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Biointerfaces coupling with fluid dynamics[5]

I The coupling of biology and fluid dynamics at the cell level is an active
research field in understanding disease mechanisms and cell physiology.
. Biological functions of cells are observed to be influenced by fluid dynamic

forces. For example, fluid dynamic stress influences the adhesion of white
blood cells to the interior surface of blood vessels (endothelium).

. Blood cells also exert a strong influence on rheological properties of whole
blood, e.g., non-Newtonian effects.

I We consider a white blood cell in a surrounding bulk fluid.

Models

I Bulk fluid : a simple Newtonian droplet model is considered.
ρi

(
ut + (u · ∇)u

)
= div (σ) + ρig

= −∇p + div (µiD(u)) + ρig in Ωi

div u = 0 in Ωi

for i = 1, 2

I Interface condition :
. Continuity of velocity:

[u] = 0 on Γ.

. Kinematic interface condition:

VΓ = u · nΓ on Γ.

. A viscous interface condition:

[σnΓ] = divΓ (σΓ) on Γ,

Ω2

Γ
Ω1

where the surface stress tensor
σΓ = τP + (λΓ − µΓ)(divΓu) P + µΓDΓ(u) is according to the
Boussinesq-Scriven law.

Numerical methods - DROPS package

I Aims:
. Parallel simulation of coupled fluid dynamics, mass- and

surfactant-transport with variable surface properties.
. Simulation of real physical systems; validation of numerical methods.
. Development and analysis of numerical methods.

I Key components:
. Adaptive multilevel hierarchy of tetrahedral

triangulations. Local refinement / coarsening.
. Level set method for interface representation.
. Finite element methods. Extended-FEM (XFEM)

for discretization of discontinuous quantities.

. Special Laplace-Beltrami method for surface
tension force discretization.

. Implicit time discretization method with strong
coupling of fluid dynamics and interface
dynamics.

. New FE method for discretization of surfactant
transport equation.

. Method for treatment of variable surface tension
coefficients.

. Fast iterative solvers.

. Parallelization with MPI. Γ

Γh

Numerical treatment of viscous surface stress tensor

I Introduction of localized force term in weak formulation:

fΓ(v) =

∫
Γ
(divΓ σΓ) · v ds

Accurate discretization of fΓ is essential !
I Decoupling of level set function and fluid dynamics.
I Convergence acceleration :
. Linearization of fΓ(v) term accelerates the convergence rate[1].

∆t no acceleration LinST

10−3 4 (18) 4 (20)

10−2 > 250 17 (70)

10−1 > 250 214 (1578)

. Implicit treatment of viscous terms.
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Validation[2]

I Test case: a droplet in a plane Poiseuille flow

uP
x

y

I Theoretical analysis[3]:
. A spherical droplet with viscous interface in an unbounded domain.
. Creeping flow condition.
. Predication for migration velocities.

Umig = −
2Bod + 3ξ

3(2 + 2Bod + 3ξ)
αr2~ex.

I Numerical experiments:
. Enough surface tension is needed for a spherical

shape.
. Bounded domain, restrictions of flow numbers

(Re, We, Ca).
. Calculated migration velocities are compared to

theoretical results for validation.
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Conclusion

I We choose a simple Newtonian droplet model with a viscous interface to
simulate a biological cell in blood vessels.

I Numerical methods for solving the model problem have been introduced.
I We validate our numerical results by considering a simple test problem and

comparing with theoretical analysis.
I More complicated is the viscoelastic behavior of biointerfaces.
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