

igpm

Topic 6: QR-Iteration with Shift

In this exercise we want to enhance the QR-Iteration from the previous exercise by inclusion of a clever shift-strategy. The *QR-Iteration with Shift* shall then be applied for symmetric and non-symmetric matrices. Since this exercise requires a successful implementation of the QR iteration, it is mandatory to complete the previous exercise.

From now on let $A \in \mathbb{R}^{n \times n}$ be diagonalisable with eigenvalues λ_i . We assume that all eigenvalues are of distinct magnitude and w.l.o.g. ordered:

$$|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$$

The speed of convergence of the QR-iteration depends on the ratios $|\lambda_{i+1}/\lambda_i|$ of successive eigenvalues. If the ratio is close to 0 then it converges quickly, if it is close to 1 then it slows down considerably.

Similarly to the trick of the shifted inverse iteration, one can here as well introduce a Shift and thereby speed up the convergence — at least for one of the eigenvalues at a time. Let $\mu \in \mathbb{R}$ be an approximation of the eigenvalue λ_i such that

$$|\mu - \lambda_i| \ll |\mu - \lambda_j| \quad \forall j \neq i.$$

The QR-Iteration applied to the matrix $A - \mu I$ will then quickly converge for the first eigenvector corresponding to the eigenvalue λ_i :

Algorithm 1 QR-Iteration with Shift

1: $A_1 := A, Q_1 := I$ 2: for i = 1, 2, ... do 3: Determine μ 4: Compute a QR-decomposition $(A_i - \mu I) =: \hat{Q}_{i+1}R_{i+1}$ 5: $A_{i+1} := R_{i+1}\hat{Q}_{i+1} + \mu I$ 6: $Q_{i+1} := Q_i\hat{Q}_{i+1}$ 7: end for

Algorithm 1 has the following properties:

- A_i converges to an upper triangular matrix, but in general $A_i \neq Q_i^T A Q_i =: \hat{A}_i$.
- The diagonal entries of \hat{A}_i are approximations of the eigenvalues of A.
- The shift parameter μ can be chosen differently in each step (without increasing the computational complexity)

In the following we assume that the matrix A is already given in upper Hessenberg form. The shift parameter μ in Algorithm 1 shall now be chosen in such a way that it approximates the same eigenvalue in every step (but we do not know the eigenvalues, how should we do this ?). After a

few steps the matrix $M := \hat{A}_i$ should be of the form

for some $k \in \{1, \ldots, n\}$. If the entry $m_{k+1,k}$ is close enough to 0, then the problem can be split into two subproblems for the matrices $M_{11} \in \mathbb{R}^{k \times k}$ and $M_{22} \in \mathbb{R}^{(n-k) \times (n-k)}$.

 M_{11} and M_{22} are both of upper Hessenberg form. The algorithm can thus be applied recursively for M_{11} and M_{22} . From the solutions of the subproblems we obtain the solution for M. We apply Algorithm 1 until the subproblems are of size 1×1 and thus trivial. An important criterion is to decide whether or not entry $m_{k+1,k}$ in (1) is small enough. In the following the problem is subdivided into subproblems if for given $\varepsilon > 0$

$$|m_{k+1,k}| < \varepsilon. \tag{2}$$

Copy all files from ../../vorlagen/EWP/ex6new into your directory EWP

cp -r ../../vorlagen/EWP/ex6new .

Complete in the file qr_shift.cc the function

which is supposed to perform the QR-iteration with shift. Exploit the recursive structure in your program. The input matrix A shall not be changed by your procedure. The result A_i shall be stored in A_i and the orthogonal factor Q_i in Q. The parameter eps controls the splitting criterion (2).

Compile your program by make.

Test: Start your programm qr_shift and test it for the matrices A und B. Analyse the output (on the screen).