as performance measure.
For each problem p we compute the ratio of the number of iterations ip,s required by s to
solve problem p compared to the smallest number of iterations required by any s ∈ S to
solve p, thus we compute

rp,s :=
ip,s

min{ ip,s | s ∈ S}
.

If a problem p was not solved by variant or method s, then we set rp,s = rM , where rM is
a parameter that satisfies rM ≥ rp,s for all p ∈ P and s ∈ S and rp,s = rM if and only if p
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was not solved by s. For our performance figures we used rM = 1.00E + 06.

To get an impression of the relative performance of each s ∈ S, we plot the graph of the
performance profile

%s(η) :=
1

|P| |{ p ∈ P | log2(rp,s) ≤ η }|

for all s ∈ S in one figure. The performance profile corresponds to the probability that,
given a variant or method s and a problem p, the performance of s for p is at most 2η times
the best performance, according to the chosen performance measure. Because rp,s = rM if
and only if problem p was not solved by s, we have that %s(log2(rM )) = 1 and

%∗s := lim
η↗log2(rM )

%s(η)

denotes the probability that s solves a given problem. Hence, to compare the robustness
of the variants or methods s ∈ S, one needs to compare the values of %∗s, that is the values
%s(η) with η being large, which corresponds to the value of %s(η) in the right-most position
of the figure.

Another significant feature for each solver s is the value %s(0), which corresponds to the
probability that for a given problem p the variant or method s performs best.

Results for Algorithm 4.1

In this subsection we discuss the results of some numerical experiments that we carried out
with Algorithm 4.1. We start the discussion by a comparison of the performance of the
algorithm for a selection of parameter combinations which will be followed by comparing
possible choices for the function θ (see Chapter 2).

For all experiments we set the tolerance parameter eps of filterSQP (that corresponds
to εSQP ) equal to 1.00E-08, as well as the complementarity tolerance εC . We set the
maximum iteration number for filterSQP maxiter=1000 and we chose the output level
iprint=1, to get the informations we need for our discussion. Furthermore, we set the
AMPL options substout 0 and presolve 0, which turns off the the automatic substitution
(of variables and constraints) and the presolve phase of AMPL. These options have been set,
because it did not seem to benefit the performance in general (and to keep the AMPL options
consistent, as we had to turn them off for the modified algorithm that we will present in
Section 4.2.3). Finally, we set an outer iteration limit equal to 20.

To analyse the Algorithm 4.1, we begin with a comparison of its performance for a range
of parameter combinations consisting of an initial parameter t0 and an update parameter
σ. The combinations we tested are listed in Table 4.2. For these experiments, we set

θ(z) = s(z) :=
2

π
sin

(

z
π

2
+

3π

2

)

+ 1 .

Remark 4.1. Since Φj(x1, x2, 0) = x1j + x2j − |x1j − x2j | is not differentiable in x with
(x1j , x2j) = (0, 0), for these x we set ∇xΦj(x1, x2, 0) := 0.

The results are summarized in Figure 4.1 and a list of the iteration numbers can be found
in Table A.1 in the Appendix, where we listed the name of the problem, the sum of inner
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data 1 data 2 data 3 data 4 data 5 data 6 data 7

t0 0.00 1.00 1.00 1.00 10.0 10.0 10.0
σ - 0.100 0.010 0.001 0.100 0.010 0.001

Table 4.2: Overview of parameter settings

iterations, that is the sum of SQP iterations, and in braces the number k of outer iterations,
thus the number of nonlinear programs R(tk) that needed to be solved to (approximately)
find a solution to (1.19). We evaluate a problem to be solved correctly if the constraint
violation and the KKT-residual for the last solved problem R(tk) are sufficiently small, and
if the complementarity condition is sufficiently satisfied for the solution x∗(tk) of the last
solved problem R(tk), hence if compl(x∗(tk)) ≤ εC . We group the failures of Algorithm
4.1, that we document in Table A.1, into three different types: The first type concerns the

type notation description

1 -1 Local infeasibility of the nonlinear constraints
2 -2 KKT-residual > eps
3 -3 other failures : e.g. maximum nr. of iterations, complementarity

not sufficiently satisfied, . . .

Table 4.3: Description of Types of Failures and their Notation

case in which filterSQP is not able to find a feasible point, in other words the restoration
phase fails to find a feasible solution. The second type corresponds to the case, where the
solver terminates the run because either the trust-region or the step length became too
small but the current iterate is not stationary, in other words the KKT-residual does not
satisfy the required accuracy. In the third category we collected the remaining failures.
Considering Table 4.4, where we summarized the failures of the algorithm for the different
parameter combinations, we detect that the main part of the failures are either of the first
or the second type, which justifies the partition we made. We summarized the failures in

type data 1 data 2 data 3 data 4 data 5 data 6 data7

1 4 10 13 13 9 13 13
2 20 22 20 24 10 15 14
3 5 1 0 0 1 0 0

sum 29 33 33 37 20 28 27
% 22 25 25 28 15 21 20

Table 4.4: Number, type and percentage of failures for the parameter combinations of Table
4.2

Table 4.4, which gives us some useful information about the robustness of the different data
variants.
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It becomes clear that solving R(t) with an initial parameter t0 = 10.0 is more robust
than solving R(t) with an initial parameter t0 = 1.00. Moreover, solving a sequence of
R(tk) starting with R(10.0) is also more robust than solving R(0), since for data 1 the
Algorithm fails for 29 problems, that corresponds to 22% of the test problems, whereas for
data 5 - data 7 Algorithm 4.1 fails only for 15 − 21% of the test problems, depending on
the chosen update parameter σ. The parameter combination data 5 is the most robust, as
Algorithm 4.1 solves 85% of the 133 test problems successfully for this combination.
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Figure 4.1: Comparison of different parameter settings for Algorithm 4.1

As explained before, these robustness informations can also be read out of Figure 4.1
by examining the values of ρs(x) in the right-most position. However, Figure 4.1 also
provides some further useful information. Examining ρs(x) for different parameter variants,
it becomes clear that using a starting parameter t0 = 10.0 is not only more robust than
using t0 = 1.00, but also preferable in the context of small iteration numbers.

A large number of the test problems have strongly stationary solutions, where the ad-
ditional constraints representing the complementarity condition is negligible for the de-
generate components of the solution. Hence we can omit the associated derivatives of
the additional constraints and solving R(0) does not cause any differentiability problems.
Therefore solving R(0) in these cases is successful and mostly requires less iterations than
solving a sequence of R(tk). This fact can be observed, by examining the values of ρs(0),
which correspond to the percentage of test problems that were solved by s within the small-
est number of iterations (determined for each single test problem). Furthermore, it also
denotes the probability that a given combination s solves a problem within the smallest
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number of iterations. Hence, since ρs(0) is largest for data 1, where ρs(0) ≈ 0.6, it seems
to be the best choice concerning small iteration numbers. Comparing data 1 to data 5, we
observe that for data 1 60% of the test problems were solved fastest, whereas for data 5 to
solve 60% of the test problems Algorithm 4.1 requires at least up to 3.5 times more itera-
tions than the best. However, consider the values of x corresponding to ρs(x) = 0.75, or in
other words the maximum factor 2x that is needed to solve 75% of the test problems, then
we observe that for both parameter combinations data 1 and data 5 we obtain a maximum
factor of approximately 10. If we consider yet larger percentages of test problems, that is
values x with ρs(x) > 0.75, then the maximum factor for data 5 is even smaller than that
one of data 1.

The next question we want to answer concerns the choice of the function θ(z) that we
use for to formulate R(tk). As for the theory θ(z), only has to satisfy the Assumptions
2.1, there exist more than just the one choice we made above. Another possible function
satisfying the Assumptions 2.1 for example corresponds to an interpolation polynomial,
which additionally satisfies the conditions on the first and second order derivative. As a
polynomial that satisfies these conditions, we can thus also use

θ(z) = p(z) =
1

8
(−z4 + 6z2 + 3) .

We therefore undertake another numerical test to answer the question, whether either of
these possibilities is preferable to the other and if the choice of θ(z) is a crucial factor for
the performance of Algorithm 4.1. For this test, we chose according to our prior analysis,
the parameter combination t0 = 10.0 and σ = 0.1. The results for the choice θ(z) = p(z)
can be found in the last column of Table A.1 in the Appendix.

In Table 4.5 we compare the failures of Algorithm 4.1 for both choices and Figure 4.2
displays their performance profiles.

type θ(z) = s(z) θ(z) = p(z)

1 9 14
2 10 9
3 1 1

sum 20 24
% 15 18

Table 4.5: Number, type and percentage of failures for θ(z) = s(z) and θ(z) = p(z)

As can be seen from the tables and Figure 4.2 there is not such a significant difference in
the performance for θ(z) = s(z) and for θ(z) = p(z) as for the different starting parameter
t0. Although, considering Table 4.5 and Figure 4.2, as the first choice for θ produces less
failures and its performance profile ρs(η) lies entirely above the one for p(z), we will proceed
with θ(z) = s(z).

Conclusions
The tests we made show that, although Algorithm 4.1 is kept very simple, most of the
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Figure 4.2: Comparison of Algorithm 4.1 for θ(z) = s(z) and θ(z) = p(z) with t0 = 10 and
σ = 0.10

MPECs could be solved. The best performance with θ(z) = s(z) concerning robustness
and in parts concerning the iteration numbers was obtained for the variant using data 5.
Moreover, for this variant θ(z) = s(z) outperformed θ(z) = p(z), which let us conjecture
that this might also be true for the remaining data variants.

These observations lead us to the conclusion, that if our focus lies on a robust method
to solve (1.19), then our choice should be solving a sequence R(tk) using the the parameter
combination data 5 and θ(z) = s(z), rather than solving R(0). As the reported failures are
mainly of two different types, there might even be a chance to improve the simple outer
algorithm by examining these failures and trying to derive some suitable modifications.

4.2.2 Failures

The first difficulty we have to deal with using Algorithm 4.1 to solve an MPEC in the form
of (1.19) can be described as follows. Since we use an SQP method to solve R(tk), we solve
a sequence of QPs, where we linearize the constraints of R(tk). However, the linearization

Φj(x
k
1 , x

k
2 , t

k) +∇Φj(x
k
1 , x

k
2 , t

k)Td ≤ 0 (4.6)

of the constraint Φj(x
k
1 , x

k
2 , t

k) ≤ 0, in some cases might cause the steplength to converge
to zero, hence the SQP algorithm stops, although we are not close enough to a solution
yet.
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The second difficulty concerns the case that, as we use the solution vector x∗(tk) as an
initial point to solve R(tk+1), which has a reduced feasible region compared to R(tk), our
initial point x∗(tk) might not be feasible for R(tk+1). Hence, the SQP solver then first
has to solve a feasibility problem. If this could not be solved successfully, then the Outer
Algorithm might get stuck in the infeasible point x∗(tk).

In the following we will explain both problems and how we can fix Algorithm 4.1 by some
small modifications in more detail.

“Vertex Problem”

Consider a positive parameter tk > 0 and a a pair (xk
1j , x

k
2j) of the current iterate xk with

xk
1j < tk and xk

2j = 0 (the case that xk
2j < tk and xk

1j = 0 is similar). Hence it satisfies
strict complementarity and is feasible with respect to the constraint Φj(x1, x2, tk) ≤ 0. If
we linearize

Φj(x
k
1 + d1, x

k
2 + d2, tk) ≤ 0 , (4.7)

then we obtain (4.6), which is equivalent to

αk
j d1j + (2− αk

j ) d2j ≤ −Φk
j ,

where αk
j denotes the corresponding partial derivative of Φk

j = Φj(x
k
1 , x

k
2 , tk) (see Chapter

2). As xk
1j < tk and xk

2j = 0, Assumptions 2.1 on the function θ imply that

θ′

(

xk
1j − xk

2j

tk

)

< 1 ,

therefore

αk
j = 1− θ′

(

xk
1j − xk

2j

tk

)

> 0 .

It hence follows that a step d along the direction of e1j is restricted by

d1j ≤ −
Φk

j

αk
j

.

To evaluate Φj(x1, x2, tk) along the direction of e1j , we define

Φ̃(x) := Φj(x, 0, t) = x− tθ
(x

t

)

,

and approximate Φ̃(x) by its Taylor series expansion in x̂ = t (see for example [Kön95]).
Considering the Assumptions 2.1 we made on θ and additionally assuming that θ is at least
three times continuously differentiable on D ⊆ R with [−1, 1] ⊆ D, the third-order Taylor
approximation of Φ̃(x) in x̂ = t is

T3Φ̃(x; x̂) =
1

6
Φ̃′′′(x̂)(x− x̂)3 = − 1

6t2
θ′′′(1)(t − x)3 . (4.8)

Hence, using this information to approximately determine the restriction of the steplength
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Figure 4.3: Functions and T3Φ̃(x; t) for t = 1.0, θ as in (2.1) and x ∈ [−0.5, 2.0].

of a step d we get

d1j ≤ −
Φk

j

αk
j

≈
1

6t2
θ′′′(1)(t − x)3

3 1
6t2
θ′′′(1)(t − x)2 =

1

3
(t− x) .

Therefore, in the case that it would be beneficial to take a step dk with xk+1
1j = xk

1j+d
k
1j > tk

and dk
2j = 0 the QP solver might produce a sequence (dk) with

lim
k→∞

dk
1j = 0

and xk
1j < tk for all k ∈ N, in other words the sequence (xk

1j) will never “pass the boundary”
tk.

The explained behaviour can be observed for the following example:

Example 4.1.

minimize f(x) := (x1 − 2)2 + (x2 + 2)2

subject to 0 ≤ x1 ⊥ x2 ≥ 0

We choose the starting vector x0 = (0, 0) and t0 = 1.00. In Table 4.6 we have listed the it-
eration number k and the corresponding values for dk

1 , x
k
1 , the value Φk/αk of the maximum

steplength and the approximation of it. We obtained the values applying the MATLAB
7.5.0 built in QP solver quadprog [Ven02] iteratively to the quadratic approximations

mind 2 d2
1 + 2 d2

2 + 2 (xk
1 − 2) d1 + 2 (xk

2 + 2) d2

subject to xk
1 + d1 ≥ 0
xk

2 + d2 ≥ 0
Φk + αkd1 + (2− αk)d2 ≤ 0

of R(t0) of our Example (4.1) with the starting vector x0 = (0, 0) and t0 = 1.00. The values
of Table 4.6 and Figure 4.4, where we have plotted the contour of Φ(x1, x2, t) = 0 and the
produced iterates (xk

1 , x
k
2), again illustrates the behaviour we have just explained.
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k dk
1 xk

1 Φk/αk 1/3(t − xk
1)

0 0.363380228 0.000000000 0.363380228 0.333333333
1 0.219541466 0.363380228 0.219541466 0.212206591
2 0.141046105 0.582921693 0.141046105 0.139026102
3 0.092591232 0.723967798 0.092591232 0.092010734
4 0.061316726 0.816559031 0.061316726 0.061146990
5 0.040758081 0.877875757 0.040758081 0.040708081
6 0.027136830 0.918633839 0.027136831 0.027122054
7 0.018080817 0.945770669 0.018080817 0.018076444
8 0.012050800 0.963851486 0.012050800 0.012049505

Table 4.6: Results for Example 4.1
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Figure 4.4: Illustration of the vertexproblem for Example 4.1

Modifications.

In Algorithm 4.1 we used as stopping criteria those ones of filterSQP for the solutions
of R(tk) (hence for the inner iterations) and for the outer iteration loop we simply used
a measure of the complementarity. Hence, since a small steplength induces filterSQP to
stop in the case of the vertex problem that we just explained, both stopping criteria (the
inner and the outer) are satisfied, although we are not sufficiently optimal yet.

One possibility to prevent the outer algorithm to stop in this case but to reduce tk and
solve R(tk) once again is to additionally check the norm of the KKT-residual and if it is
not sufficiently small (according to the stopping tolerance of filterSQP), then the outer
algorithm continues.

If we use filterSQP as a black box, then there is no other possibility than to react to
the situation (as we cannot know in advance, that some iterates (xk

1j , x
k
2j) will cause the

vertex problem to appear). However, to wait for filterSQP to stop, because the steplength
falls below the stopping tolerance, implies that the solver might carry out a lot of “useless”
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iterations (which has almost no further contribution than to reduce the steplength until
the solver stops). Hence, in order to intervene in time, we have to decrease tk in between
the SQP iterations, thus directly after the solution of a QP: if for the current iterate xk

a pair (xk
1j , x

k
2j) approaches either (tk, 0) or (0, tk), then we reduce tk, such that xk

ij > tk
(i = 1 or 2, respectively). This however implies that we cannot use filterSQP as a black
box any longer in order to omit the “useless” iterations.

However, as we do not want to interfere with the other constraints Φi(x1, x2, tk) ≤ 0
with i ∈ {1, . . . , p}\{j}, we now use a parameter vector tk = (tk1 , . . . , t

k
p) instead of a scalar

parameter, such that we have Φj(x1, x2, t
k
j ) ≤ 0 for all j ∈ {1, . . . , p} and we can update

tkj independently.

“Infeasible Initial Points”

Another problem, that we have to deal with, concerns the case that the solver does not
find a feasible initial vector. If this problem arises in the first outer iteration, that is for
problem R(t0), then this failure is not due to our relaxation but the choice of x0 or the
MPEC itself. However, if this does happen for some iteration k+ 1 later on, then it has to
be due to the constraints Φj(x1, x2, tk+1) ≤ 0, since x∗(tk) is feasible for R(tk) and therefore
h(x∗(tk)) = 0 and g(x∗(tk)) ≥ 0. Hence, the infeasiblity of x∗(tk) for R(tk+1) refers to the
situation that Φj(x

∗
1(tk), x

∗
2(tk), tk) ≤ 0, but Φj(x

∗
1(tk), x

∗
2(tk), tk+1) > 0.

One example (that corresponds to bard3 of MacMPEC), where we have observed this
difficulty is

Example 4.2.

minimize f(x0, x1, x2) := −x2
01 − 3x02 − 4x03 + x2

04

subject to 2x03 + 2x21 − 3x22 = 0
−5− x21 + 4x22 = 0

x2
01 − 2x01 + x2

02 − 2x03 + x04 + 3− x11 = 0
x02 + 3x03 − 4x04 − 4− x12 = 0

x2
01 + 2x02 − 4 ≤ 0

0 ≤ x11 ⊥ x21 ≥ 0
0 ≤ x12 ⊥ x22 ≥ 0

.

k tk (xk
0 , x

k
1 , x

k
2) := x∗(tk) ‖c(x∗(tk))‖ compl(x∗(tk))

0 10 (0.00, 2.00 ,1.88, 0.279, 3.53, 2.51, 0.00, 1.25) 0.00 1.25
1 0.1 (0.00, 2.00 ,1.88, 0.279, 3.53, 2.51, 0.00, 1.25) 0.00 1.25
2 1E-03 (0.00, 2.00 ,1.88, 0.279, 3.53, 2.51, 0.00, 1.25) 0.00 1.25
3 1E-05 (0.00, 2.00 ,1.88, 0.279, 3.53, 2.51, 0.00, 1.25) 0.00 1.25

Table 4.7: Results for Example 4.2, where c(x) contains all constraints except for the com-

plementarity constraints and compl(xk) =
√
∑2

j=1 min(xk
1j , x

k
2j)

2

Table 4.7 and Figure 4.5 illustrates the infeasibility problem for Example 4.2. Start-
ing with the initial point x0 = 0, filterSQP successfully solves R(10). However, trying
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Figure 4.5: Illustration of the Infeasibility Problem for Example 4.2

to solve R(0.1) the solver gets stuck in x∗(10), as can be seen in Table 4.7. The pair
(x12(10), x22(10)) is not feasible for R(0.1) and the attempt to find a feasible point for
R(0.1) is unsuccessful, as can be seen on the right in Figure 4.5.

