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1 Introduction

1.1 Preliminary Remarks

This course addresses the numerical solution of different types of par-
tial differential equations (PDEs) under suitable side conditions such as
boundary value or initial value conditions. Specifically, when the side con-
ditions are homogeneous the PDE can be written as operator equation

F(u) = f, (1.1.1)

where the data f are given. The standard procedure is then to choose a
discretization of the operator F , denoted e.g. as Fh and replace (1.1.1)
by a finite dimensional (linear or nonlinear) system

Fh(u) = f , (1.1.2)

where the vector of unknown coefficients u representa a finite dimensional
approximation to the unknown u in (1.1.1). Assume for the moment that
F is linear the operator Fh has a matrix representation (once one has
fixed the a numbering of the unknowns)

Au = f , (1.1.3)

where A ∈ Rn×n, say. Recall that, according to Hadamard, a problem is
well-posed provided that

i) There exists a solution;

ii) the solution is unique;

iii) it depends continously on the data.
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Is well-posedness a simple issue for finite-dimensional problems?

Remark 1.1.1 (1.1.3) is well-posed if and only if det A 6= 0. In fact,
then A−1 exists (A : Rn → Rn is a bijection) and as a linear operator
is bounded with respect to any norm ‖ · ‖ on Rn (all norms on Rn are
equivalent). 2

In fact, for any perturbed data f̃ and corresponding solution ũ = A−1f̃ ,
one has

‖u− ũ‖ = ‖A−1f −A−1f̃‖ = ‖A−1(f − f̃)‖ ≤ ‖A−1‖‖f − f̃‖, (1.1.4)

and ũ tends to u when f̃ tends to f . Here for any matrix B ∈ Rn×n

‖B‖ := sup
u∈Rn

‖Bu‖
‖u‖

, (1.1.5)

denotes the operator norm of B with respect to the norm ‖ · ‖.

Thus, it seems that, once a problem has been discretized, the issue of well-
posedness is simple and reduces to invertibility of the discrete operator.

Stability Unfortunately, a closer look reveals that things are not that
simple. For instance, the matrix A = An depends on the dimension n
of the discretization and it could well be that ‖A−1

n ‖ tends to infnity
when n grows, impeding the continuous dependence. The discretization
is therefore called stable if

‖A−1
n ‖ = O(1), uniformly in n as n→∞. (1.1.6)

Unfortunately, this is still not the end of the story yet. In fact, for realistic
problems n is typically very large so that one cannot use direct solvers
for (1.1.3). Instead, one applies an iterative method.
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Condition numbers When A is symmetric positive definite the conju-
gate gradient scheme is an option. It is well-known that the convergence
speed then depends, however, on the condition number of An

κ‖·‖(An) := ‖An‖‖A−1
n ‖. (1.1.7)

For instance, when F is, a second order differential operator, such as the
Laplacian, as in Poisson’s equation with homogeneous Dirichlet boundary
conditions

−∆u = f in Ω, u|∂Ω = 0, (1.1.8)

one may manage to keep the ‖A−1
n ‖ uniformly bounded, but one cannot

expect that simultaneously the ‖An‖ remain uniformly bounded as well.
In fact, when n grows the An better and better approximate a differen-
tial operator which is not bounded as a mapping from a given space into
itself. Hence, the condition numbers κ‖·‖(An) increase with n which de-
grades the performance of an iterative scheme. Therefore, a lot of effort
has been devoted to the development of preconditioners which transform
the linear system into an equivalent one but with smaller (sometimes even
uniformly bounded in n) condition number.

Note: The preconditioner has to use in one way or the other the proper-
ties of the underlying infinite-dimensional continuous problem.

Upshot Abandoning the underlying continuous problem in favor of a
seemingly simple finite-dimesnsional discrete problem may entail severe
numerical issues which are difficult to solve without using the underlying
continuous model. Instead the particular structure of the discretization
should exploit knowledge about the original continuous problem to a best
possibel extent.

