
Numerik von Eigenwertproblemen
Dipl.-Wirt.-Math. Peter Gerds, SS 2013

Topic 6: QR-Iteration with Shift

In this exercise we want to enhance the QR-Iteration from the previous exercise by inclusion of a
clever shift-strategy. The QR-Iteration with Shift shall then be applied for symmetric and non-
symmetric matrices. Since this exercise requires a successful implementation of the QR iteration,
it is mandatory to complete the previous exercise.

From now on let A ∈ R
n×n be diagonalisable with eigenvalues λi. We assume that all eigenvalues

are of distinct magnitude and w.l.o.g. ordered:

|λ1| > |λ2| > . . . > |λn|

The speed of convergence of the QR-iteration depends on the ratios |λi+1/λi| of successive eigen-
values. If the ratio is close to 0 then it converges quickly, if it is close to 1 then it slows down
considerably.

Similarly to the trick of the shifted inverse iteration, one can here as well introduce a Shift and
thereby speed up the convergence — at least for one of the eigenvalues at a time. Let µ ∈ R be
an approximation of the eigenvalue λi such that

|µ− λi| ≪ |µ− λj| ∀j 6= i.

The QR-Iteration applied to the matrix A−µI will then quickly converge for the first eigenvector
corresponding to the eigenvalue λi:

Algorithm 1 QR-Iteration with Shift
1: A1 := A, Q1 := I
2: for i = 1, 2, . . . do
3: Determine µ
4: Compute a QR-decomposition (Ai − µI) =: Q̂i+1Ri+1

5: Ai+1 := Ri+1Q̂i+1 + µI
6: Qi+1 := QiQ̂i+1

7: end for

Algorithm 1 has the following properties:

• Ai converges to an upper triangular matrix, but in general Ai 6= QT
i AQi =: Âi.

• The diagional entries of Âi are approximations of the eigenvalues of A.

• The shift parameter µ can be chosen differently in each step (without increasing the com-
putational complexity)

In the following we assume that the matrix A is already given in upper Hessenberg form. The
shift parameter µ in Algorithm 1 shall now be chosen in such a way that it approximates the same
eigenvalue in every step (but we do not know the eigenvalues, how should we do this ?). After a

few steps the matrix M := Âi should be of the form

M =



























m1,1 m1,n

m2,1
. . .

...
. . . mk,k

...

0 ≈ mk+1,k mk+1,k+1
...

mk+2,k+1
. . .

...
. . . mn−1,n−1

...
mn,n−1 mn,n



























≈

[

M11 M12

0 M22

]

(1)

for some k ∈ {1, . . . , n}. If the entry mk+1,k is close enough to 0, then the problem can be split
into two subproblems for the matrices M11 ∈ R

k×k and M22 ∈ R
(n−k)×(n−k).

M11 and M22 are both of upper Hessenberg form. The algorithm can thus be applied recursively
for M11 and M22. From the solutions of the subproblems we obtain the solution for M . We apply
Algorithm 1 until the subproblems are of size 1 × 1 and thus trivial. An important criterion is
to decide whether or not entry mk+1,k in (1) is small enough. In the following the problem is
subdivided into subproblems if for given ε > 0

|mk+1,k| < ε. (2)

Practical Exercise

Copy all files from ../../vorlagen/EWP/ex6new into your directory EWP

cp -r ../../vorlagen/EWP/ex6new .

Complete in the file qr_shift.cc the function

void qr_shift_iteration(const TDenseMatrix * A, TDenseMatrix * A_i,

TDenseMatrix * Q, const real eps);

which is supposed to perform the QR-iteration with shift. Exploit the recursive structure in your
program. The input matrix A shall not be changed by your procedure. The result Ai shall be
stored in A_i and the orthogonal factor Qi in Q. The parameter eps controls the splitting criterion
(2).

Compile your program by make.
Test: Start your programm qr_shift and test it for the matrices A und B. Analyse the output
(on the screen).