Modifications. As we will see later on, if we decrease tk more gently, then we have a chance
to find a feasible point for R(tk+1). However, if we generally choose our update parameter
σ larger, then we will loose the good performance concerning the iteration numbers for the
85% of problems that were solved without any difficulties, as can be noticed by Figure 4.1.
Hence the idea is: first we try a more stringent parameter update and only in the case
that R(tk+1) could not be solved successfully (as no feasible starting point was found), we
“re-update” tk and use a gentler decrease for tk+1 (thus we enlarge tk+1) and solve R(tk+1)
again. As x∗(tk) is feasible for R(tk), at least for tk+1 = tk we obtain a feasible initial
vector. If R(tk+1) was successfully solved for the gentler decrease, then for the next tk, we
try again the more stringent parameter update.

k tk (xk
0 , x

k
1 , x

k
2) := x∗(tk) ‖c(x∗(tk))‖ compl(x∗(tk))

0 10.0 (0.00, 2.00, 1.88, 0.28, 3.53, 2.51, 0.00, 1.25) 0.00 1.25
1 5.00 (0.00, 2.00, 1.88, 0.75, 4.00, 0.63, 0.00, 1.25) 0.00 0.63
2 0.05 (0.00, 2.00, 1.88, 0.91, 4.16, 0.00, 0.00, 1.25) 0.00 0.00

Table 4.8: Results for Example 4.2, where c(x) contains all constraints except for the com-

plementarity constraints and compl(xk) =
√
∑2

j=1 min(xk
1jx

k
2j)

2

Another idea in this context concerns the variable x∗(tk): since x∗(tk) is not feasible for
R(tk+1), it might be advantageous to check which constraints Φj(x

∗
1(tk), x

∗
2(tk), tk+1) ≤ 0

are not satisfied by x∗(tk). Having detected the indices j ∈ {1, . . . , p}, where an infeasi-
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Figure 4.6: Illustration of the modified algorithm applied to Example 4.2

bility occurs, thus Φj(x
∗
1(tk), x

∗
2(tk), tk+1) > 0, we then project the corresponding pairs

(x∗1j(tk), x
∗
2j(tk)) onto the positive axes. This intervention might cause the infeasibility of

the new iterate concerning the remaining constraints, however, if this infeasibility is over-
come easier than that one of the relaxed complementarity constraints, then the intervention
benefits the behaviour of the outer algorithm.

In our modified algorithm, that will be presented as next, we combined the idea of the
projection with the one of a gentler decrease in the case of an infeasible initial point x∗(tk)
for problem R(tk+1).

4.2.3 Modified Algorithm

In this section, we describe a modified outer algorithm, that includes the modifications
we mentioned in the foregoing section. As the modification concerning the Vertex prob-
lem includes that we have to intervene in the SQP algorithm, we now incorporate the
outer algorithm directly in filterSQP. We therefore also implemented the constraints
Φj(x1, x2, tk) ≤ 0 directly in filterSQP, in order to be able to change and compute these
constraints independently of the others (as the rest of the constraints and their derivatives
are computed automatically by AMPL). We then adapted filterSQP according to Algorithm
4.2, where we set the parameters as follows: εC = 1.00E−08, εSQP = 1.00E−08, t0j = 10.0

for j ∈ {1, . . . , p}, δ = 0.10, δmin = 10−12, σ1 = 0.50, σ2 = 0.10, σ3 = 5.00 and maxit= 15.
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Algorithm 4.2: Modified Algorithm

Choose x0, the parameter vector t0 and the tolerance and update parameter εSQP ,1

εC , δ, σ1, σ2 and σ3, a maximum iteration number maxit ≥ 1 and the minimum
parameter δmin.
k ← 0, t0,0 ← t02

repeat
l← 0
repeat

Solve QP of R(tk,l) for a step dk,l and update xk,l.3

if (1− δ)tk,l
j < max(xk,l+1

1j , xk,l+1
2j ) < tk,l

j and xk,l+1
1j xk,l+1

2j < εC then4

tk,l+1
j ← max(σ1 t

k,l
j , δmin )

l← l + 1

until Stopping Criteria of filterSQP are satisfied.

Update solution xk of R(tk,l) : xk ← xk,l
5

if ”Optimal solution found.” for R(tk,l) then6

Decrease the parameters tkj :

for j = 1, . . . , p do

tk+1,0
j ← max(σ2 t

k,l
j , δmin )

else

Increase the parameters tkj :

for j = 1, . . . , p do

tk+1,0
j ← σ3 t

k,l
j

if ”Nonlinear Constraints (locally) infeasible.” for R(tk,l) then7

if Φj(x
k
1 , x

k
2 , t

k+1,0
j ) > εC then

Project infeasible pairs (xk
1j , x

k
2j) onto axes:

if xk
1j ≤ xk

2j then

xk
1j ← 0

else

xk
2j ← 0

k ← k + 1

until ‖KKTres‖ ≤ εSQP , ‖cres‖ ≤ εSQP and compl(xk) ≤ εC or k > maxit
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Figure 4.7: Comparison of Algorithm 4.2 and Algorithm 4.1

Our measure of complementarity is again

compl(x) =

√
√
√
√

p
∑

j=1

min(x1j , x2j)2 .

Modified Algorithm compared to Simple Outer Algorithm

Before we compare our Modified Algorithm with the results we obtain for the relaxed
and the exact bilinear approach, we first compare it with the Simple Outer Algorithm
(Algorithm 4.1).

Figure 4.7 displays the performance profiles of Algorithm 4.1 and of Algorithm 4.2. Ob-
viously the modifications we made not only improved the robustness of our method, but
also the number of required iterations. We listed the number of discovered failures for
the Modified Algorithm and again those ones of the Simple Outer Algorithm in Table 4.9.
Considering Table 4.9, it becomes clear that the Modified Algorithm reduced the number
of failures by 40% compared to the Simple Outer Algorithm. The improved robustness can
also be deduced from Figure 4.7. Furthermore, according to Leyffer [Ley00], at least two
failures of the first type are directly due an infeasible problem. Moreover, it can be seen
in Figure 4.7, that the Modified Algorithm solves approximately 85% of the test problems
as fastest and it needs at most approximately 2.7 times as many iterations as the Simple
Outer Algorithm.

115



4 Numerical Experience

type Modified Algorithm Simple Algorithm

1 5 9
2 7 10
3 0 1

sum 12 20
% 9 15

Table 4.9: Number, type and percentage of failures for Algorithm 4.2 and Algorithm 4.1

4.3 Comparison

In this final section, we compare the numerical results we obtain for the Modified Algorithm
(Algorithm 4.2) with the results for the exact and the relaxed bilinear solution approach
for MPECs (see Section 1.4).

To obtain appropriate numerical results for these two approaches, comparable to those
ones of Algorithm 4.2, we implemented the Outer Algorithm for the two bilinear approaches
(Algorithm 4.3) directly in filterSQP.

Algorithm 4.3: Outer Algorithm for Bilinear Approach

Choose an initial vector (x0, λ0, µ0, ν0
1 , ν

0
2 , ξ

0), an initial parameter t0 ≥ 0, an1

update parameter σ ∈ (0, 1), tolerance parameters εC > 0 and εSQP > 0, a maximum
iteration number maxit ≥ 1 and a minimal parameter value δmin > 0
repeat

Solve NLP (tk) up to the given accuracy determined by εSQP .2

Update the relaxation parameter tk :3

tk+1 ← max(σtk, δmin)

Set k ← k + 14

until compl(x∗(tk)) ≤ εC or k > maxit

We used again

compl(x) =

√
√
√
√

p
∑

j=1

min(x1j , x2j)2 ,

as a measure for the feasibility of an iterate x concerning the complementarity constraints.
For the relaxed bilinear approach we chose the parameter values as for Algorithm 4.1 and
data 5 (see also the Appendix): t0 = 10.0, σ = 0.10, δmin = 1.00E − 18, maxit = 20,
εC = 1.00E − 08 and εSQP = 1.00E − 08. The parameters δmin and maxit vary from those
ones for Algorithm 4.2 as for the relaxed bilinear approach the parameter tk might have
to become smaller to obtain the same accuracy for the complementarity condition than for
the new relaxation method (see Section 2.5)

For the exact bilinear approach we set t0 = 0.00 and the maximum outer iteration number
maxit = 1.
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Figure 4.8: Comparison of the new relaxation method to the exact and the relaxed bilinear
approach

For the comparison of this section, we enlarged the set of test problems by 20 large-scale
MPECs of the MacMPEC test problem set. These are of size n > 4000 (here n denotes
the number of variables). Hence our test problems set now contains 153 MPECS, which
divide into 31 small (n < 10), 102 medium (10 ≤ n < 4000) and 20 large-scale (n > 4000)
problems. (We did not take all test problems of MacMPEC, because some of them seem
to feature significant similarities.)

The detailed numerical results for all three approaches are listed in Table A.2, Table A.3
and Table A.4 in the Appendix. Moreover, Figure 4.8 summarizes the numerical results
concerning the iteration numbers. It displays the performance of the new relaxation method
(represented by Algorithm 4.2) compared to the exact and the relaxed bilinear approach.

In view of Figure 4.8 it becomes clear that the new relaxation method represents a good
compromise between small iteration numbers and robustness of the method: using the
exact bilinear solution approach most problems, where a satisfying solution is found, are
solved within comparably few iterations, if not the smallest number of iterations. For 56%
of the test problems the exact bilinear approach produces the smallest iteration number.
Concerning the new relaxation method, only 39% of the test problems are solved within
the smallest number of iterations. However, this value is worse for the relaxed bilinear ap-
proach, since for this approach ρ(0) = 0.31, which corresponds to 31% of the test problems.
However, the advantage of the exact bilinear approach concerning small iteration numbers
might mostly be due to the fact that most of the test problems have strongly stationary
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type new relaxation relaxed bilinear exact bilinear

1 6 3 7
2 20 22 26
3 1 6 5

sum 27 31 38
% 18 20 25

Table 4.10: Number, type and percentage of failures for the new relaxation method, the
relaxed and the exact bilinear approach

solutions (confer Section 2.5 and the discussion further below).

For problems solved by both compared methods, the average factor concerning the re-
quired iterations of the new relaxation method compared to those ones required by the
exact bilinear approach is approximately 2.7. The iteration numbers of the relaxed bilinear
approach are in average approximately 1.8 times higher as those ones of the new relaxation
method .

Concerning the robustness, from Figure 4.8 it becomes apparent, that the new relaxation
method is the most robust one of all three approaches.

Hence, compared to the relaxed bilinear approach, the new relaxation method is more
favourable, since it is more robust and in most cases it finds a solution in less iterations.

In Table 4.10 we summarized the failures of all three methods. In some cases the failures
that occurred matches more than one type. In these cases we chose the seemingly more
appropriate one.

The new relaxation fails to find an appropriate solution (that is the KKT- and the
feasibility residual do not exceed εSQP and the condition on the complementarity measure
is fulfilled) only for 27 test problems, which corresponds to 18% of all 153 test problems.
The relaxed bilinear approach fails for 31 test problems that correspond to 20% of all test
problems. Finally, the exact bilinear approach fails to find an appropriate solution for 38
MPECs, in other words it fails for 25% of the test problems.

Moreover, the set of MPECs for which all three methods fail consists of 23 test problems.
Hence, the new relaxation method fails only on 4 problems, where one of the other two
methods is successful. According to Leyffer [Ley00] at least four failures are due to infeasible
problems. Other failures, especially of the second type, are due to infeasible QPs, that is
mostly the case for problems where ifail = 4 or ifail = 5 (see the Appendix).

Concerning the complementarity condition, in view of Table A.2, Table A.3 and Table
A.4 it becomes clear that for the new relaxation method the complementarity measures
compl1(x) and compl2(x) are mostly at least as well satisfied as for the exact bilinear
approach (only taking problems with appropriate solutions (see above) for both compared
methods into account). It is theoretically clear, that for the relaxed bilinear approach the
complementarity measures will be less well satisfied than for the other two methods, since
for this approach exact complementarity can only be guaranteed to be satisfied for the limit
tk → 0 (independently of the existence of degenerate components). This property is also
distinguishable in Table A.3 in comparison to Table A.2 and Table A.4.
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Comparing the final objective function values, it comes out that the relaxed bilinear
approach finds a better objective function value than the new relaxation method for 8
test problems. The inverse direction holds only for one single MPEC. Comparing the
objective function values obtained by the exact bilinear approach to those ones for the new
relaxation method, we identify 6 test problems where the exact bilinear approach finds a
better objective function value and 17 test problems where the new relaxation method finds
a better solution value.

Finally, let us consider the theoretical statements we made in Section 2.5. We therefore
examine the numerical results of three examples of the test problem set in more detail. The
test problems we consider are

Example 4.3. ex9.2.2

min x2
01 + (x02 − 10)2

subject to 0 ≤ x01 ≤ 15 : λ1

0 ≤ x02 : λ2

−x01 + x02 ≤ 0 : λ3

x01 + x02 + x11 = 20 : µ1

−x02 + x12 = 0 : µ2

x02 + x13 = 20 : µ3

2(x01 + 2x02 − 30) + x21 − x22 + x23 = 0 : µ4

0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ ,

This problem has an M-stationary solution x∗ = (x∗0, x
∗
1, x

∗
2) = (10, 10, 0, 10, 10, 0, 0, 0)

with MPEC multipliers (λ∗, µ∗, ν̂1, ν̂2) = (0, 0, 13 1/3, 0, 0, 0, 3 1/3, 0, 0, 0, −3 1/3,
−3 1/3, −3 1/3).

Example 4.4. ralph1

min f1(x) = 2x0 − x2

f2(x) = x0 − x2

subject to x2 − x0 − x1 = 0 : µ
x0 ≤ 0 : λ
0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ

The M-stationary solution of this problem is x∗ = (x∗0, x
∗
1, x

∗
2) = (0, 0, 0) with MPEC

multipliers (λ, µ, ν̂1, ν̂2) = (2, 0, 0, −1) for objective function f1(x) and (λ, µ, ν̂1, ν̂2) =
(1, 0, 0, −1) for objective function f2(x).

And finally scholtes4 (which corresponds to Example 2.4):

min x1 + x2 − x0

subject to −4x1 + x0 ≤ 0 : λ1

−4x2 + x0 ≤ 0 : λ2

0 ≤ x1 ⊥ x2 ≥ 0, : ν1, ν2, ξ .

According to Section 2.5, we assume that for the relaxed and the exact bilinear approach
the generated multiplier sequences (ξk) of the complementarity conditions are unbounded.
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Exact Bilinear Relaxed Bilinear New Relaxation

KKT-residual 1.85 E+02 1.85 E+00 3.97 E -17
ξ∗max 1.78 E+09 9.39 E+08 9.95 E+00

inner(outer) Iterations 29(1) 91(20) 49(14)

Table 4.11: Values for Example 4.3

Exact Bilinear Relaxed Bilinear New Relaxation

KKT-residual 2.36 E-01 0.00 E+00 1.57 E -14
ξ∗max 3.47 E+07 5.00 E+05 0.50 E+00

inner(outer) Iterations 33(1) 86(20) 10(10)

Table 4.12: Values for Example 4.4

Thus, in particular, the iterates ξk for the approximate solution of the problems will become
very large. Moreover, in Section 2.5 we expected this unboundedness of the multipliers to
cause numerical troubles. In Table 4.11 to Table 4.13 we summarized the significant values
for these three examples. The values we obtained clearly support our assumptions.

Both methods, the relaxed and the exact bilinear approach, fail for all three problems.
Furthermore, the corresponding numerical values of ξ∗, the multiplier corresponding to the
complementarity conditions are very large, whereas they are of suitable sizes for the new
relaxation method. Detailed numerical results we obtain for the relaxed bilinear approach
and the new relaxation method for Example 4.3, Example 4.4 and Example 2.4 can be
found in Table A.5 to Table A.10 in the Appendix.

Figure 4.9 and Figure 4.10 display the development of the significant complementarity
multiplier ξk for the relaxed bilinear approach and the new relaxation method. It can be
observed that for the relaxed bilinear approach the values of ξk diverge, whereas they stay
constant for the new relaxation method. This might be one important reason, why the new
relaxation method solves all three test problems without any difficulties.

Comparing the rate of convergence of the stationary points x∗(tk) for the relaxed bilinear
approach to those ones we obtain for the relaxation method, it comes out that the numerical
results support the theoretical statements we made in Section 2.5. From Figure 4.11, where
we plotted the values ‖(xk

1j , x
k
2j) − (x∗1j , x

∗
2j)‖2 for the significant complementarity pairs

(xk
1j , x

k
2j) on a logarithmic scale, the rate of convergence we derived at the end of Section

Exact Bilinear Relaxed Bilinear New Relaxation

KKT-residual 4.71 E-01 0.00 E+00 4.34 E -18
ξ∗max 3.47 E+08 5.00 E+05 1.00 E+00

inner(outer) Iterations 32(1) 85(20) 11(10)

Table 4.13: Values for Example 2.4
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Figure 4.9: Comparison of complementarity multiplier ξk for tk = 0.1k−2 for Example 2.4
(similar to the results, for Example 4.4)
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Figure 4.10: Comparison of complementarity multiplier ξk for tk = 0.1k−2, for Example 4.3
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Figure 4.11: Comparison of Convergence ‖(xk
1 , x

k
2) − (x∗1, x

∗
2)‖2 for tk = 0.1k−2 and for

Example 4.4

2.5 can directly be detected (since the resulting figures for all three test problems are almost
identical we confine ourselves to present only the plot for Example 4.4).

122



Summary

In this doctoral thesis we introduced a new relaxation scheme for MPECs. We presented
some basic properties of the relaxed nonlinear program we obtain applying the new relax-
ation scheme to the complementarity constraints. We also related the stationary points
and solutions of the relaxed nonlinear program with those ones of the original MPEC. Our
results resemble the corresponding result of [FLRS06], where the equality of the set of
stationary points of the relaxed program and the set of strongly stationary points of the
original MPEC is proved for the exact (relaxation-free) approach. Furthermore, our results
form stronger results than comparable, existing ones for other regularization schemes.

Moreover, we presented some results concerning the convergence of a sequence of station-
ary points or solutions, respectively, of the relaxed nonlinear program to stationary points
of the original MPEC. The first two convergence theorems form pendants to convergence
results existing for regularization schemes for MPECs in the literature. However, having in
mind the results of [Fle05], these convergence results (in particular those ones that resemble
Theorem 2.3), are somewhat unsatisfactory, since they have strong assumptions and rela-
tively weak conclusions. To our knowledge, there exist only a few comparable convergence
results that do not make use of the relatively strong MPEC-LICQ. Hence, with the intro-
duction of the MPEC-CRCQ and Theorem 2.4 we could present an improved convergence
result, as we weakened the assumptions considerably and proved similar conclusions. This
convergence result also shows that our relaxation method finds stationary points of MPECs
that do not have strongly stationary solutions under suitable assumptions. However, as
some examples and the results of the thesis of Flegel [Fle05] reveal, it might be a valuable
task to get more insights in the convergence behaviour of a sequence of stationary points of
the parametrized, relaxed nonlinear programs and to strengthen the existing convergence
results even more.