Main problems:

• “Continuous dependence” is a notion that depends on the particular
norm that measures accuracy. In the infinite-dimensional case norms
are no longer equivalent.

3



• When viewing the continuous problem (PDE) as an operator equa-
tion, the choice of norms is equivalent to saying which normed linear
space U is mapped by the operator into which normed space W.

• Unique solvabiliy of the operator equation (1.1.1) for all data in W
means that F : U→W should be a bijection. When F = A is linear,
once U, W have been chosen, one can define a condition number for
A, see (1.1.10) below.

A central theme in this course is to tightly interrelate discrete and con-
tinuous models to arrive at efficient numerical techniques.

Note: One cannot expect a numerical scheme to work well if the under-
lying continuous problem is not well-posed in a suitable sense.

To explain what we mean by a well-posed continuous problem assume
that F = A is a linear operator (as the Laplacian in (1.1.8)). The basic
conceptual ingredients can be summarized as follows:

• Interpret a given PDE as an operator equation (1.1.1). Specifically,
when F = A is a linear operator this means to identify a suitable pair
of (normed linear) spaces U,W for which A : U→W. Then, unique
solvability (i), (ii) means that A is actually a bijection. Continuous
dependence means that A ∈ L(U,W) (the space of bounded linear
operators from U to W) meaning that

‖A‖L(U,W) := sup
u∈U

‖Au‖W
‖u‖U

<∞, (1.1.9)

and A−1 ∈ L(W,U). In this case A has a bounded condition number

κU,W(A) := ‖A‖L(U,W)‖A−1‖L(W,U), (1.1.10)

and a continuous dependence of the solution in U is obtained in
analogy to (1.1.4) with a stability constant ‖A−1‖L(W,U).

• The identification of the domain U and range W of the operator
A is part of the problem, since these spaces generally depend on
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the structure of the operator A. The most powerful framework for
finding suitable pairs of spaces is the concept of weak formulations
or variational formulation of the operator equation. This is a central
topic in this course.

• Nonlinear problems can be treated (as in Newton’s method) by lin-
earization. The Frechét derivative DF(v) at a point v ∈ U is (as is
easily shown in the context of variational formulations) a mapping
into W. So well-posedness can often be reduced to well-posedness
of the linearized problem for suitable neigborhoods of linrearization
points v in a neighborhood of the solution.

1.2 Some Principal Consequences

In the above terminology κU,W(A) <∞ means that A has a finite relative
condition and hence is well-posed. The following observation indicates
that it is also important to keep κU,W(A) <∞ at moderate size.

A Posteriori Error Bounds Suppose uh ∈ U is an approximation to
the solution u ∈ U of

Au = f. (1.2.1)

Then

‖u− uh‖U = ‖A−1(A(u− uh))‖U ≤ ‖A−1‖L(W,U)‖A(u− uh)‖W
= ‖A−1‖L(W,U)‖f −Auh‖W
≤ ‖A−1‖L(W,U)‖A‖L(U,W)‖u− uh‖U. (1.2.2)

It will be convenient to reexpress this as follows. If one has bounds

‖A−1‖L(W,U) ≤ c−1
A , ‖A‖L(U,W) ≤ CA (1.2.3)

for some finite constants cA, CA, then the error in U is sandwiched by the
residual in W

C−1
A ‖f −Auh‖W ≤ ‖u− uh‖U ≤ c−1

A ‖f −Auh‖W. (1.2.4)

The significance of this relation is that
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• the residual involves only known quantities and hence can, in princi-
ple, be evaluated. (It wil be seen that in practice the computation of
the norm for W may be tricky because it is typically a dual norm).

• These computable bounds are lower and upper bounds and hence are
“equivalent” to the error.

• However, the estimate of ‖u − uh‖U is the sharper the smaller the
condition number κU,W(A).