In Chapter 3 we discussed the convergence behaviour of a general local SQP algorithm
applied to the relaxed nonlinear program. We proved the local superlinear convergence of a
sequence of iterates for a relaxed nonlinear program, where we assume that the relaxation
parameter t > 0 is small enough. Open questions in this context concern for example the
effect of globalization strategies, similar to the analysis in [Ani05a], and the case that the
parameter t > 0 is not yet small enough, similar to the convergence results of Section 2.3
(specified for an SQP algorithm).

We then considered a modified two-sided relaxation scheme that combines our new re-
laxation scheme with the two-sided relaxation scheme of DeMiguel et al. [DFNS05] and we
proved a local convergence result for an appropriate interior point algorithm similar to that
stated in [DFNS05]. A subsequent task that deals with this modified two-sided relaxation
scheme concerns a global convergence analysis of an appropriately adapted interior-point
algorithm.

The last chapter of this thesis is devoted to the numerical experience we obtained for the
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Summary

new relaxation scheme. If we consider small iteration numbers as performance measure,
then we have to admit that the exact bilinear approach of [FLRS06] outperformed the new
relaxation method. However, it clearly came out, that the new relaxation scheme performs
considerably better than the regularization scheme by Scholtes [Sch01]. Moreover, the
new relaxation method seems to constitute a good compromise between small iteration
numbers on the one hand and robustness on the other hand. Furthermore, since most
of the MPECs of the test suite MacMPEC, thus of our test problem set, have strongly
stationary solutions, one main advantage of the new relaxation method does not appear
substantially in the numerical results we presented. It is therefore of interest, whether the
relative numerical performance can be improved effectively, if we test the relaxation method
on a test problem set that contains (more) MPECs that do not have strongly stationary
solutions.

Finally, we would like to mention, that the theoretical properties and the convergence
results of Chapter 2 might easily be further extended by applying the new relaxation
scheme to so-called Equilibrium Problems with Equilibrium Constraints, or EPECs. These
problems form an extension of MPECs and so far little is known about this challenging
new field of nonlinear programming. Hence, some efficient solution methods for EPECs are
still required.
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[Sch04] W. Schlee. Einführung in die Spieltheorie. Vieweg, 2004.

[Spe98] P. Spellucci. An SQP method for general nonlinear programs using only equality
constrained subproblems. Mathematical Programming, 82(3):413–448, 1998.

[SS99] S. Scholtes and M. Stöhr. Exact penalization of mathematical programs
with equilibrium constraints. SIAM Journal on Control and Optimization,
37(2):617–652, 1999.

[SS00] H. Scheel and S. Scholtes. Mathematical programs with complementarity con-
straints: stationarity, optimality, and sensitivity. Mathematical Operations Re-
search, 25(1):1–22, 2000.

[TLQ01] F. Tin-Loi and N.S. Que. Parameter Idenification of Quasi-brittle Materials as
Mathematical Program with Equilibrium Constraints. Computer Methods in
Applied Mechanics and Engineering, 190:5819–5836, 2001.

[Ven02] P. Venkataraman. Applied optimization with MATLAB programming. John
Wiley, 2002.

[Ye99] J.J. Ye. Optimality conditions for optimization problems with complementarity
constraints. SIAM Journal on Optimization, 9(2):374–387, 1999.

[Ye05] J.J. Ye. Necessary and sufficient optimality conditions for mathematical pro-
grams with equilibrium constraints. Journal of Mathematical Analysis and Ap-
plications, 307(1):350–369, 2005.

[YY96] H. Yamashita and H. Yabe. Superlinear and quadratic convergence of some
primal-dual interior point methods for constrained optimization. Mathematical
Programming, 75:377–397, 1996.

[ZLW04] J.Z. Zhang, G.S. Liu, and S.Y. Wang. A globally convergent approximately
active search algorithm for solving mathematical programs with linear comple-
mentarity constraints. Numerische Mathematik, 98:539–558, 2004.

[ZLZ07] Z. Zhu, Z. Luo, and J. Zeng. A new smoothing technique for mathematical
programs with equilibrium constraints. Applied Mathematics and Mechanics
(English Edition), 28(10):1407–1414, 2007.

130



A Numerical Results

A.1 Simple Outer Algorithm

Table A.1 : Results for the Simple Algorithm (Algorithm 4.1) - Iterationcounts

problem data1 data2 data3 data4 data5 data6 data7 θp(z)

bard1 9 22( 1) 22( 1) 22( 1) 5( 2) 5( 2) 5( 2) 5(2)
bard2 2 2( 1) 2( 1) 2( 1) 3( 1) 3( 1) 3( 1) 3(1)
bard3 4 23( 1) 23( 1) 23( 1) -1 -1 -1 -1
bar-truss 9 -2 -2 -2 63( 1) 63( 1) 63( 1) -1
bilevel1 4 4( 1) 4( 1) 4( 1) 22( 1) 22( 1) 22( 1) 24(2)
bilevel2 5 23( 1) 23( 1) 23( 1) 20( 2) 20( 2) 20( 2) 30(2)
bilevel3 6 26( 2) 26( 2) 26( 2) 33( 3) 32( 2) 32( 2) 103(3)
bilin 1 9( 2) 9( 2) 9( 2) 9( 3) 22(3) 21( 2) 9(3)
dempe 2 22( 1) 22( 1) 22( 1) 18( 1) 18( 1) 18( 1) 18(1)
design-cent-1 5 6( 1) 6( 1) 6( 1) 5( 1) 5( 1) 5( 1) 5(1)
design-cent-4 -2 6( 1) 6( 1) 6( 1) -1 -1 -1 -1
desilva 5 5( 1) 5( 1) 5( 1) 5( 1) 5( 1) 5( 1) 5(1)
df1 2 25( 1) 25( 1) 25( 1) 2( 1) 2( 1) 2( 1) 2(1)
ex9.1.1 1 21( 2) 21( 2) 21( 2) 24( 1) 24( 1) 24( 1) 30(1)
ex9.1.2 1 3( 1) 3( 1) 3( 1) 27( 3) 2( 2) 2( 2) 35(3)
ex9.1.3 1 18( 2) 18( 2) 18( 2) 17( 3) 21( 2) 21( 2) 17(3)
ex9.1.4 -1 -1 -1 -1 -1 -1 -1 -1
ex9.1.5 1 23( 2) 23( 2) 23( 2) 26( 3) 7( 2) 2( 2) 36(3)
ex9.1.6 -1 -1 -1 -1 49( 2) 49( 2) 49( 2) -1
ex9.1.7 1 18( 2) 18( 2) 18( 2) 19( 3) 21( 2) 21( 2) 17(3)
ex9.1.8 1 19( 1) 19( 1) 19( 1) 15( 2) 4( 2) 4( 2) 29(2)
ex9.1.9 -1 37( 2) 37( 2) 37( 2) -1 -1 -1 -1
ex9.1.10 1 19( 1) 19( 1) 19( 1) 15( 2) 4( 2) 4( 2) 29(2)
ex9.2.1 9 20( 1) 20( 1) 20( 1) 5( 2) 5( 2) 5( 2) 5(2)
ex9.2.2 1 -2 -2 -2 44( 9) -2 -2 46(10)
ex9.2.3 2 3( 1) 3( 1) 3( 1) 5( 1) 5( 1) 5( 1) 4(1)
ex9.2.4 2 22( 2) 22( 2) 22( 2) 4( 2) 2( 2) 2( 2) 4(1)
ex9.2.5 1 1( 1) 1( 1) 1( 1) 5( 2) 5( 2) 5( 2) 5(2)
ex9.2.6 1 12( 1) 12( 1) 12( 1) 22( 2) 4( 2) 4( 2) 33(2)
ex9.2.7 9 20( 1) 20( 1) 20( 1) 5( 2) 5( 2) 5( 2) 5(2)
ex9.2.8 1 19( 1) 19( 1) 19( 1) 22( 2) 4( 2) 4( 2) 33(2)
ex9.2.9 1 1( 1) 1( 1) 1( 1) 6( 2) 6( 2) 6( 2) 6(2)
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problem (1) (2) (3) (4) (5) (6) (7) θp(z)

flp2 1 1( 1) 1( 1) 1( 1) 3( 3) 2( 2) 2( 2) 3(3)
flp4-1 2 283( 1) 283( 1) 283( 1) 3( 1) 3( 1) 3( 1) 3(1)
flp4-2 2 -2 -2 -2 3( 1) 3( 1) 3( 1) 3(1)
flp4-3 2 -2 -2 -2 3( 1) 3( 1) 3( 1) 3(1)
flp4-4 2 -2 -2 -2 3( 1) 3( 1) 3( 1) 3(1)
gauvin 1 17( 1) 17( 1) 17( 1) 5( 2) 5( 2) 5( 2) 5(2)
gnash10 6 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6(1)
gnash11 7 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7(1)
gnash12 7 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7(1)
gnash13 8 8( 1) 8( 1) 8( 1) 23( 1) 23( 1) 23( 1) 33(1)
gnash14 8 8( 1) 8( 1) 8( 1) 26( 1) 26( 1) 26( 1) 39(2)
gnash15 9 -1 -1 -1 17( 3) 14( 2) 14( 2) 17(3)
gnash16 8 -1 -1 -1 15( 2) 13( 2) 13( 2) 15(2)
gnash17 12 -1 -1 -1 13( 2) 13( 2) 13( 2) 13(2)
gnash18 58 -1 -1 -1 22( 4) 17( 3) -2 22(4)
gnash19 8 -1 -1 -1 25( 3) 22( 2) 22( 2) 29(1)
hs044-i 2 59( 2) 40( 2) 40( 2) 25( 2) 60( 2) 56( 2) 38(2)
incid-set1-8 58 8( 1) 8( 1) 8( 1) 8( 1) 8( 1) 8( 1) 8(1)
incid-set1-16 120 13( 1) 13( 1) 13( 1) 13( 1) 13( 1) 13( 1) 13(1)
incid-set1c-8 47 5( 1) 5( 1) 5( 1) 5( 1) 5( 1) 5( 1) 5(1)
incid-set1c-16 78 22( 1) 22( 1) 22( 1) 22( 1) 22( 1) 22( 1) 22(1)
incid-set2-8 19 29( 1) 29( 1) 29( 1) 29( 1) 29( 1) 29( 1) 31(1)
incid-set2-16 25 28( 1) 28( 1) 28( 1) 28( 1) 28( 1) 28( 1) 28(1)
incid-set2c-8 37 29( 1) 29( 1) 29( 1) 24( 1) 24( 1) 24( 1) 25(1)
incid-set2c-16 29 24( 1) 24( 1) 24( 1) 24( 1) 24( 1) 24( 1) 24(1)
jr1 1 3( 1) 3( 1) 3( 1) 1( 1) 1( 1) 1( 1) 1(1)
jr2 -2 5( 2) 5( 2) 5( 2) 6( 3) 22( 2) 22( 2) 6(3)
kth1 1 2( 1) 2( 1) 2( 1) 1( 1) 1( 1) 1( 1) 1(1)
kth2 2 22( 1) 22( 1) 22( 1) 1( 1) 1( 1) 1( 1) 1(1)
kth3 -2 21( 1) 21( 1) 21( 1) 22( 2) 22( 2) 22( 2) 51(2)
liswet1-050 1 6( 1) 6( 1) 6( 1) 1( 1) 1( 1) 1( 1) 1(1)
liswet1-200 1 19( 1) 19( 1) 19( 1) 5( 1) 5( 1) 5( 1) 5(1)
liswet1-200 1 18( 1) 18( 1) 18( 1) 4( 1) 4( 1) 4( 1) 4(1)
nash1 1 1( 1) 1( 1) 1( 1) 5( 2) 21( 2) 21( 2) 6(2)
outrata31 8 54( 3) 54( 3) 53( 3) 18( 2) 16( 2) 16( 2) 17(2)
outrata32 9 71( 3) -2 -2 17( 2) -1 -1 18(2)
outrata33 7 49( 2) 49( 2) -2 15( 2) -2 -2 15(2)
outrata34 7 -2 -2 -2 22( 3) -2 32( 2) 23(3)
pack-comp1-8 68 5( 4) 4( 3) 3( 2) 8( 3) 7( 2) 42( 5) 8(3)
pack-comp1-16 -3 9( 1) 9( 1) 9( 1) 8( 1) 8( 1) 8( 1) 8(1)
pack-comp1c-8 92 5( 4) 4( 3) 3( 2) 8( 3) 7( 2) 42( 5) 8(3)
pack-comp1c-16 378 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6(1)
pack-comp1p-8 -3 33( 3) 32( 2) 86( 5) 48( 4) -1 112( 3) 47(4)
pack-comp1p-16 -3 -2 -2 -2 -2 -2 -2 -2
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problem (1) (2) (3) (4) (5) (6) (7) θp(z)

pack-comp2-8 24 9( 1) 9( 1) 9( 1) 9( 1) 9( 1) 9( 1) 9(1)
pack-comp2-16 34 -2 16( 1) -2 -2 -2 16( 1) -2
pack-comp2c-8 7 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6(1)
pack-comp2c-16 7 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7(1)
pack-comp2p-8 -2 -2 -2 -2 -2 -2 -2 -2
pack-comp2p-16 -2 -2 -2 -2 -2 -2 -2 -2
pack-rig1-4 8 8( 1) 8( 1) 8( 1) 8( 1) 8( 1) 8( 1) 8(1)
pack-rig1-8 13 11( 1) 11( 1) 11( 1) 11( 1) 11( 1) 11( 1) 11(1)
pack-rig1-16 -2 -2 -1 -1 -1 -1 375( 3) -1
pack-rig1c-4 6 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6(1)
pack-rig1c-8 11 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6(1)
pack-rig1c-16 20 64( 4) 56( 3) 59( 4) 107( 5) 64( 5) 56( 3) 139(5)
pack-rig1p-4 4 2( 1) 2( 1) 2( 1) 2( 1) 2( 1) 2( 1) 2(1)
pack-rig1p-8 38 10( 1) 10( 1) 10( 1) 10( 1) 10( 1) 10( 1) 10(1)
pack-rig1p-16 -2 -2 -2 -2 -2 -1 -2 -1
pack-rig2-4 7 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7( 1) 7(1)
pack-rig2-8 11 -1 44( 3) 294( 3) -1 22( 3) 44( 3) -1
pack-rig2-16 -3 -1 -1 -1 -1 -1 -1 -1
pack-rig2c-4 4 4( 1) 4( 1) 4( 1) 4( 1) 4( 1) 4( 1) 4(1)
pack-rig2c-8 32 83( 5) 46( 3) 49( 3) 87( 6) 14( 3) 48( 3) 102(6)
pack-rig2c-16 -3 -1 -1 -1 -1 -1 -1 -1
pack-rig2p-4 27 96( 4) 25( 3) 25( 3) 33( 5) 58( 3) -1 46(5)
pack-rig2p-8 -2 -2 66( 3) -2 -2 32( 3) 63( 3) -1
pack-rig2p-16 -2 -2 -2 497( 3) 872( 6) -1 -2 -1
pack-rig3-4 6 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6( 1) 6(1)
pack-rig3-8 17 164( 4) 45( 3) -2 202( 5) -2 -2 143(5)
pack-rig3-16 -2 -1 -1 -1 -1 -1 411( 3) -1
pack-rig3c-4 4 4( 1) 4( 1) 4( 1) 4( 1) 4( 1) 4( 1) 4(1)
pack-rig3c-8 7 62( 4) 25( 3) 49( 3) 63( 5) 9( 3) 25( 3) 61(5)
pack-rig3c-16 53 -2 -1 -1 -2 -1 175( 3) -2
portfl1 2 17( 4) 4( 3) 3( 2) 18( 5) 16( 3) 4( 3) 18(5)
portfl2 2 6( 4) 5( 3) 4( 2) 6( 5) 4( 3) 4( 3) 6(5)
portfl3 2 7( 4) 21( 3) 3( 2) 8( 5) 4( 3) 21( 3) 8(5)
portfl4 2 -2 10( 3) -2 -2 -2 10( 3) -2
portfl6 2 6( 4) 10( 3) 2( 2) 7( 5) 3( 3) 10( 3) 7(5)
qpec-100-1 -2 210( 4) 52( 2) -2 254( 5) -2 -1 927(5)
qpec-100-2 68 -2 -2 200( 2) 342( 4) 436( 3) -1 372(5)
qpec-100-3 -2 172( 3) -2 -2 194( 4) 309( 3) -2 242(4)
qpec-100-4 -2 -2 136( 3) 90( 2) 208( 4) 227( 3) -2 648(4)
qpec-200-1 -2 274( 4) -2 -2 336( 5) -2 -2 625(5)
qpec-200-2 -3 - 3 -2 -2 -2 -2 -1 -3
qpec-200-3 -2 -2 -2 -2 488( 5) -2 -1 -2
qpec-200-4 135 126( 3) -2 -2 283( 5) -2 -1 -3
ralph1 -2 9( 9) 5( 5) 4( 4) 10( 10) 6( 6) 4( 4) 10(10)
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problem (1) (2) (3) (4) (5) (6) (7) θp(z)

ralph2 1 34( 9) 24( 5) 21( 3) 39( 10) 27( 5) 28( 4) 39(10)
ralphmod 25 -2 -1 -1 -1 -2 -2 -1
scholtes1 3 6( 1) 6( 1) 6( 1) 2( 1) 2( 1) 2( 1) 2(1)
scholtes2 2 3( 1) 3( 1) 3( 1) 2( 1) 2( 1) 2( 1) 2(1)
scholtes3 -2 20( 2) 20( 2) 20( 2) 21( 3) 43( 3) -2 33(3)
scholtes4 -2 2( 1) 2( 1) 2( 1) 11( 10) 7( 5) 5( 4) 11(10)
scholtes5 1 19( 1) 19( 1) 19( 1) 1( 1) 1( 1) 1( 1) 1(1)
sl1 1 1( 1) 1( 1) 1( 1) 1( 1) 1( 1) 1( 1) 1(1)
stackelberg1 4 4( 1) 4( 1) 4( 1) 4( 1) 4( 1) 4( 1) 4(1)
tap-09 12 -2 -2 -2 41( 1) 41( 1) 41( 1) 43(2)
tap-15 -1 52( 1) 52( 1) 52( 1) 56( 2) 56( 2) 56( 2) 153(2)
water-net 108 -2 -2 214( 2) 271( 1) 271( 1) 271( 1) 170(1)
water-FL -2 429( 4) 412( 3) -2 -2 513( 3) 406( 3) 488(5)
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A.2 Modified Outer Algorithm

The following part of the Appendix contains three tables concerning the numerical results
we refer to in Section 4.2 and 4.3: first, the results for the modified outer algorithm,
hence Algorithm 4.2, then our results concerning the relaxed bilinear reformulation (confer
Section 1.4), thus Algorithm 4.3 and finally the results for the exact bilinear reformulation
(confer Section 1.4), thus we apply Algorithm 4.3 only once to the reformulated problem
NLP (t) with t = 0.

Table A.2 : Results for the Modified Algorithm
Table A.3 : Results for the Relaxed Bilinear Reformulation
Table A.4 : Results for the Exact Bilinear Reformulation

For our numerical tests we made the following choices for the required parameters:

Table A.2 : t0 = 10.0, σ1 = 0.50, σ2 = 0.10 and σ3 = 5.00, εC = 1.00E − 08,
εSQP = 1.00E − 08, δmin = 1.00E − 12 δ = 0.10, maxit = 15

Table A.3 : t0 = 10.0, σ = 0.10, εC = 1.00E − 08, εSQP = 1.00E − 08,
δmin = 1.00E − 18, maxit = 20

Table A.4 : t0 = 0.00, εC = 1.00E − 08, εSQP = 1.00E − 08

Finally, to shorten the notations, we use the following abbreviations:

n : total number of variables
m : total number of constraints (including complementarity constraints)
nc : total number of complementarity constraints

ifail : fail flag of filterSQP (see also [FL98]):
ifail=0 successful run
ifail=3 nonlinear constraints locally infeasible
ifail=4 h <= eps, but QP is infeasible
ifail=5 termination with rho < eps

it : total number (sum) of inner (SQP) iterations
k : total number of outer iterations (only for Tables A.2 and A.3)
fe : total number (sum) of objective function evaluations
ce : total number (sum) of constraint function evaluations
ge : total number (sum) of gradient evaluations
he : total number (sum) of hessian evaluations
uc : total number (sum) of inner parameter updates (step 4 in Algorithm 4.2)
xc : total number (sum) of projections of infeasible complementarity pairs

KKT : norm of the KKT-residual (see also [FL98])
feas : norm of the infeasibility residual (see also [FL98])

compl1(x
∗) : first complementarity measure : compl1(x

∗) := (
∑p

j=1 min(x∗1j , x
∗
2j)

2)1/2

compl2(x
∗) : second complementarity measure : compl2(x

∗) := (
∑p

j=1(x
∗
1j , x

∗
2j)

2)1/2

ξ∗max : largest multiplier of the complementarity condition, thus of the
conditions: x1jx2j ≤ 0, x1jx2j ≤ t or Φj(x1, x2, tj) ≤ 0

f(x∗) : final value of the objective function (compare with values reported in [Ley00])
(tmin, tmax) : final values of the smallest/largest relaxation parameter tkj
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Table A.2 : Results for the Modified Algorithm (Algorithm 4.2)

problem n m nc ifail it(k) fe ce ge he uc xc

bard1 8 7 3 0 5 ( 2) 7 10 10 8 3 0
bard2 16 13 4 0 3 ( 1) 4 8 8 7 3 0
bard3 8 7 2 0 22 ( 4) 23 27 27 26 2 1
bar-truss 35 35 6 0 73 ( 2) 6 82 77 77 12 0
bilevel1 16 15 6 0 15 ( 1) 5 19 19 19 15 0
bilevel2 32 29 12 0 18 ( 2) 22 34 26 26 70 0
bilevel3 12 11 4 0 22 ( 2) 23 39 39 38 39 0
bilin 14 13 6 0 9 ( 3) 9 18 18 16 12 0
dempe 4 3 1 0 18 ( 1) 20 20 19 19 0 0
design-cent-1 15 15 3 0 5 ( 1) 6 7 7 6 0 0
design-cent-4 46 57 12 3 1673 ( 15) 2375 3262 1634 1622 2275 17
desilva 7 5 1 0 5 ( 1) 6 6 6 6 0 0
df1 3 4 1 0 2 ( 1) 3 3 3 3 0 0
ex9.1.1 13 12 5 0 4 ( 1) 5 8 8 7 2 0
ex9.1.2 10 9 4 0 13 ( 2) 14 25 25 25 30 0
ex9.1.3 23 21 6 0 10 ( 2) 8 16 16 16 11 0
ex9.1.4 10 9 4 3 39 ( 15) 34 57 57 45 0 5
ex9.1.5 13 12 5 0 14 ( 2) 15 23 23 23 16 0
ex9.1.6 14 13 6 0 14 ( 2) 15 29 29 28 42 0
ex9.1.7 17 15 6 0 10 ( 2) 8 16 16 16 11 0
ex9.1.8 12 11 4 0 5 ( 2) 7 10 10 9 6 0
ex9.1.9 12 11 5 0 18 ( 4) 20 32 28 26 13 1
ex9.1.10 12 11 4 0 5 ( 2) 7 10 10 9 6 0
ex9.2.1 10 9 4 0 5 ( 2) 7 10 10 8 3 0
ex9.2.2 10 19 4 0 49 ( 14) 62 114 114 110 93 0
ex9.2.3 16 15 6 0 4 ( 1) 4 7 7 7 8 0
ex9.2.4 8 7 2 0 4 ( 2) 5 7 7 7 2 0
ex9.2.5 8 7 3 0 6 ( 2) 8 12 12 10 6 0
ex9.2.6 12 10 4 0 8 ( 2) 9 12 12 12 4 0
ex9.2.7 10 9 4 0 5 ( 2) 7 10 10 8 3 0
ex9.2.8 6 5 2 0 8 ( 2) 9 12 12 12 2 0
ex9.2.9 9 8 3 0 16 ( 2) 14 22 16 16 2 0
flp2 6 4 2 0 1 ( 1) 2 3 3 2 0 0
flp4-1 110 90 30 0 3 ( 1) 4 5 5 4 0 0
flp4-2 170 170 60 0 3 ( 1) 4 5 5 4 0 0
flp4-3 210 240 70 0 3 ( 1) 4 5 5 4 0 0
flp4-4 300 350 100 0 3 ( 1) 4 5 5 4 0 0
gauvin 5 4 2 0 5 ( 2) 7 14 14 12 6 0
gnash10 17 16 8 0 6 ( 1) 5 10 10 10 24 0
gnash11 17 16 8 0 7 ( 1) 6 12 12 12 32 0
gnash12 17 16 8 0 7 ( 1) 6 12 12 12 32 0
gnash13 17 16 8 0 11 ( 1) 10 20 20 20 61 0
gnash14 17 16 8 0 12 ( 1) 10 21 21 21 55 0
gnash15 17 16 8 0 17 ( 3) 14 30 30 29 53 0
gnash16 17 16 8 0 15 ( 2) 10 23 23 23 36 0
gnash17 17 16 8 0 14 ( 2) 11 23 23 23 44 0
gnash18 17 16 8 0 22 ( 4) 23 47 47 44 116 0
gnash19 17 16 8 0 14 ( 3) 15 29 29 28 69 0
hs044-i 46 40 10 0 21 ( 2) 21 37 37 36 101 0
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KKT feas compl1(x
∗) compl2(x

∗) ξ∗max f(x∗) (tmin, tmax)

0.0000 0.4441E-15 0.0000 0.0000 1.3333 17.000 ( 0.500 , 0.500 )
0.22469E-13 0.1776E-14 0.0000 0.0000 0.0000 -6598.0 ( 1.25 , 10.0 )
0.22204E-15 0.000 0.0000 0.0000 0.22656 -12.679 ( 0.250 , 0.250 )
0.22650E-12 0.7532E-12 0.0000 0.0000 417.86 10167. ( 6.25 , 50.0 )

0.0000 0.4619E-13 0.0000 0.0000 0.50000 -10.000 ( 1.25 , 2.50 )
0.54113E-13 0.7216E-14 0.0000 0.0000 0.0000 -6600.0 ( 0.977E-03 , 1.00 )
0.22204E-15 0.8882E-15 0.0000 0.0000 0.66016 -12.679 ( 0.610E-04 , 0.625E-01 )

0.0000 0.1332E-14 0.0000 0.0000 38.000 -14.600 ( 0.625E-02 , 0.500E-01 )
0.49145E-08 0.2457E-08 0.0000 0.0000 0.0000 31.250 ( 10.0 , 10.0 )
0.95416E-14 0.8604E-15 0.0000 0.0000 0.0000 -1.8606 ( 10.0 , 10.0 )

0.0000 6.500 1.7500 35.889 1.0000 -3341.0 ( 0.100E-11 , 3.91 )
0.44787E-13 0.4441E-15 0.0000 0.0000 0.0000 -1.0000 ( 10.0 , 10.0 )

0.0000 0.000 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.1776E-14 0.0000 0.0000 0.0000 -13.000 ( 2.50 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.0000 -6.2500 ( 0.977E-03 , 0.250 )
0.0000 0.1221E-14 0.0000 0.0000 7.7500 -23.000 ( 0.625E-01 , 1.00 )
0.0000 0.6667 0.33333 10.667 1.0000 -63.000 ( 3.91 , 3.91 )
0.0000 0.3331E-15 0.0000 0.0000 0.0000 -1.0000 ( 0.781E-02 , 1.00 )

0.20015E-15 0.7550E-14 0.0000 0.0000 0.10000 -49.000 ( 0.244E-03 , 0.500 )
0.0000 0.1221E-14 0.0000 0.0000 6.5000 -23.000 ( 0.625E-01 , 1.00 )
0.0000 0.4441E-15 0.0000 0.0000 0.25000 -3.2500 ( 0.250 , 1.00 )

0.55511E-16 0.1332E-14 0.0000 0.0000 0.22222 3.1111 ( 0.391E-02 , 0.500 )
0.0000 0.4441E-15 0.0000 0.0000 0.25000 -3.2500 ( 0.250 , 1.00 )
0.0000 0.1332E-14 0.0000 0.0000 1.3333 17.000 ( 0.500 , 1.00 )

0.39721E-14 0.000 0.0000 0.0000 9.9474 100.00 ( 0.100E-11 , 0.100E-11 )
0.0000 0.1066E-13 0.0000 0.0000 0.62500 5.0000 ( 2.50 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.50000 0.50000 ( 0.500 , 0.500 )
0.0000 0.2220E-15 0.0000 0.0000 3.0000 9.0000 ( 0.250 , 0.250 )
0.0000 0.000 0.0000 0.0000 0.25000 -1.0000 ( 0.250 , 1.00 )
0.0000 0.1332E-14 0.0000 0.0000 1.3333 17.000 ( 0.500 , 1.00 )
0.0000 0.000 0.0000 0.0000 0.25000 1.5000 ( 0.250 , 1.00 )
0.0000 0.8882E-15 0.0000 0.0000 0.0000 2.0000 ( 0.500 , 1.00 )
0.0000 0.3553E-14 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.1090E-11 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.2726E-11 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.5246E-11 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.1327E-10 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )

0.17764E-14 0.000 0.0000 0.0000 0.50000 20.000 ( 0.312E-01 , 0.500 )
0.59403E-11 0.7816E-12 0.0000 0.0000 4.8683 -230.82 ( 1.25 , 1.25 )
0.10631E-14 0.3553E-14 0.0000 0.0000 3.5475 -129.91 ( 0.625 , 0.625 )
0.25197E-08 0.5529E-09 0.0000 0.0000 1.7999 -36.933 ( 0.625 , 0.625 )
0.45754E-14 0.3109E-13 0.0000 0.0000 0.74948 -7.0618 ( 0.391E-01 , 0.312 )
0.39307E-11 0.1288E-12 0.0000 0.0000 0.10735 -0.17905 ( 0.391E-01 , 10.0 )
0.20192E-12 0.7994E-14 0.0000 0.0000 5.7633 -354.70 ( 0.195E-03 , 0.250E-01 )
0.21175E-10 0.7603E-12 0.0000 0.0000 4.7030 -241.44 ( 0.156E-01 , 0.125 )
0.25106E-12 0.6306E-13 0.0000 0.0000 2.8920 -90.749 ( 0.781E-02 , 0.625E-01 )
0.22123E-11 0.1190E-12 0.0000 0.0000 1.4679 -25.698 ( 0.381E-07 , 0.250E-02 )
0.26295E-10 0.2495E-11 0.0000 0.0000 0.70029 -6.1167 ( 0.488E-04 , 0.250E-01 )
0.20351E-14 0.1444E-13 0.0000 0.0000 17.542 17.090 ( 0.122E-03 , 1.00 )
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problem n m nc ifail it(k) fe ce ge he uc xc

incid-set1-8 247 249 49 0 8 ( 1) 9 10 10 9 0 0
incid-set1-16 999 1005 225 0 26 ( 1) 40 41 17 16 0 0
incid-set1-32 4039 4053 961 0 6005 ( 7) 9476 9483 3473 3466 0 0
incid-set1c-8 247 256 49 0 5 ( 1) 6 7 7 6 0 0
incid-set1c-16 999 1020 225 0 22 ( 1) 32 33 17 16 0 0
incid-set1c-32 4039 4084 961 0 40 ( 1) 57 58 27 26 0 0
incid-set2-8 247 249 49 0 29 ( 1) 46 46 19 19 0 0
incid-set2-16 999 1005 225 0 31 ( 1) 48 48 19 19 0 0
incid-set2-32 4039 4053 961 0 58 ( 1) 79 79 38 39 0 0
incid-set2c-8 247 256 49 0 24 ( 1) 37 37 15 15 0 0
incid-set2c-16 999 1020 225 0 22 ( 1) 30 30 16 16 0 0
incid-set2c-32 4039 4084 961 0 45 ( 1) 68 68 27 27 0 0
jr1 3 2 1 0 1 ( 1) 2 2 2 2 0 0
jr2 3 2 1 0 6 ( 3) 9 11 11 10 1 0
kth1 2 2 1 0 1 ( 1) 2 2 2 2 0 0
kth2 2 2 1 0 1 ( 1) 2 2 2 2 0 0
kth3 2 2 1 0 8 ( 2) 10 12 12 12 2 0
liswet1-050 202 153 50 0 1 ( 1) 2 3 3 2 0 0
liswet1-100 402 303 100 0 2 ( 1) 3 6 6 5 146 0
liswet1-200 802 603 200 0 3 ( 1) 4 8 8 7 527 0
nash1 7 5 1 0 5 ( 2) 7 9 9 7 0 0
outrata31 17 16 4 0 18 ( 2) 19 27 25 25 12 0
outrata32 17 16 4 0 17 ( 2) 17 24 24 25 12 0
outrata33 17 16 4 0 15 ( 2) 14 22 22 22 10 0
outrata34 17 16 4 0 19 ( 2) 18 29 29 30 22 0
pack-comp1-8 237 251 49 0 8 ( 3) 10 10 10 11 0 0
pack-comp1-16 981 1025 225 0 8 ( 1) 9 9 9 9 0 0
pack-comp1-32 4005 4157 961 5 293 ( 15) 216 319 263 287 9067 0
pack-comp1c-8 237 258 49 0 8 ( 3) 10 10 10 11 0 0
pack-comp1c-16 981 1040 225 0 6 ( 1) 7 7 7 7 0 0
pack-comp1c-32 4005 4188 961 0 5 ( 1) 6 6 6 6 0 0
pack-comp1p-8 237 236 49 0 48 ( 4) 86 88 40 39 10 0
pack-comp1p-16 981 980 225 0 60 ( 15) 100 113 73 72 2488 0
pack-comp1p-32 4005 4004 961 0 597 ( 15) 748 1183 664 707 25949 3
pack-comp2-8 237 251 49 0 9 ( 1) 12 12 9 9 0 0
pack-comp2-16 981 1025 225 0 40 ( 7) 29 33 33 33 730 0
pack-comp2-32 4005 4157 961 4 87 ( 15) 48 57 47 57 0 0
pack-comp2c-8 237 258 49 0 6 ( 1) 7 7 7 7 0 0
pack-comp2c-16 981 1040 225 0 7 ( 1) 8 8 8 8 0 0
pack-comp2c-32 4005 4188 961 4 39 ( 15) 28 47 40 31 0 0
pack-comp2p-8 237 236 49 0 88 ( 15) 142 156 93 95 531 0
pack-comp2p-16 981 980 225 0 130 ( 15) 181 214 120 127 2514 0
pack-comp2p-32 4005 4004 961 5 344 ( 15) 315 594 276 336 73 0
pack-rig1-4 57 62 9 0 8 ( 1) 9 10 10 9 0 0
pack-rig1-8 237 251 49 0 11 ( 1) 13 14 12 11 0 0
pack-rig1-16 981 1025 225 0 246 ( 6) 134 368 248 270 4553 0
pack-rig1-32 4005 4157 961 4 78 ( 15) 78 98 58 50 0 0
pack-rig1c-4 57 65 9 0 6 ( 1) 7 8 8 7 0 0
pack-rig1c-8 237 258 49 0 6 ( 1) 7 8 8 7 0 0
pack-rig1c-16 981 1040 225 0 39 ( 5) 44 64 62 58 2018 0
pack-rig1c-32 4005 4188 961 4 57 ( 15) 30 50 45 35 0 0
pack-rig1p-4 57 56 9 0 2 ( 1) 3 4 4 3 0 0
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KKT feas compl1(x
∗) compl2(x

∗) ξ∗max f(x∗) (tmin, tmax)

0.0000 0.8762E-12 0.0000 0.0000 0.0000 0.38164E-16 ( 10.0 , 10.0 )
0.14209E-12 0.2070E-08 0.0000 0.0000 0.0000 0.12403E-15 ( 10.0 , 10.0 )
0.71235E-08 0.3511E-13 0.0000 0.0000 0.0000 0.22908E-06 ( 0.156E+06 , 0.156E+06 )

0.0000 0.1712E-08 0.0000 0.0000 0.0000 0.38164E-16 ( 10.0 , 10.0 )
0.0000 0.2318E-13 0.0000 0.0000 0.0000 0.12013E-15 ( 10.0 , 10.0 )

0.25099E-09 0.6894E-09 0.0000 0.0000 0.0000 0.98370E-05 ( 10.0 , 10.0 )
0.44476E-09 0.6490E-11 0.0000 0.0000 0.0000 0.45179E-02 ( 10.0 , 10.0 )
0.25939E-09 0.1131E-08 0.0000 0.0000 0.0000 0.29978E-02 ( 10.0 , 10.0 )
0.47172E-08 0.7085E-12 0.0000 0.0000 0.0000 0.17695E-02 ( 10.0 , 10.0 )
0.27921E-08 0.6982E-10 0.0000 0.0000 0.0000 0.54713E-02 ( 10.0 , 10.0 )
0.30468E-11 0.1465E-10 0.0000 0.0000 0.0000 0.35996E-02 ( 10.0 , 10.0 )
0.30020E-08 0.2064E-09 0.0000 0.0000 0.0000 0.24357E-02 ( 10.0 , 10.0 )

0.0000 0.000 0.0000 0.0000 0.0000 0.50000 ( 10.0 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.50000 0.50000 ( 0.500E-01 , 0.500E-01 )
0.0000 0.000 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.0000 0.0000 ( 10.0 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.50000 0.50000 ( 0.250 , 0.250 )

0.72768E-14 0.5537E-13 0.0000 0.0000 0.0000 0.13994E-01 ( 10.0 , 10.0 )
0.95093E-14 0.3409E-12 0.0000 0.0000 0.0000 0.13734E-01 ( 2.50 , 10.0 )
0.18169E-12 0.2359E-11 0.0000 0.0000 0.0000 0.17009E-01 ( 1.25 , 10.0 )

0.0000 0.3553E-14 0.0000 0.0000 0.0000 0.0000 ( 1.00 , 1.00 )
0.43351E-08 0.5893E-08 0.0000 0.0000 0.12190 3.2077 ( 0.156E-01 , 1.00 )
0.25676E-13 0.1146E-12 0.0000 0.0000 0.11744 3.4494 ( 0.156E-01 , 1.00 )
0.26040E-10 0.1767E-10 0.0000 0.0000 0.43120 4.6043 ( 0.312E-01 , 1.00 )
0.45776E-15 0.2665E-14 0.0000 0.0000 0.92654 6.5927 ( 0.195E-02 , 1.00 )

0.0000 0.6983E-15 0.0000 0.0000 0.0000 0.60000 ( 0.100 , 0.100 )
0.35402E-08 0.9800E-14 0.0000 0.0000 0.0000 0.61695 ( 10.0 , 10.0 )
0.21220-313 0.6981E-09 0.0000 0.0000 0.0000 0.65298 ( 0.977E-07 , 195.313 )

0.0000 0.6137E-15 0.0000 0.0000 0.0000 0.60000 ( 0.100 , 0.100 )
0.58199E-13 0.5823E-14 0.0000 0.0000 0.0000 0.62304 ( 10.0 , 10.0 )
0.87098E-08 0.5540E-09 0.0000 0.0000 0.0000 0.66144 ( 10.0 , 10.0 )
0.74630E-09 0.6327E-15 0.0000 0.0000 0.0000 0.60000 ( 0.500E-02 , 0.100E-01 )
0.37216E-06 0.2073E-14 0.0000 0.0000 0.0000 0.61695 ( 0.100E-11 , 0.100E-11 )
0.23859E-06 0.6162E-14 0.0000 0.0000 0.0000 0.65298 ( 0.100E-11 , 0.250E-09 )
0.22501E-08 0.2190E-09 0.0000 0.0000 0.0000 0.67312 ( 10.0 , 10.0 )
0.94769E-08 0.3422E-14 0.0000 0.0000 0.0000 0.72714 ( 0.625E-06 , 0.100E-04 )
0.69532-309 0.000 2.6647 6.9181 0.0000 0.71341 ( 0.122E+10 , 0.122E+10 )
0.16093E-09 0.1630E-10 0.0000 0.0000 0.0000 0.67346 ( 10.0 , 10.0 )
0.72487E-08 0.7865E-14 0.0000 0.0000 0.0000 0.72747 ( 10.0 , 10.0 )
0.44466-322 0.000 0.0000 0.0000 0.0000 0.78294 ( 0.122E+10 , 0.122E+10 )
0.47749E-06 0.8936E-15 0.0000 0.0000 0.0000 0.67312 ( 0.100E-11 , 0.100E-11 )
0.21587E-06 0.2534E-14 0.0000 0.0000 0.0000 0.72714 ( 0.100E-11 , 0.100E-11 )
0.21220-313 0.000 0.0000 0.0000 0.0000 0.78260 ( 0.488E-06 , 0.488E+06 )
0.58477E-10 0.8676E-12 0.0000 0.0000 0.0000 0.71889 ( 10.0 , 10.0 )
0.63142E-08 0.3154E-14 0.0000 0.0000 0.0000 0.78793 ( 10.0 , 10.0 )
0.24611E-08 0.9680E-15 0.0000 0.0000 0.0000 0.82601 ( 0.100E-11 , 0.100E-03 )
0.69532-309 0.000 0.13456E-02 0.31290E-05 0.0000 0.85089 ( 0.122E+10 , 0.122E+10 )
0.12857E-12 0.2776E-15 0.0000 0.0000 0.0000 0.72101 ( 10.0 , 10.0 )
0.86160E-09 0.5196E-13 0.0000 0.0000 0.0000 0.78830 ( 10.0 , 10.0 )
0.25153E-08 0.2302E-14 0.0000 0.0000 0.0000 0.82650 ( 0.305E-07 , 0.100E-02 )
0.44466-322 0.000 0.0000 0.0000 0.0000 0.85164 ( 0.122E+10 , 0.122E+10 )

0.0000 0.8327E-16 0.0000 0.0000 0.0000 0.60000 ( 10.0 , 10.0 )
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problem n m nc ifail it(k) fe ce ge he uc xc

pack-rig1p-8 237 236 49 0 10 ( 1) 11 12 12 11 0 0
pack-rig1p-16 981 980 225 0 231 ( 15) 213 350 288 279 11081 0
pack-rig1p-32 4005 4004 961 0 628 ( 15) 427 960 562 607 52207 29
pack-rig2-4 57 62 9 0 7 ( 1) 8 8 8 8 0 0
pack-rig2-8 237 251 49 0 107 ( 6) 49 171 117 129 297 0
pack-rig2-16 981 1025 225 3 35 ( 15) 15 40 35 35 0 0
pack-rig2-32 4005 4157 961 4 46 ( 15) 15 31 21 27 0 0
pack-rig2c-4 57 65 9 0 4 ( 1) 5 5 5 5 0 0
pack-rig2c-8 237 258 49 0 43 ( 6) 39 63 58 53 205 0
pack-rig2c-16 981 1040 225 3 34 ( 15) 15 36 34 34 0 0
pack-rig2c-32 4005 4188 961 5 46 ( 15) 15 31 24 27 0 0
pack-rig2p-4 57 56 9 0 28 ( 5) 25 39 37 40 60 0
pack-rig2p-8 237 236 49 0 150 ( 6) 58 199 146 151 39 1
pack-rig2p-16 981 980 225 3 1610 ( 15) 219 3068 1238 1658 14507 1
pack-rig2p-32 4005 4004 961 5 53 ( 15) 39 44 38 39 0 0
pack-rig3-4 57 62 9 0 6 ( 1) 7 7 7 7 0 0
pack-rig3-8 237 251 49 0 117 ( 6) 35 194 110 134 51 1
pack-rig3-16 981 1025 225 0 913 ( 15) 167 1644 718 971 7381 2
pack-rig3-32 4005 4157 961 4 220 ( 15) 214 263 145 144 0 0
pack-rig3c-4 57 65 9 0 4 ( 1) 5 5 5 5 0 0
pack-rig3c-8 237 258 49 0 50 ( 6) 45 73 63 59 209 3
pack-rig3c-16 981 1040 225 0 75 ( 6) 70 120 106 106 3564 0
pack-rig3c-32 4005 4188 961 5 52 ( 15) 25 43 39 29 0 0
portfl1 111 49 12 0 18 ( 5) 23 43 43 38 57 0
portfl2 111 49 12 0 6 ( 5) 11 19 19 14 22 0
portfl3 111 49 12 0 8 ( 5) 15 25 23 18 37 0
portfl4 111 49 12 0 41 ( 10) 51 100 100 90 368 0
portfl6 111 49 12 0 7 ( 5) 12 22 22 17 37 0
qpec-100-1 205 202 100 0 58 ( 4) 66 116 106 104 2830 0
qpec-100-2 210 202 100 0 53 ( 3) 54 103 103 101 2067 0
qpec-100-3 210 204 100 0 64 ( 6) 67 128 126 122 3641 0
qpec-100-4 220 204 100 0 132 ( 4) 98 191 167 165 1858 0
qpec-200-1 410 404 200 0 160 ( 5) 129 227 199 198 5279 0
qpec-200-2 420 404 200 0 243 ( 11) 248 432 347 338 21895 0
qpec-200-3 420 408 200 0 214 ( 5) 171 310 285 284 10842 0
qpec-200-4 440 408 200 0 9 ( 2) 11 12 10 9 0 0
ralph1 3 5 1 0 10 ( 10) 20 20 20 20 0 0
ralph2 2 2 1 0 40 ( 10) 50 50 50 50 0 0
ralphmod 204 200 100 5 251 ( 15) 165 409 373 372 8569 6
scholtes1 4 3 1 0 2 ( 1) 3 3 3 3 0 0
scholtes2 4 3 1 0 2 ( 1) 3 3 3 3 0 0
scholtes3 2 2 1 0 44 ( 2) 46 48 30 30 2 0
scholtes4 3 5 1 0 11 ( 10) 21 21 21 21 0 0
scholtes5 7 6 2 0 1 ( 1) 2 3 3 2 0 0
sl1 11 8 3 0 1 ( 1) 2 3 3 2 0 0
stackelberg1 3 2 1 0 4 ( 1) 5 10 10 9 4 0
tap-09 162 142 36 0 19 ( 1) 16 34 34 34 234 0
tap-15 1560 2100 675 0 22 ( 1) 20 39 35 35 691 0
tollmpec 6051 6100 1824 0 1398 ( 15) 1237 2806 1579 1622 211172 465
tollmpec1 6051 6100 1824 3 923 ( 15) 159 1442 976 1022 36001 126
water-net 180 214 64 0 107 ( 1) 87 130 56 70 0 0
water-FL 1737 2424 784 0 663 ( 5) 477 804 410 519 962 0
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KKT feas compl1(x
∗) compl2(x

∗) ξ∗max f(x∗) (tmin, tmax)

0.71639E-08 0.2793E-15 0.0000 0.0000 0.0000 0.78793 ( 10.0 , 10.0 )
0.60913E-04 0.8270E-15 0.0000 0.0000 0.0000 0.82601 ( 0.100E-11 , 0.100E-11 )

0.30906 0.4148E-14 0.0000 0.0000 0.45969E-02 0.85089 ( 0.100E-11 , 0.125E-07 )
0.45874E-13 0.4276E-15 0.0000 0.0000 0.0000 0.69453 ( 10.0 , 10.0 )
0.96271E-08 0.1738E-14 0.0000 0.0000 0.0000 0.78040 ( 0.954E-08 , 0.500E-02 )
0.16036E-13 0.1408E-03 0.81137E-02 0.15367E-03 0.0000 0.99917 ( 0.610E+11 , 0.610E+11 )
0.69533-309 0.000 0.11503E-01 0.14561E-03 0.0000 0.99978 ( 0.610E+11 , 0.610E+11 )
0.32004E-09 0.1429E-11 0.0000 0.0000 0.0000 0.71153 ( 10.0 , 10.0 )
0.27492E-10 0.3067E-12 0.0000 0.0000 0.0000 0.79931 ( 0.156E-03 , 0.500E-02 )
0.13381E-13 0.1408E-03 0.81137E-02 0.15367E-03 0.0000 0.99917 ( 0.610E+11 , 0.610E+11 )
0.69532-309 0.4866E-03 0.11483E-01 0.15530E-03 0.0000 0.99978 ( 0.610E+11 , 0.610E+11 )

0.0000 0.3892E-16 0.0000 0.0000 0.0000 0.60000 ( 0.391E-05 , 0.100E-02 )
0.86553E-08 0.4265E-15 0.0000 0.0000 0.0000 0.78040 ( 0.250E-02 , 0.500E-02 )

2041.7 0.5643 0.39317E-01 0.28899E-02 0.20892E+06 13.240 ( 0.100E-11 , 0.977E+04 )
0.69533-309 0.000 0.95509E-02 0.11963E-03 0.0000 1.1359 ( 0.977E+04 , 0.977E+04 )
0.87962E-11 0.1510E-12 0.0000 0.0000 0.0000 0.66619 ( 10.0 , 10.0 )
0.58069E-13 0.2680E-15 0.0000 0.0000 0.0000 0.73520 ( 0.122E-05 , 0.500E-02 )
0.46030E-05 0.1835E-13 0.0000 0.0000 0.0000 0.80043 ( 0.100E-11 , 0.250E-09 )
0.69533-309 0.000 0.29268 0.83663E-01 0.0000 0.87516 ( 0.244E+08 , 0.244E+08 )
0.29579E-09 0.1402E-11 0.0000 0.0000 0.0000 0.68277 ( 10.0 , 10.0 )
0.42143E-08 0.5007E-10 0.0000 0.0000 0.0000 0.75347 ( 0.156E-03 , 0.500E-02 )
0.65407E-13 0.7314E-14 0.0000 0.0000 0.0000 0.81860 ( 0.149E-11 , 0.100E-03 )
0.69533-309 0.000 0.14090E-01 0.32381E-03 0.0000 0.90891 ( 0.122E+10 , 0.122E+10 )
0.55004E-16 0.3886E-15 0.0000 0.0000 0.73342E-02 0.15024E-04 ( 0.305E-07 , 0.500E-03 )
0.42065E-16 0.2290E-15 0.0000 0.0000 0.10817E-01 0.14573E-04 ( 0.125E-03 , 0.500E-03 )
0.24126E-16 0.2671E-15 0.0000 0.0000 0.41389E-02 0.62650E-05 ( 0.313E-04 , 0.500E-03 )
0.91730E-08 0.1292E-15 0.0000 0.0000 0.40921E-02 0.21773E-05 ( 0.100E-11 , 0.100E-11 )
0.22045E-16 0.1440E-15 0.0000 0.0000 0.48488E-02 0.23613E-05 ( 0.313E-04 , 0.500E-03 )
0.15395E-14 0.1046E-13 0.0000 0.0000 0.47791 0.99003E-01 ( 0.100E-11 , 0.100E-01 )
0.23780E-14 0.3131E-13 0.0000 0.0000 0.49641 -6.2605 ( 0.100E-11 , 0.100 )
0.39161E-10 0.4063E-11 0.0000 0.0000 0.78961 -5.4506 ( 0.100E-11 , 0.313E-05 )
0.56373E-14 0.2085E-13 0.0000 0.0000 1.6882 -4.0511 ( 0.100E-11 , 0.100E-01 )
0.84431E-14 0.2975E-11 0.0000 0.0000 4.0984 -1.9348 ( 0.100E-11 , 0.100E-02 )
0.17736E-10 0.7233E-11 0.0000 0.0000 1.7455 -23.833 ( 0.100E-11 , 0.100E-11 )
0.89033E-14 0.1118E-09 0.0000 0.0000 2.7084 -1.9478 ( 0.100E-11 , 0.100E-02 )
0.43448E-07 0.1062E-12 5.2276 7.7628 0.51040E-01 -17.906 ( 1.00 , 1.00 )
0.15701E-15 0.000 0.18169E-08 0.33011E-17 0.50000 -0.18169E-08 ( 0.100E-07 , 0.100E-07 )
0.76896E-08 0.000 0.0000 0.0000 0.29713E-08 0.25704E-17 ( 0.100E-07 , 0.100E-07 )

1.5742 0.000 0.61272E-03 0.61075E-04 0.0000 -114.55 ( 0.312E-08 , 195.313 )
0.0000 0.000 0.0000 0.0000 0.0000 2.0000 ( 10.0 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.0000 15.000 ( 10.0 , 10.0 )
0.0000 0.000 0.0000 0.0000 0.50000 0.50000 ( 0.250 , 0.250 )
0.0000 0.000 0.18169E-08 0.33011E-17 1.0000 -0.36338E-08 ( 0.100E-07 , 0.100E-07 )
0.0000 0.000 0.0000 0.0000 0.0000 1.0000 ( 10.0 , 10.0 )

0.43368E-18 0.2006E-14 0.0000 0.0000 0.0000 0.10000E-03 ( 10.0 , 10.0 )
0.17764E-14 0.000 0.0000 0.0000 0.0000 -3266.7 ( 0.625 , 0.625 )
0.19008E-08 0.3375E-12 0.0000 0.0000 0.0000 109.13 ( 0.610E-03 , 10.0 )
0.25939E-08 0.1063E-11 0.0000 0.0000 0.16725E-01 184.50 ( 0.610E-03 , 10.0 )

48.947 0.2530E-08 112.14 8154.2 20.474 -1187.3 ( 0.100E-11 , 195.313 )
1.7484 53.69 9.7673 120.84 47599. 789.78 ( 0.100E-11 , 3.91 )

0.12257E-08 0.7105E-14 0.0000 0.0000 0.0000 1023.4 ( 10.0 , 10.0 )
0.99045E-08 0.3009E-12 0.0000 0.0000 27.802 3410.2 ( 0.100E-11 , 0.100E-02 )
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Table A.3 : Results for the Relaxed Bilinear Reformulation

problem n m nc ifail it(k) fe ce ge he

bard1 8 7 3 0 29 ( 10) 39 48 48 39
bard2 16 13 4 0 2 ( 1) 3 4 4 3
bard3 8 7 2 0 57 ( 10) 137 142 62 60
bar-truss 35 35 6 0 30 ( 11) 35 49 49 41
bilevel1 16 15 6 0 23 ( 9) 32 41 41 32
bilevel2 32 29 12 0 24 ( 10) 34 44 44 34
bilevel3 12 11 4 0 88 ( 11) 173 184 96 88
bilin 14 13 6 0 34 ( 11) 45 56 56 45
dempe 4 3 1 0 18 ( 1) 20 20 19 19
design-cent-1 15 15 3 0 5 ( 1) 6 7 7 6
design-cent-4 46 57 12 0 7980 ( 20) 12197 12369 4374 4363
desilva 7 5 1 0 5 ( 1) 6 6 6 6
df1 3 4 1 0 2 ( 1) 3 3 3 3
ex9.1.1 13 12 5 0 9 ( 9) 18 27 27 18
ex9.1.2 10 9 4 0 11 ( 11) 22 23 23 22
ex9.1.3 23 21 6 0 31 ( 11) 42 52 52 42
ex9.1.4 10 9 4 0 30 ( 11) 40 51 51 41
ex9.1.5 13 12 5 0 6 ( 3) 9 10 10 9
ex9.1.6 14 13 6 0 32 ( 10) 41 51 51 42
ex9.1.7 17 15 6 0 32 ( 11) 43 53 53 43
ex9.1.8 12 11 4 0 11 ( 10) 21 22 22 21
ex9.1.9 12 11 5 0 23 ( 11) 34 42 42 34
ex9.1.10 12 11 4 0 11 ( 10) 21 22 22 21
ex9.2.1 10 9 4 0 30 ( 10) 40 50 50 40
ex9.2.2 10 19 4 0 91 ( 20) 110 129 127 109
ex9.2.3 16 15 6 0 21 ( 9) 30 37 37 30
ex9.2.4 8 7 2 0 27 ( 10) 37 46 46 37
ex9.2.5 8 7 3 0 39 ( 11) 50 60 60 50
ex9.2.6 12 10 4 0 24 ( 11) 35 44 44 35
ex9.2.7 10 9 4 0 30 ( 10) 40 50 50 40
ex9.2.8 6 5 2 0 12 ( 11) 23 24 24 23
ex9.2.9 9 8 3 0 10 ( 10) 20 29 29 20
flp2 6 4 2 0 1 ( 1) 2 3 3 2
flp4-1 110 90 30 0 1 ( 1) 2 3 3 2
flp4-2 170 170 60 0 1 ( 1) 2 3 3 2
flp4-3 210 240 70 0 1 ( 1) 2 3 3 2
flp4-4 300 350 100 0 1 ( 1) 2 3 3 2
gauvin 5 4 2 0 23 ( 10) 33 38 38 33
gnash10 17 16 8 0 20 ( 9) 27 31 31 29
gnash11 17 16 8 0 22 ( 9) 29 35 35 31
gnash12 17 16 8 0 20 ( 9) 27 32 32 29
gnash13 17 16 8 0 21 ( 9) 28 33 33 30
gnash14 17 16 8 0 25 ( 9) 31 42 42 34
gnash15 17 16 8 0 38 ( 11) 47 56 55 48
gnash16 17 16 8 0 34 ( 10) 41 50 49 43
gnash17 17 16 8 0 33 ( 10) 42 51 49 42
gnash18 17 16 8 0 48 ( 12) 58 70 69 59
gnash19 17 16 8 0 40 ( 11) 50 58 58 51
hs044-i 46 40 10 0 42 ( 11) 51 62 62 53
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KKT feas compl1(x
∗) compl2(x

∗) ξ∗max f(x∗) tk

0.60469E-18 0.2220E-15 0.33077E-08 0.14142E-07 0.76190 17.000 0.100E-07
0.14211E-13 0.2220E-14 0.0000 0.0000 0.0000 -6598.0 10.0
0.29733E-15 0.8882E-15 0.80000E-08 0.10000E-07 0.36250 -12.679 0.100E-07
0.44715E-08 0.1421E-12 0.24903E-11 0.17321E-08 1.4516 10167. 0.100E-08
0.12636E-15 0.2665E-13 0.60093E-08 0.14142E-06 0.15000 -10.000 0.100E-06

0.0000 0.1518E-13 0.62048E-08 0.20000E-07 0.0000 -6600.0 0.100E-07
0.59508E-16 0.9325E-15 0.14636E-08 0.17321E-08 1.0927 -12.679 0.100E-08
0.14656E-13 0.8882E-15 0.39520E-08 0.20000E-08 40.000 -14.600 0.100E-08
0.46521E-08 0.2326E-08 0.0000 0.0000 0.0000 31.250 10.0
0.95416E-14 0.8604E-15 0.0000 0.0000 0.0000 -1.8606 10.0
0.20174E-07 0.1646E-13 0.54264E-17 0.22361E-17 3.6427 -3.0792 0.100E-17
0.44787E-13 0.4441E-15 0.0000 0.0000 0.0000 -1.0000 10.0

0.0000 0.000 0.0000 0.0000 0.0000 0.0000 10.0
0.0000 0.1110E-15 0.71429E-08 0.10000E-06 0.0000 -13.000 0.100E-06
0.0000 0.2068E-24 0.10000E-08 0.10000E-08 0.0000 -6.2500 0.100E-08

0.25122E-14 0.1221E-14 0.30092E-08 0.17321E-08 3.2000 -29.200 0.100E-08
0.11102E-15 0.3664E-14 0.30009E-08 0.14142E-08 2.4375 -37.000 0.100E-08

0.0000 0.000 0.0000 0.0000 0.0000 -1.0000 0.100
0.28101E-08 0.1844E-13 0.35721E-08 0.20000E-07 0.66667E-01 -49.000 0.100E-07
0.17764E-14 0.1110E-14 0.30092E-08 0.17321E-08 2.6667 -26.000 0.100E-08

0.0000 0.4441E-15 0.25000E-08 0.10000E-07 0.12500 -3.2500 0.100E-07
0.55592E-16 0.4441E-15 0.10138E-08 0.14142E-08 0.44444 3.1111 0.100E-08

0.0000 0.4441E-15 0.25000E-08 0.10000E-07 0.12500 -3.2500 0.100E-07
0.89050E-15 0.4441E-15 0.33077E-08 0.14142E-07 0.76190 17.000 0.100E-07

1.8596 0.7108E-14 0.11481E-08 0.40790E-17 0.93944E+09 100.000 0.100E-17
0.53051E-08 0.1156E-13 0.83333E-08 0.14142E-06 0.83333E-01 5.0000 0.100E-06
0.81002E-12 0.2613E-15 0.10000E-07 0.10000E-07 1.00000 0.50000 0.100E-07
0.41875E-14 0.3109E-14 0.11180E-08 0.14142E-08 6.0000 9.0000 0.100E-08
0.64031E-08 0.1635E-15 0.14142E-08 0.14142E-08 0.50000 -1.0000 0.100E-08
0.89050E-15 0.4441E-15 0.33077E-08 0.14142E-07 0.76190 17.000 0.100E-07
0.41370E-16 0.2068E-24 0.10000E-08 0.10000E-08 0.50000 1.5000 0.100E-08

0.0000 0.9116E-16 0.16667E-08 0.10000E-07 0.0000 2.0000 0.100E-07
0.0000 0.3553E-14 0.0000 0.0000 0.0000 0.0000 10.0
0.0000 0.1097E-11 0.0000 0.0000 0.0000 0.0000 10.0
0.0000 0.2725E-11 0.0000 0.0000 0.0000 0.0000 10.0
0.0000 0.5238E-11 0.0000 0.0000 0.0000 0.0000 10.0

0.72155E-11 0.1327E-10 0.0000 0.0000 0.0000 0.46551E-23 10.0
0.56879E-08 0.7594E-16 0.25000E-08 0.10000E-07 0.25000 20.000 0.100E-07
0.33100E-14 0.3412E-13 0.22560E-08 0.20000E-06 0.14211 -230.82 0.100E-06
0.53745E-08 0.1903E-13 0.20610E-08 0.20000E-06 0.91802E-01 -129.91 0.100E-06
0.21779E-08 0.1243E-13 0.18269E-08 0.20000E-06 0.39663E-01 -36.933 0.100E-06
0.35341E-14 0.3845E-13 0.16923E-08 0.20000E-06 0.14908E-01 -7.0618 0.100E-06
0.12358E-09 0.4441E-14 0.16052E-08 0.20000E-06 0.19886E-02 -0.17905 0.100E-06
0.20290E-14 0.000 0.21060E-08 0.20000E-08 7.6472 -354.70 0.100E-08
0.35145E-14 0.1638E-13 0.71328E-08 0.20000E-07 1.9472 -241.44 0.100E-07
0.10246E-14 0.9770E-14 0.96833E-08 0.20000E-07 1.6742 -90.749 0.100E-07
0.12666E-10 0.5329E-14 0.13732E-08 0.22361E-09 12.712 -25.698 0.100E-09
0.15059E-10 0.1250E-13 0.20533E-08 0.22361E-08 2.8027 -6.1167 0.100E-08
0.42518E-08 0.4004E-14 0.50349E-08 0.20000E-08 5.6908 15.618 0.100E-08
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problem n m nc ifail it(k) fe ce ge he

incid-set1-8 247 249 49 0 8 ( 1) 9 10 10 9
incid-set1-16 999 1005 225 0 26 ( 1) 40 41 17 16
incid-set1-32 4039 4053 961 0 6005 ( 7) 9476 9483 3473 3466
incid-set1c-8 247 256 49 0 5 ( 1) 6 7 7 6
incid-set1c-16 999 1020 225 0 22 ( 1) 32 33 17 16
incid-set1c-32 4039 4084 961 0 40 ( 1) 57 58 27 26
incid-set2-8 247 249 49 0 31 ( 1) 47 47 19 19
incid-set2-16 999 1005 225 0 31 ( 1) 48 48 19 19
incid-set2-32 4039 4053 961 0 47 ( 1) 63 63 29 30
incid-set2c-8 247 256 49 0 20 ( 1) 28 28 13 13
incid-set2c-16 999 1020 225 0 22 ( 1) 30 30 16 16
incid-set2c-32 4039 4084 961 0 45 ( 1) 68 68 27 27
jr1 3 2 1 0 1 ( 1) 2 2 2 2
jr2 3 2 1 0 28 ( 11) 39 46 46 39
kth1 2 2 1 0 1 ( 1) 2 2 2 2
kth2 2 2 1 0 1 ( 1) 2 2 2 2
kth3 2 2 1 0 19 ( 10) 29 29 29 29
liswet1-050 202 153 50 0 1 ( 1) 2 3 3 2
liswet1-100 402 303 100 0 1 ( 1) 2 3 3 2
liswet1-200 802 603 200 0 1 ( 1) 2 3 3 2
nash1 7 5 1 0 26 ( 11) 37 47 47 37
outrata31 17 16 4 0 25 ( 10) 35 39 39 35
outrata32 17 16 4 0 24 ( 10) 34 39 39 34
outrata33 17 16 4 0 27 ( 10) 37 41 41 37
outrata34 17 16 4 0 30 ( 11) 41 46 46 41
pack-comp1-8 237 251 49 0 30 ( 13) 43 43 43 43
pack-comp1-16 981 1025 225 0 8 ( 1) 9 9 9 9
pack-comp1-32 4005 4157 961 5 89 ( 20) 58 67 46 55
pack-comp1c-8 237 258 49 0 30 ( 13) 43 43 43 43
pack-comp1c-16 981 1040 225 0 6 ( 1) 7 7 7 7
pack-comp1c-32 4005 4188 961 0 5 ( 1) 6 6 6 6
pack-comp1p-8 237 236 49 0 94 ( 17) 177 178 92 91
pack-comp1p-16 981 980 225 0 65 ( 20) 127 127 66 66
pack-comp1p-32 4005 4004 961 0 591 ( 20) 857 1022 396 447
pack-comp2-8 237 251 49 0 9 ( 1) 12 12 9 9
pack-comp2-16 981 1025 225 0 42 ( 9) 33 33 33 33
pack-comp2-32 4005 4157 961 4 262 ( 20) 124 244 166 199
pack-comp2c-8 237 258 49 0 6 ( 1) 7 7 7 7
pack-comp2c-16 981 1040 225 0 7 ( 1) 8 8 8 8
pack-comp2c-32 4005 4188 961 5 49 ( 20) 33 59 50 38
pack-comp2p-8 237 236 49 0 94 ( 20) 159 161 92 91
pack-comp2p-16 981 980 225 0 327 ( 20) 412 476 242 253
pack-comp2p-32 4005 4004 961 4 616 ( 20) 805 998 410 456
pack-rig1-4 57 62 9 0 8 ( 1) 9 10 10 9
pack-rig1-8 237 251 49 0 11 ( 1) 13 14 12 11
pack-rig1-16 981 1025 225 0 287 ( 15) 330 347 252 251
pack-rig1-32 4005 4157 961 4 314 ( 20) 249 328 250 240
pack-rig1c-4 57 65 9 0 6 ( 1) 7 8 8 7
pack-rig1c-8 237 258 49 0 6 ( 1) 7 8 8 7
pack-rig1c-16 981 1040 225 0 104 ( 14) 119 133 121 109
pack-rig1c-32 4005 4188 961 5 67 ( 20) 35 62 55 42
pack-rig1p-4 57 56 9 0 2 ( 1) 3 4 4 3
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KKT feas compl1(x
∗) compl2(x

∗) ξ∗max f(x∗) tk

0.0000 0.8762E-12 0.0000 0.0000 0.0000 0.38164E-16 10.0
0.14209E-12 0.2070E-08 0.0000 0.0000 0.0000 0.12403E-15 10.0
0.71235E-08 0.3511E-13 0.0000 0.0000 0.0000 0.22908E-06 0.100E-04

0.0000 0.1712E-08 0.0000 0.0000 0.0000 0.38164E-16 10.0
0.0000 0.2318E-13 0.0000 0.0000 0.0000 0.12013E-15 10.0

0.25099E-09 0.6894E-09 0.0000 0.0000 0.0000 0.98370E-05 10.0
0.16722E-09 0.1058E-10 0.0000 0.0000 0.0000 0.45179E-02 10.0
0.25939E-09 0.1131E-08 0.0000 0.0000 0.0000 0.29978E-02 10.0
0.44404E-08 0.3747E-13 0.0000 0.0000 0.0000 0.17497E-02 10.0
0.18098E-10 0.2327E-10 0.0000 0.0000 0.0000 0.54713E-02 10.0
0.30468E-11 0.1465E-10 0.0000 0.0000 0.0000 0.35996E-02 10.0
0.30020E-08 0.2064E-09 0.0000 0.0000 0.0000 0.24357E-02 10.0

0.0000 0.000 0.0000 0.0000 0.0000 0.50000 10.0
0.24236E-15 0.1121E-15 0.20000E-08 0.10000E-08 2.0000 0.50000 0.100E-08

0.0000 0.000 0.0000 0.0000 0.0000 0.0000 10.0
0.0000 0.000 0.0000 0.0000 0.0000 0.0000 10.0

0.45126E-14 0.000 0.10000E-07 0.10000E-07 1.00000 0.50000 0.100E-07
0.72768E-14 0.5537E-13 0.0000 0.0000 0.0000 0.13994E-01 10.0
0.10898E-13 0.2688E-12 0.0000 0.0000 0.0000 0.13734E-01 10.0
0.24796E-12 0.1827E-11 0.0000 0.0000 0.0000 0.17009E-01 10.0

0.0000 0.3735E-14 0.20000E-08 0.10000E-08 0.0000 0.0000 0.100E-08
0.23843E-15 0.9663E-15 0.67243E-08 0.10000E-07 0.16393 3.2077 0.100E-07
0.14649E-15 0.2686E-14 0.71430E-08 0.10000E-07 0.16778 3.4494 0.100E-07
0.16959E-14 0.1661E-13 0.82801E-08 0.10000E-07 0.71407 4.6043 0.100E-07
0.29013E-15 0.8249E-16 0.11183E-08 0.10000E-08 2.0723 6.5927 0.100E-08

0.0000 0.8353E-15 0.27704E-08 0.14142E-10 0.0000 0.60000 0.100E-10
0.35402E-08 0.9674E-14 0.0000 0.0000 0.0000 0.61695 10.0
0.69533-309 0.000 3.0881 14.142 1.0000 0.64681 0.100E-17

0.0000 0.9439E-15 0.27704E-08 0.14142E-10 0.0000 0.60000 0.100E-10
0.58199E-13 0.5823E-14 0.0000 0.0000 0.0000 0.62304 10.0
0.87098E-08 0.5540E-09 0.0000 0.0000 0.0000 0.66144 10.0
0.26132E-09 0.5375E-11 0.56847E-09 0.22190E-11 0.0000 0.60000 0.100E-14
0.58561E-07 0.1888E-14 0.0000 0.0000 0.0000 0.61695 0.100E-17
0.19205E-06 0.6150E-14 0.0000 0.0000 0.0000 0.65298 0.100E-17
0.22501E-08 0.2190E-09 0.0000 0.0000 0.0000 0.67312 10.0
0.91120E-08 0.8583E-10 0.0000 0.0000 0.0000 0.72714 0.100E-06
0.21220-313 0.000 0.0000 0.0000 0.0000 0.78260 0.100E-17
0.16093E-09 0.1630E-10 0.0000 0.0000 0.0000 0.67346 10.0
0.72487E-08 0.7865E-14 0.0000 0.0000 0.0000 0.72747 10.0
0.21220-313 0.000 0.0000 0.0000 0.0000 0.78294 0.100E-17
0.24934E-06 0.8435E-15 0.0000 0.0000 0.0000 0.67312 0.100E-17
0.20820E-06 0.2518E-14 0.0000 0.0000 0.0000 0.72714 0.100E-17
0.21220-313 0.000 0.0000 0.0000 0.0000 0.78260 0.100E-17
0.58477E-10 0.8676E-12 0.0000 0.0000 0.0000 0.71889 10.0
0.63142E-08 0.3154E-14 0.0000 0.0000 0.0000 0.78793 10.0
0.41090E-08 0.1350E-10 0.99280E-09 0.38781E-11 0.0000 0.82601 0.100E-12
0.69533-309 0.000 0.67457E-04 0.57766E-07 1.0000 0.85089 0.100E-17
0.12857E-12 0.2776E-15 0.0000 0.0000 0.0000 0.72101 10.0
0.86160E-09 0.5196E-13 0.0000 0.0000 0.0000 0.78830 10.0
0.23414E-08 0.5760E-13 0.11177E-08 0.43661E-11 0.0000 0.82650 0.100E-11
0.21220-313 0.000 0.0000 0.0000 0.0000 0.85164 0.100E-17

0.0000 0.8327E-16 0.0000 0.0000 0.0000 0.60000 10.0
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problem n m nc ifail it(k) fe ce ge he

pack-rig1p-8 237 236 49 0 10 ( 1) 11 12 12 11
pack-rig1p-16 981 980 225 0 132 ( 4) 169 173 91 90
pack-rig1p-32 4005 4004 961 5 102 ( 20) 114 141 78 65
pack-rig2-4 57 62 9 0 7 ( 1) 8 8 8 8
pack-rig2-8 237 251 49 0 32 ( 12) 44 44 44 44
pack-rig2-16 981 1025 225 3 49 ( 20) 20 57 50 49
pack-rig2-32 4005 4157 961 5 56 ( 20) 20 38 26 34
pack-rig2c-4 57 65 9 0 4 ( 1) 5 5 5 5
pack-rig2c-8 237 258 49 0 67 ( 12) 89 100 88 77
pack-rig2c-16 981 1040 225 3 50 ( 20) 20 52 50 50
pack-rig2c-32 4005 4188 961 4 56 ( 20) 20 39 29 35
pack-rig2p-4 57 56 9 0 34 ( 13) 47 47 47 47
pack-rig2p-8 237 236 49 0 86 ( 12) 121 126 95 91
pack-rig2p-16 981 980 225 0 50 ( 15) 69 70 56 55
pack-rig2p-32 4005 4004 961 4 61 ( 20) 43 53 41 49
pack-rig3-4 57 62 9 0 6 ( 1) 7 7 7 7
pack-rig3-8 237 251 49 0 32 ( 12) 44 45 45 44
pack-rig3-16 981 1025 225 0 277 ( 20) 232 294 224 227
pack-rig3-32 4005 4157 961 4 321 ( 20) 202 404 187 243
pack-rig3c-4 57 65 9 0 4 ( 1) 5 5 5 5
pack-rig3c-8 237 258 49 0 59 ( 12) 96 107 81 70
pack-rig3c-16 981 1040 225 5 100 ( 20) 134 154 116 97
pack-rig3c-32 4005 4188 961 4 62 ( 20) 30 56 49 37
portfl1 111 49 12 0 86 ( 17) 104 121 119 102
portfl2 111 49 12 0 116 ( 20) 140 167 144 125
portfl3 111 49 12 0 116 ( 20) 142 162 150 130
portfl4 111 49 12 0 97 ( 20) 101 121 121 101
portfl6 111 49 12 0 60 ( 15) 75 90 90 75
qpec-100-1 205 202 100 0 78 ( 12) 66 102 100 89
qpec-100-2 210 202 100 0 63 ( 12) 76 88 86 74
qpec-100-3 210 204 100 0 171 ( 17) 120 213 189 178
qpec-100-4 220 204 100 0 173 ( 18) 174 228 188 175
qpec-200-1 410 404 200 0 159 ( 14) 107 197 170 160
qpec-200-2 420 404 200 0 214 ( 12) 193 271 208 200
qpec-200-3 420 408 200 5 299 ( 20) 231 361 282 270
qpec-200-4 440 408 200 0 64 ( 3) 77 79 63 61
ralph1 3 5 1 0 86 ( 20) 106 106 106 106
ralph2 2 2 1 0 58 ( 20) 78 78 75 75
ralphmod 204 200 100 3 418 ( 20) 329 472 363 353
scholtes1 4 3 1 0 2 ( 1) 3 3 3 3
scholtes2 4 3 1 0 2 ( 1) 3 3 3 3
scholtes3 2 2 1 0 23 ( 10) 33 33 33 33
scholtes4 3 5 1 0 85 ( 20) 105 105 105 105
scholtes5 7 6 2 0 1 ( 1) 2 3 3 2
sl1 11 8 3 0 1 ( 1) 2 3 3 2
stackelberg1 3 2 1 0 4 ( 1) 5 6 6 5
tap-09 162 142 36 0 34 ( 10) 49 59 44 35
tap-15 1560 2100 675 0 37 ( 10) 48 59 47 38
tollmpec 6051 6100 1824 5 405 ( 20) 767 832 243 229
tollmpec1 6051 6100 1824 5 160 ( 20) 152 176 138 124
water-net 180 214 64 0 333 ( 13) 486 583 221 246
water-FL 1737 2424 784 0 1602 ( 13) 1307 1740 830 1081
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KKT feas compl1(x
∗) compl2(x

∗) ξ∗max f(x∗) tk

0.71639E-08 0.2793E-15 0.0000 0.0000 0.0000 0.78793 10.0
0.70897E-08 0.2509E-14 0.0000 0.0000 0.0000 0.82601 0.100E-01
0.69533-309 0.000 0.85402 10.000 0.0000 0.78080 0.100E-17
0.45874E-13 0.4276E-15 0.0000 0.0000 0.0000 0.69453 10.0
0.84685E-11 0.1348E-13 0.64008E-08 0.10001E-09 0.0000 0.78040 0.100E-09
0.19962E-08 0.1408E-03 0.75373E-10 0.34731E-12 0.0000 0.99917 0.100E-17
0.69533-309 0.000 0.11503E-01 0.14561E-03 1.0000 0.99978 0.100E-17
0.32004E-09 0.1429E-11 0.0000 0.0000 0.0000 0.71153 10.0
0.75775E-11 0.9688E-13 0.64000E-08 0.10000E-09 0.0000 0.79931 0.100E-09
0.13384E-13 0.1408E-03 0.16000E-09 0.74999E-12 0.0000 0.99917 0.100E-17
0.69532-309 0.000 0.11483E-01 0.15530E-03 1.0000 0.99978 0.100E-17

0.0000 0.6362E-15 0.58451E-08 0.10001E-10 0.0000 0.60000 0.100E-10
0.36865E-08 0.1023E-13 0.55658E-08 0.10001E-09 0.0000 0.78040 0.100E-09
0.12797E-08 0.1070E-10 0.75289E-09 0.33912E-11 0.0000 1.0851 0.100E-12
0.69533-309 0.000 0.95509E-02 0.11963E-03 1.0000 1.1359 0.100E-17
0.87962E-11 0.1510E-12 0.0000 0.0000 0.0000 0.66619 10.0
0.29100E-08 0.2345E-15 0.58182E-08 0.10000E-09 0.0000 0.73520 0.100E-09
0.13134E-06 0.1300E-10 0.50003E-06 0.35355E-11 0.0000 0.80043 0.100E-17
0.69532-309 0.000 0.15813E-01 0.50880E-03 1.0000 0.69868 0.100E-17
0.29579E-09 0.1402E-11 0.0000 0.0000 0.0000 0.68277 10.0
0.16317E-08 0.2317E-10 0.58182E-08 0.10000E-09 0.0000 0.75347 0.100E-09
0.69532-309 0.9758E-08 0.50000E-06 0.27000E-11 0.0000 0.81860 0.100E-17
0.69532-309 0.000 0.14090E-01 0.32381E-03 1.0000 0.90891 0.100E-17
0.64728E-08 0.4606E-11 0.0000 0.0000 0.89651 0.15024E-04 0.100E-14
0.13874E-07 0.1643E-11 0.0000 0.0000 0.68203 0.14573E-04 0.100E-17
0.87597E-08 0.2307E-11 0.0000 0.0000 0.21907 0.62650E-05 0.100E-17
0.38752E-08 0.3450E-11 0.0000 0.0000 0.35009 0.21773E-05 0.100E-17
0.36551E-08 0.1086E-11 0.10421E-09 0.26458E-12 0.14880 0.23613E-05 0.100E-12
0.78854E-09 0.1767E-13 0.47666E-08 0.74833E-09 10.092 0.99003E-01 0.100E-09
0.10487E-08 0.3641E-13 0.12964E-08 0.60828E-09 1.8542 -6.5907 0.100E-09
0.62590E-08 0.1000E-11 0.0000 0.0000 10.170 -5.4817 0.100E-14
0.46966E-08 0.6832E-10 0.0000 0.0000 2.8843 -4.0648 0.100E-15
0.61026E-09 0.6863E-10 0.56319E-09 0.95917E-11 158.43 -1.9348 0.100E-11
0.71892E-08 0.1548E-12 0.17598E-08 0.92736E-09 1.4198 -24.036 0.100E-09
0.69532-309 0.5514E-08 0.33767E-08 0.14956E-08 0.0000 -1.9534 0.100E-17
0.60098E-07 0.5003E-10 4.6775 5.0137 0.41814 -16.877 0.100

0.0000 0.1000E-11 0.10000E-05 0.10000E-11 0.50000E+06 -0.10000E-05 0.100E-17
0.0000 0.2583E-12 0.50818E-06 0.25825E-12 2.0000 -0.51650E-12 0.100E-17
1.0362 0.2491E-07 0.0000 0.0000 0.14763E-03 -683.03 0.100E-17
0.0000 0.000 0.0000 0.0000 0.0000 2.0000 10.0
0.0000 0.000 0.0000 0.0000 0.0000 15.000 10.0

0.54523E-16 0.000 0.10000E-07 0.10000E-07 1.0000 0.50000 0.100E-07
0.0000 0.1000E-11 0.10000E-05 0.10000E-11 0.10000E+07 -0.20000E-05 0.100E-17
0.0000 0.000 0.0000 0.0000 0.0000 1.0000 10.0

0.43368E-18 0.2006E-14 0.0000 0.0000 0.0000 0.10000E-03 10.0
0.17764E-14 0.000 0.0000 0.0000 0.0000 -3266.7 10.0
0.66637E-10 0.7512E-13 0.39108E-08 0.32267E-07 0.0000 109.13 0.100E-07
0.41223E-10 0.4103E-12 0.82334E-08 0.52202E-07 0.0000 184.29 0.100E-07
0.69533-309 0.000 0.45430E-02 0.61571E-01 0.0000 -208.42 0.100E-17
0.69533-309 0.000 0.10218E-02 0.24550E-03 0.0000 979.38 0.100E-17
0.79077E-08 0.1157E-13 0.11252E-08 0.10000E-10 483.43 1039.4 0.100E-10
0.83131E-09 0.1431E-11 0.36212E-08 0.28284E-10 6776.6 3368.1 0.100E-10
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A Numerical Results

Table A.4 : Results for Exact Bilinear Reformulation

problem n m nc ifail it fe ce ge he

bard1 8 7 3 0 4 5 6 6 5
bard2 16 13 4 0 2 3 4 4 3
bard3 8 7 2 0 4 5 6 6 5
bar-truss 35 35 6 0 9 4 10 10 10
bilevel1 16 15 6 0 4 5 6 6 5
bilevel2 32 29 12 0 6 7 8 8 7
bilevel3 12 11 4 0 6 7 8 8 7
bilin 14 13 6 0 2 3 4 4 3
dempe 4 3 1 0 2 4 4 3 3
design-cent-1 15 15 3 0 5 6 7 7 6
design-cent-4 46 57 12 0 37 46 47 8 7
desilva 7 5 1 0 5 6 6 6 6
df1 3 4 1 0 2 3 3 3 3
ex9.1.1 13 12 5 0 3 4 5 5 4
ex9.1.2 10 9 4 0 2 3 4 4 3
ex9.1.3 23 21 6 0 2 3 4 4 3
ex9.1.4 10 9 4 0 5 4 6 6 6
ex9.1.5 13 12 5 0 2 3 4 4 3
ex9.1.6 14 13 6 0 5 5 6 6 6
ex9.1.7 17 15 6 0 2 3 4 4 3
ex9.1.8 12 11 4 0 1 2 3 3 2
ex9.1.9 12 11 5 0 2 3 4 4 3
ex9.1.10 12 11 4 0 1 2 3 3 2
ex9.2.1 10 9 4 0 4 5 6 6 5
ex9.2.2 10 19 4 0 29 31 32 30 29
ex9.2.3 16 15 6 0 4 5 6 6 5
ex9.2.4 8 7 2 0 3 4 5 5 4
ex9.2.5 8 7 3 0 6 7 8 8 7
ex9.2.6 12 10 4 0 2 3 4 4 3
ex9.2.7 10 9 4 0 4 5 6 6 5
ex9.2.8 6 5 2 0 3 4 5 5 4
ex9.2.9 9 8 3 0 3 4 5 5 4
flp2 6 4 2 0 4 5 6 6 5
flp4-1 110 90 30 0 3 4 5 5 4
flp4-2 170 170 60 0 3 4 5 5 4
flp4-3 210 240 70 0 3 4 5 5 4
flp4-4 300 350 100 0 3 4 5 5 4
gauvin 5 4 2 0 3 4 5 5 4
gnash10 17 16 8 0 6 5 7 7 7
gnash11 17 16 8 0 7 6 8 8 8
gnash12 17 16 8 0 7 6 8 8 8
gnash13 17 16 8 0 8 7 9 9 9
gnash14 17 16 8 0 8 6 9 9 9
gnash15 17 16 8 0 12 10 13 13 13
gnash16 17 16 8 0 8 6 8 7 8
gnash17 17 16 8 0 10 9 11 11 11
gnash18 17 16 8 0 10 9 11 11 11
gnash19 17 16 8 0 6 6 7 7 7
hs044-i 46 40 10 0 4 5 6 6 5
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A.2 Modified Outer Algorithm

KKT feas. compl1(x) compl2(x) ξ∗max f(x∗)

0.0000 0.1110E-14 0.0000 0.0000 0.76190 17.000
0.14211E-13 0.2220E-14 0.0000 0.0000 0.0000 -6598.0

0.0000 0.000 0.0000 0.0000 0.36250 -12.679
0.19934E-12 0.4263E-12 0.0000 0.0000 1.4516 10167.

0.0000 0.8882E-14 0.0000 0.0000 0.15000 -10.0000
0.0000 0.3027E-08 0.60543E-08 0.30272E-08 0.0000 -6600.0

0.44409E-15 0.1776E-14 0.0000 0.0000 1.0927 -12.679
0.88818E-15 0.5551E-15 0.0000 0.0000 22.000 -5.6000

0.0000 0.000 0.0000 0.0000 15.273 49.000
0.95416E-14 0.8604E-15 0.0000 0.0000 0.0000 -1.8606

4.2426 0.1422E-15 0.55879E-08 0.31225E-16 6.0000 -0.33528E-07
0.44787E-13 0.4441E-15 0.0000 0.0000 0.0000 -1.0000

0.0000 0.000 0.0000 0.0000 0.0000 0.0000
0.50877E-15 0.1110E-15 0.0000 0.0000 0.0000 -13.000

0.0000 0.000 0.0000 0.0000 6.5000 -3.0000
0.0000 0.1110E-15 0.0000 0.0000 34.000 -6.0000
0.0000 0.1799E-13 0.0000 0.0000 2.4375 -37.000
0.0000 0.000 0.0000 0.0000 15.000 4.0000
0.0000 0.1776E-14 0.0000 0.0000 1.5556 -21.000
0.0000 0.1110E-15 0.0000 0.0000 34.000 -6.0000
0.0000 0.000 0.0000 0.0000 0.12500 -3.2500

0.55511E-16 0.2220E-14 0.0000 0.0000 2.7778 9.7778
0.0000 0.000 0.0000 0.0000 0.12500 -3.2500

0.44409E-15 0.4441E-14 0.0000 0.0000 0.76190 17.000
18.511 0.3843E-16 0.24130E-08 0.38428E-16 0.17717E+10 100.00
0.0000 0.7105E-14 0.0000 0.0000 0.83333E-01 5.0000
0.0000 0.000 0.0000 0.0000 1.0000 0.50000
0.0000 0.8882E-15 0.0000 0.0000 6.0000 9.0000

0.15701E-15 0.4441E-15 0.0000 0.0000 0.50000 -1.0000
0.44409E-15 0.4441E-14 0.0000 0.0000 0.76190 17.000

0.0000 0.000 0.0000 0.0000 0.50000 1.5000
0.0000 0.000 0.0000 0.0000 0.16667 2.0000
0.0000 0.000 0.0000 0.0000 0.0000 0.0000
0.0000 0.1092E-11 0.0000 0.0000 0.0000 0.0000
0.0000 0.2727E-11 0.0000 0.0000 0.0000 0.0000
0.0000 0.5243E-11 0.0000 0.0000 0.0000 0.0000
0.0000 0.1329E-10 0.0000 0.0000 0.0000 0.0000
0.0000 0.000 0.0000 0.0000 0.25000 20.000

0.39504E-10 0.7816E-12 0.0000 0.0000 0.14211 -230.82
0.16251E-14 0.3553E-14 0.0000 0.0000 0.91802E-01 -129.91
0.26278E-08 0.5529E-09 0.0000 0.0000 0.39663E-01 -36.933
0.14873E-14 0.6217E-14 0.0000 0.0000 0.14908E-01 -7.0618
0.34057E-13 0.1243E-13 0.0000 0.0000 0.19886E-02 -0.17905
0.11809E-11 0.1688E-13 0.0000 0.0000 7.6472 -354.70
0.97925E-10 0.1776E-13 0.0000 0.0000 1.9472 -241.44
0.30670E-09 0.2798E-12 0.0000 0.0000 1.6742 -90.749
0.12888E-14 0.6661E-14 0.0000 0.0000 12.712 -25.698
0.84045E-08 0.6217E-14 0.0000 0.0000 2.8027 -6.1167
0.25121E-14 0.1043E-13 0.0000 0.0000 7.8190 17.090
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A Numerical Results

problem n m nc ifail it fe ce ge he

incid-set1-8 247 249 49 0 38 49 50 23 24
incid-set1-16 999 1005 225 0 56 62 63 29 31
incid-set1-32 4039 4053 961 6 1000 1582 1583 611 616
incid-set1c-8 247 256 49 0 39 44 45 22 24
incid-set1c-16 999 1020 225 0 62 73 74 38 42
incid-set1c-32 4039 4084 961 0 24 26 27 20 20
incid-set2-8 247 249 49 0 29 36 36 21 21
incid-set2-16 999 1005 225 0 25 28 28 17 17
incid-set2-32 4039 4053 961 0 66 68 68 44 46
incid-set2c-8 247 256 49 0 22 23 23 16 18
incid-set2c-16 999 1020 225 0 28 33 33 20 21
incid-set2c-32 4039 4084 961 0 50 63 63 33 34
jr1 3 2 1 0 1 2 2 2 2
jr2 3 2 1 0 6 7 7 7 7
kth1 2 2 1 0 1 2 2 2 2
kth2 2 2 1 0 3 4 4 4 4
kth3 2 2 1 0 4 5 5 5 5
liswet1-050 202 153 50 0 1 2 3 3 2
liswet1-100 402 303 100 0 1 2 3 3 2
liswet1-200 802 603 200 0 1 2 3 3 2
nash1 7 5 1 0 7 8 9 9 8
outrata31 17 16 4 0 8 9 10 10 9
outrata32 17 16 4 0 9 10 11 11 10
outrata33 17 16 4 0 7 8 9 9 8
outrata34 17 16 4 0 7 8 9 9 8
pack-comp1-8 237 251 49 0 36 55 55 25 26
pack-comp1-16 981 1025 225 0 44 35 51 32 41
pack-comp1-32 4005 4157 961 5 256 2 414 131 214
pack-comp1c-8 237 258 49 0 17 15 16 14 17
pack-comp1c-16 981 1040 225 0 25 19 25 22 25
pack-comp1c-32 4005 4188 961 0 217 19 361 136 199
pack-comp1p-8 237 236 49 0 54 61 61 32 34
pack-comp1p-16 981 980 225 0 69 86 88 47 51
pack-comp1p-32 4005 4004 961 0 146 242 244 94 98
pack-comp2-8 237 251 49 0 9 11 11 10 10
pack-comp2-16 981 1025 225 0 18 19 19 15 16
pack-comp2-32 4005 4157 961 5 318 6 527 164 269
pack-comp2c-8 237 258 49 0 6 7 7 7 7
pack-comp2c-16 981 1040 225 0 7 8 8 8 8
pack-comp2c-32 4005 4188 961 5 197 2 286 103 162
pack-comp2p-8 237 236 49 0 39 42 42 26 26
pack-comp2p-16 981 980 225 0 56 69 70 36 38
pack-comp2p-32 4005 4004 961 0 132 187 189 87 91
pack-rig1-4 57 62 9 0 8 9 10 10 9
pack-rig1-8 237 251 49 0 28 26 28 23 25
pack-rig1-16 981 1025 225 0 131 32 245 88 126
pack-rig1-32 4005 4157 961 0 80 69 80 50 55
pack-rig1c-4 57 65 9 0 6 7 8 8 7
pack-rig1c-8 237 258 49 0 13 12 13 13 14
pack-rig1c-16 981 1040 225 0 104 17 189 76 105
pack-rig1c-32 4005 4188 961 0 57 20 55 49 52
pack-rig1p-4 57 56 9 0 4 4 5 5 5
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A.2 Modified Outer Algorithm

KKT feas. compl1(x) compl2(x) ξ∗max f(x∗)

0.0000 0.9182E-11 0.0000 0.0000 0.0000 0.38164E-16
0.55511E-16 0.3448E-08 0.0000 0.0000 0.0000 0.12186E-15
0.30254E-06 0.1035E-07 0.0000 0.0000 0.0000 0.27683E-06
0.0000 0.5086E-13 0.0000 0.0000 0.0000 0.41633E-16
0.0000 0.5973E-14 0.0000 0.0000 0.0000 0.12143E-15
0.58022E-09 0.3797E-08 0.0000 0.0000 0.0000 0.11712E-04
0.17429E-08 0.5961E-09 0.0000 0.0000 0.0000 0.45179E-02
0.51579E-08 0.2890E-13 0.0000 0.0000 0.0000 0.32168E-02
0.83992E-08 0.2982E-10 0.0000 0.0000 0.0000 0.17692E-02
0.75621E-10 0.5349E-12 0.0000 0.0000 0.0000 0.56301E-02
0.40468E-09 0.1629E-13 0.0000 0.0000 0.0000 0.36158E-02
0.26102E-08 0.2051E-12 0.0000 0.0000 0.0000 0.24404E-02
0.0000 0.000 0.0000 0.0000 0.0000 0.50000
0.0000 0.000 0.0000 0.0000 2.0000 0.50000
0.0000 0.000 0.0000 0.0000 0.0000 0.0000
0.0000 0.000 0.0000 0.0000 0.0000 0.0000
0.0000 0.000 0.0000 0.0000 1.0000 0.50000
0.72768E-14 0.5537E-13 0.0000 0.0000 0.0000 0.13994E-01
0.10898E-13 0.2688E-12 0.0000 0.0000 0.0000 0.13734E-01
0.24796E-12 0.1827E-11 0.0000 0.0000 0.0000 0.17009E-01
0.0000 0.5763E-11 0.11515E-10 0.57573E-11 0.0000 0.0000
0.11057E-13 0.6217E-14 0.0000 0.0000 0.16393 3.2077
0.32368E-15 0.5107E-14 0.0000 0.0000 0.16778 3.4494
0.19766E-09 0.6163E-10 0.0000 0.0000 0.71407 4.6043
0.30593E-14 0.2331E-14 0.0000 0.0000 2.0723 6.5927
0.0000 0.6072E-15 0.0000 0.0000 0.0000 0.60000
0.12233E-09 0.5327E-14 0.0000 0.0000 0.0000 0.61695
0.18169E-01 0.9242E-04 0.45461E-02 0.13184E-04 0.81081E+07 0.62379
0.0000 0.3492E-08 0.42759E-04 0.25534E-08 0.0000 0.60000
0.69618E-13 0.5694E-14 0.0000 0.0000 0.0000 0.62304
0.51402E-12 0.2214E-13 0.0000 0.0000 0.0000 0.66144
0.15245E-08 0.5331E-15 0.0000 0.0000 0.0000 0.60000
0.25577E-06 0.1895E-14 0.0000 0.0000 0.0000 0.61695
0.41047E-06 0.9625E-14 0.0000 0.0000 0.0000 0.65298
0.30674E-09 0.1324E-14 0.0000 0.0000 0.0000 0.67312
0.68060E-08 0.3119E-14 0.0000 0.0000 0.0000 0.72714
88.942 0.8098E-03 0.29820E-03 0.19994E-06 665.53 0.88173
0.12719E-09 0.1395E-10 0.0000 0.0000 0.0000 0.67346
0.14338E-08 0.3819E-14 0.0000 0.0000 0.0000 0.72747
0.84989E-01 0.4003E-03 0.13687E-01 0.22093E-03 0.59486E+06 0.78991
0.43108E-06 0.8728E-15 0.0000 0.0000 0.0000 0.67312
0.19803E-06 0.2561E-14 0.0000 0.0000 0.0000 0.72714
0.31988E-06 0.1726E-13 0.0000 0.0000 0.0000 0.78260
0.58477E-10 0.8676E-12 0.0000 0.0000 0.0000 0.71889
0.58445E-08 0.4655E-13 0.0000 0.0000 0.0000 0.78793
0.14043E-06 0.1112E-10 0.0000 0.0000 0.0000 0.82601
0.29048E-07 0.7896E-14 0.0000 0.0000 12.561 0.85089
0.12857E-12 0.2776E-15 0.0000 0.0000 0.0000 0.72101
0.76018E-09 0.3313E-13 0.0000 0.0000 0.0000 0.78830
0.50253E-08 0.2052E-12 0.0000 0.0000 0.0000 0.82650
0.13264E-07 0.1167E-11 0.20843E-11 0.20354E-14 0.0000 0.85164
0.0000 0.5378E-16 0.0000 0.0000 0.0000 0.60000
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problem n m nc ifail it fe ce ge he

pack-rig1p-8 237 236 49 0 43 31 43 34 42
pack-rig1p-16 981 980 225 0 374 115 619 230 342
pack-rig1p-32 4005 4004 961 0 146 141 186 89 103
pack-rig2-4 57 62 9 0 7 8 8 8 8
pack-rig2-8 237 251 49 0 11 12 12 12 12
pack-rig2-16 981 1025 225 3 10 1 11 9 10
pack-rig2-32 4005 4157 961 3 84 1 112 54 70
pack-rig2c-4 57 65 9 0 4 5 5 5 5
pack-rig2c-8 237 258 49 0 7 8 8 8 8
pack-rig2c-16 981 1040 225 3 10 1 11 9 10
pack-rig2c-32 4005 4188 961 3 105 1 156 67 89
pack-rig2p-4 57 56 9 0 12 11 12 12 13
pack-rig2p-8 237 236 49 0 15 16 16 16 16
pack-rig2p-16 981 980 225 0 54 44 72 36 44
pack-rig2p-32 4005 4004 961 5 38 2 2 2 3
pack-rig3-4 57 62 9 0 6 7 7 7 7
pack-rig3-8 237 251 49 0 14 15 15 11 12
pack-rig3-16 981 1025 225 0 30 29 30 24 27
pack-rig3-32 4005 4157 961 5 189 2 252 90 144
pack-rig3c-4 57 65 9 0 4 5 5 5 5
pack-rig3c-8 237 258 49 0 7 8 8 8 8
pack-rig3c-16 981 1040 225 0 18 19 21 17 19
pack-rig3c-32 4005 4188 961 5 131 16 162 84 105
portfl1 111 49 12 0 10 11 12 12 11
portfl2 111 49 12 0 14 15 16 16 15
portfl3 111 49 12 0 15 16 17 17 16
portfl4 111 49 12 0 4 5 6 6 5
portfl6 111 49 12 0 12 13 14 14 13
qpec-100-1 205 202 100 0 14 15 16 16 15
qpec-100-2 210 202 100 0 12 13 14 14 13
qpec-100-3 210 204 100 0 13 14 15 15 14
qpec-100-4 220 204 100 0 7 8 9 9 8
qpec-200-1 410 404 200 0 13 12 14 14 14
qpec-200-2 420 404 200 0 17 18 19 19 18
qpec-200-3 420 408 200 0 12 13 14 14 13
qpec-200-4 440 408 200 0 7 8 9 9 8
ralph1 3 5 1 0 33 35 35 31 32
ralph2 2 2 1 0 15 16 16 16 16
ralphmod 204 200 100 0 31 32 33 32 32
scholtes1 4 3 1 0 4 5 5 5 5
scholtes2 4 3 1 0 2 3 3 3 3
scholtes3 2 2 1 0 4 5 5 5 5
scholtes4 3 5 1 0 32 34 34 31 32
scholtes5 7 6 2 0 3 4 5 5 4
sl1 11 8 3 0 1 2 3 3 2
stackelberg1 3 2 1 0 4 5 6 6 5
tap-09 162 142 36 0 20 7 21 21 21
tap-15 1560 2100 675 0 23 8 24 24 24
tollmpec 6051 6100 1824 0 169 640 656 95 95
tollmpec1 6051 6100 1824 0 32 15 32 32 33
water-net 180 214 64 0 118 94 115 59 80
water-FL 1737 2424 784 0 278 249 325 143 180
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A.2 Modified Outer Algorithm

KKT feas. compl1(x) compl2(x) ξ∗max f(x∗)

0.18321E-07 0.6167E-15 0.0000 0.0000 0.0000 0.78793
0.64317E-07 0.3533E-12 0.0000 0.0000 0.0000 0.82601
0.41954E-06 0.5746E-10 0.0000 0.0000 12.561 0.85089
0.45945E-13 0.4224E-15 0.0000 0.0000 0.0000 0.69453
0.60569E-08 0.1435E-14 0.0000 0.0000 0.0000 0.78040
0.36220E-12 0.1408E-03 0.31301E-06 0.14676E-08 0.0000 1.0000
0.74789E-11 0.4866E-03 0.19841E-05 0.15104E-08 0.0000 1.0000
0.32004E-09 0.1429E-11 0.0000 0.0000 0.0000 0.71153
0.41307E-13 0.1828E-12 0.11676E-10 0.18243E-12 0.0000 0.79931
0.36220E-12 0.1408E-03 0.31301E-06 0.14676E-08 0.0000 1.0000
0.90942E-11 0.4866E-03 0.0000 0.0000 0.0000 1.0000
0.77036E-13 0.2349E-10 0.13729E-07 0.23490E-10 0.0000 0.60000
0.17555E-07 0.2515E-15 0.0000 0.0000 0.0000 0.78040
0.16779E-08 0.9257E-15 0.0000 0.0000 0.0000 1.0851
0.13834-321 0.000 0.32608E-01 0.81603E-03 5092.9 1.2492
0.87949E-11 0.1510E-12 0.0000 0.0000 0.0000 0.66619
0.82557E-08 0.1321E-13 0.0000 0.0000 0.0000 0.73520
0.14087E-07 0.3692E-12 0.17864E-10 0.90714E-13 0.0000 0.80043
0.50116E-02 0.2717E-04 0.11462E-02 0.31410E-05 4.6454 0.77463
0.29579E-09 0.1402E-11 0.0000 0.0000 0.0000 0.68277
0.14093E-09 0.3732E-11 0.50551E-10 0.86885E-12 0.0000 0.75347
0.18292E-10 0.3613E-12 0.17514E-10 0.88938E-13 0.0000 0.81860
1.2068 0.1149E-03 0.0000 0.0000 0.33264E+06 0.91028
0.34544E-07 0.3990E-15 0.0000 0.0000 0.89651 0.15024E-04
0.31968E-07 0.2186E-15 0.0000 0.0000 0.68202 0.14573E-04
0.42816E-07 0.3331E-15 0.0000 0.0000 0.21907 0.62650E-05
0.66253E-16 0.2194E-15 0.0000 0.0000 0.35009 0.21773E-05
0.40796E-07 0.2619E-15 0.0000 0.0000 0.14880 0.23613E-05
0.95194E-15 0.1489E-13 0.0000 0.0000 139.66 0.33588
0.40120E-14 0.2034E-13 0.0000 0.0000 45.983 -2.9409
0.49563E-14 0.2315E-13 0.0000 0.0000 4.0685 -5.4450
0.27973E-14 0.2347E-13 0.0000 0.0000 7.3103 -1.4361
0.27560E-08 0.8426E-13 0.0000 0.0000 158.43 -1.9348
0.86144E-14 0.1078E-12 0.0000 0.0000 4.8761 -22.262
0.55042E-14 0.6466E-13 0.0000 0.0000 35.452 -1.9534
0.81391E-14 0.9048E-13 0.0000 0.0000 10.169 -6.0254
0.23570 0.9224E-16 0.96043E-08 0.92242E-16 0.34707E+08 -0.96043E-08
0.26342E-08 0.9313E-09 0.30518E-04 0.93132E-09 1.9999 -0.18626E-08
0.72621E-07 0.3985E-10 0.0000 0.0000 0.11953E-03 -683.03
0.0000 0.000 0.0000 0.0000 0.0000 2.0000
0.0000 0.000 0.0000 0.0000 0.0000 15.000
0.0000 0.000 0.0000 0.0000 1.0000 0.50000
0.47140 0.3690E-17 0.19209E-08 0.36897E-17 0.34707E+09 -0.38417E-08
0.0000 0.000 0.0000 0.0000 0.0000 1.0000
0.43368E-18 0.2006E-14 0.0000 0.0000 0.0000 0.10000E-03
0.17764E-14 0.000 0.0000 0.0000 0.0000 -3266.7
0.27920E-11 0.4798E-10 0.0000 0.0000 0.16349E-02 109.14
0.13500E-09 0.6467E-08 0.0000 0.0000 0.25730E-02 184.50
0.26411E-07 0.6493E-11 0.0000 0.0000 5.0120 -208.26
0.48721E-08 0.9712E-11 0.0000 0.0000 164.51 979.39
0.15592E-07 0.1243E-12 0.0000 0.0000 3030.6 997.58
0.75096E-08 0.1013E-12 0.0000 0.0000 16830. 3324.7
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A Numerical Results

A.3 Results for M-Stationary Examples

A.3.1 Results for the New Relaxation Method

Table A.5 : Results for Example 4.3

k tk
1 (xk

11, x
k
21) ‖(xk

11, x
k
21)‖2 1/2

√
2 θ(0) tk

1 xk
11x

k
21

1
4

(tk
1)2 ξk

1

1 10 (0.9839,2.952) 3.1112 2.5695 2.9040 25.0 2.658
2 1.0 (0.9839,2.952)E-01 3.1112E-01 2.5695E-01 2.9040E-02 2.5E-01 2.919
3 1.0E-01 (0.9839,2.952)E-02 3.1112E-02 2.5695E-02 2.9040E-04 2.5E-03 2.946
4 1.0E-02 (0.9839,2.952)E-03 3.1112E-03 2.5695E-03 2.9040E-06 2.5E-05 2.948
5 1.0E-03 (0.9839,2.952)E-04 3.1112E-04 2.5695E-04 2.9040E-08 2.5E-07 2.948
6 1.0E-04 (0.9839,2.952)E-05 3.1112E-05 2.5695E-05 2.9040E-10 2.5E-09 2.948
7 1.0E-05 (0.9839,2.952)E-06 3.1112E-06 2.5695E-06 2.9040E-12 2.5E-11 2.948
8 1.0E-06 (0.9839,2.952)E-07 3.1112E-07 2.5695E-07 2.9040E-14 2.5E-13 2.948
9 1.0E-07 (0.9839,2.952)E-08 3.1112E-08 2.5695E-08 2.9040E-16 2.5E-15 2.952
10 1.0E-08 (0.9839,2.952)E-09 3.1112E-09 2.5695E-09 2.9040E-18 2.5E-17 3.214

Table A.6 : Results for Example 4.4

k tk (xk
1 , xk

2) ‖(xk
1 , xk

2)‖2 1/2
√

2 θ(0) tk xk
1xk

2
1
4

t2k ξk

1 10 (1.817,1.817) 2.5695 2.5695 3.3011 25.0 0.5
2 1.0 (1.817,1.817)E-01 2.5695E-01 2.5695E-01 3.3011E-02 2.5E-01 0.5
3 1.0E-01 (1.817,1.817)E-02 2.5695E-02 2.5695E-02 3.3011E-04 2.5E-03 0.5
4 1.0E-02 (1.817,1.817)E-03 2.5695E-03 2.5695E-03 3.3011E-06 2.5E-05 0.5
5 1.0E-03 (1.817,1.817)E-04 2.5695E-04 2.5695E-04 3.3011E-08 2.5E-07 0.5
6 1.0E-04 (1.817,1.817)E-05 2.5695E-05 2.5695E-05 3.3011E-10 2.5E-09 0.5
7 1.0E-05 (1.817,1.817)E-06 2.5695E-06 2.5695E-06 3.3011E-12 2.5E-11 0.5
8 1.0E-06 (1.817,1.817)E-07 2.5695E-07 2.5695E-07 3.3011E-14 2.5E-13 0.5
9 1.0E-07 (1.817,1.817)E-08 2.5695E-08 2.5695E-08 3.3011E-16 2.5E-15 0.5
10 1.0E-08 (1.817,1.817)E-09 2.5695E-09 2.5695E-09 3.3011E-18 2.5E-17 0.5

Table A.7 : Results for Example 2.4

k tk (xk
1 , xk

2) ‖(xk
1 , xk

2)‖2 1/2
√

2 θ(0) tk xk
1xk

2
1
4

t2k ξk

1 10 (1.817,1.817) 2.5695 2.5695 3.3011 25.0 1.0
2 1.0 (1.817,1.817)E-01 2.5695E-01 2.5695E-01 3.3011E-02 2.5E-01 1.0
3 1.0E-01 (1.817,1.817)E-02 2.5695E-02 2.5695E-02 3.3011E-04 2.5E-03 1.0
4 1.0E-02 (1.817,1.817)E-03 2.5695E-03 2.5695E-03 3.3011E-06 2.5E-05 1.0
5 1.0E-03 (1.817,1.817)E-04 2.5695E-04 2.5695E-04 3.3011E-08 2.5E-07 1.0
6 1.0E-04 (1.817,1.817)E-05 2.5695E-05 2.5695E-05 3.3011E-10 2.5E-09 1.0
7 1.0E-05 (1.817,1.817)E-06 2.5695E-06 2.5695E-06 3.3011E-12 2.5E-11 1.0
8 1.0E-06 (1.817,1.817)E-07 2.5695E-07 2.5695E-07 3.3011E-14 2.5E-13 1.0
9 1.0E-07 (1.817,1.817)E-08 2.5695E-08 2.5695E-08 3.3011E-16 2.5E-15 1.0
10 1.0E-08 (1.817,1.817)E-09 2.5695E-09 2.5695E-09 3.3011E-18 2.5E-17 1.0
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A.3 Results for M-Stationary Examples

A.3.2 Results for the Relaxed Bilinear Approach

Table A.8 : Results for Example 4.3

k tk (xk
1 , xk

2) ‖(xk
1 , xk

2)‖2

√
2tk xk

1xk
2 ξk

1 10 (1.984,5.041) 5.4174 4.4721 1.0E+01 7.239E-01
2 1.0 (5.938E-01,1.684) 1.7858 1.4142 1.0 8.959
3 1.0E-01 (1.842E-01,5.428E-01) E-01 5.7320E-01 4.4721E-01 1.0E-01 2.870E+01
4 1.0E-02 (5.790E-02,1.727E-01) E-01 1.8215E-01 1.4142E-01 1.0E-02 9.112E+01
5 1.0E-03 (1.827E-02,5.472E-02)E-02 5.7693E-02 4.4721E-02 1.0E-03 2.885E+02
6 1.0E-04 (5.775E-03,1.732E-02)E-02 1.8253E-02 1.4142E-02 1.0E-04 9.127E+02
7 1.0E-05 (1.826E-03,5.477E-03)E-03 5.7731E-03 4.4721E-03 1.0E-05 2.887E+03
8 1.0E-06 (5.774E-04,1.732E-03)E-03 1.8257E-03 1.4142E-03 1.0E-06 9.128E+03
9 1.0E-07 (1.826E-04,5.477E-04)E-04 5.7734E-04 4.4721E-04 1.0E-07 2.886E+04
10 1.0E-08 (5.77E-05,1.732E-04)E-04 1.8256E-04 1.4142E-04 1.0E-08 9.129E+04

Table A.9 : Results for Example 4.4

k tk (xk
1 , xk

2) ‖(xk
1 , xk

2)‖2

√
2tk xk

1xk
2 ξk

1 10 (3.162,3.162) 4.4721 4.4721 1.0E+01 1.581E-01
2 1.0 (1.000,1.000) 1.4142 1.4142 1.0 5.000E-01
3 1.0E-01 (3.162,3.162) E-01 4.4721E-01 4.4721E-01 1.0E-01 1.581
4 1.0E-02 (1.000,1.000) E-01 1.4142E-01 1.4142E-01 1.0E-02 5.000
5 1.0E-03 (3.162,3.162)E-02 4.4721E-02 4.4721E-02 1.0E-03 1.581E+01
6 1.0E-04 (1.000,1.000)E-02 1.4142E-02 1.4142E-02 1.0E-04 5.000E+01
7 1.0E-05 (3.162,3.162)E-03 4.4721E-03 4.4721E-03 1.0E-05 1.581E+02
8 1.0E-06 (1.000,1.000)E-03 1.4142E-03 1.4142E-03 1.0E-06 5.000E+02
9 1.0E-07 (3.162,3.162)E-04 4.4721E-04 4.4721E-04 1.0E-07 1.581E+03
10 1.0E-08 (1.000,1.000)E-04 1.4142E-04 1.4142E-04 1.0E-08 5.000E+03

Table A.10 : Results for Example 2.4

k tk (xk
1 , xk

2) ‖(xk
1 , xk

2)‖2

√
2tk xk

1xk
2 ξk

1 10 (3.162,3.162) 4.4721 4.4721 1.0E+01 3.162E-01
2 1.0 (1.000,1.000) 1.4142 1.4142 1.0 1.000
3 1.0E-01 (3.162,3.162) E-01 4.4721E-01 4.4721E-01 1.0E-01 3.162
4 1.0E-02 (1.000,1.000) E-01 1.4142E-01 1.4142E-01 1.0E-02 1.000E+01
5 1.0E-03 (3.162,3.162)E-02 4.4721E-02 4.4721E-02 1.0E-03 3.162E+01
6 1.0E-04 (1.000,1.000)E-02 1.4142E-02 1.4142E-02 1.0E-04 1.000E+02
7 1.0E-05 (3.162,3.162)E-03 4.4721E-03 4.4721E-03 1.0E-05 3.162E+02
8 1.0E-06 (1.000,1.000)E-03 1.4142E-03 1.4142E-03 1.0E-06 1.000E+03
9 1.0E-07 (3.162,3.162)E-04 4.4721E-04 4.4721E-04 1.0E-07 3.162E+03
10 1.0E-08 (1.000,1.000)E-04 1.4142E-04 1.4142E-04 1.0E-08 1.000E+04
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