Remark 1.2.1 Therefore, from a numerical point of view well-posedness
is not quite sufficient because κU,W(A) could be very large (and we’ll
encounter such examples). Instead, we are interested in arranging things
so that κU,W(A) has a moderate size. In this case we speak of a well-
conditioned problem. We’ll discuss ways of preconditioning the original
problem on the infinite-dimensional level. 2

1.3 A Guiding Example

There are (at least) three major discretization concepts, Finite Difference
methods, Finite Volume schemes and Galerkin-type methods based on
weak formulations of the underlying PDE.

In this course, we confine the discussion entirely to the latter class for two
major reasons:

a) The PDE often represents a physical model only under an additional
regularity assumption of the solution. This is often not satisfied and
a weak formulation tries to recover all physically relevant cases by
relaxing the notion of solution.

b) As indicated in the previous chapter we wish to tightly relate dis-
cretizations to the mapping properties of the operator in the given
operator equation. This is supported in a anatural way by schemes
based on weak formulations of a PDE.

6



1.3.1 A Regularity Issue and Some Prerequisits

We begin with an example that illustrates a) for instance, when A = −∆
is the Laplacian. In this case one could think of letting it act on U =
C2(Ω), the space of twice continuously differential functions in Ω. Then
∆ maps this space into the space of continuous functions W = C(Ω).
However, as shown below, for any data in C(Ω) one finds a solution only
under additional assumptions on Ω. Instead, it will be seen that Sobolev
spaces are better suited.

Example 1.3.1 Let

Ω =
{

(x, y) ∈ R2 : x2 + y2 < 1, x < 0 or y > 0
}
.

We can identify the complex plane C and R2 through C 3 z = x + iy ↔
(x, y) ∈ R2.

Then w(z) := z2/3 is analytic in Ω and

u (z) := Im w (z)

is a harmonic function, i.e., ∆u = 0. Hence with g = u|∂Ω this function
solves

−∆u = 0, in Ω, u = g on ∂Ω.
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But, since

w′ (z) =
2

3
z−1/3

not even the first derivatives of u remain bounded when z → 0. Hence
the previous consistency bounds requiring, for instance, boundedness of
supx∈Ω maxk1+k2≤4 |∂k1

x1
∂k2
x2
u(x)| are not applicable. 2

This shows that different strategies are needed that work with different
regularity notions. In fact, recall that the derivation of Poisson’s equa-
tion from a diffusion model worked under the assumption that certain
integrands are continuous. To cover also physically meaningful scenarios
for which this assumption is violated the key is to weaken the notion of
“solution”.

The basic idea is easy to explain for the Poisson equation with homoge-
neous Dirichlet boundary conditions

−∆u (x) = f (x) , x ∈ Ω, u (x) = 0, x ∈ ∂Ω. (1.3.1)

u ∈ C2(Ω)∩C(Ω) is called “classical” or “strong” solution, i.e., the equa-
tion is required to hold at each point x ∈ Ω.

To prepare for later developments this can be re expressed as follows:
recall that the operator

δx : f → f (x) =: δxf =: 〈f, δx〉 (1.3.2)

is a linear and bounded (hence continuous) operator from C(Ω) to R. In
fact

|δxf | = |f (x)| ≤ sup
x∈Ω
|f (x)| = ‖f‖L∞(Ω) ,

i.e.,

‖δx‖L∞(Ω)→R = 1. (1.3.3)

One also says that the Dirac functional belongs to the dual of C(Ω), the
space of bounded linear functionals on C(Ω).
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One can now say that (1.3.1) means that the equation

−∆u = f

holds under any “test” with Dirac functionals

〈−∆u, δx〉 = 〈f, δx〉 , x ∈ Ω. (1.3.4)

As the initial example shows thus way of testing requires too much regu-
larity of the solution and is therefore in general inappropriate.

Such “strong” tests can be weakened as follows. Recall that Ω ⊂ Rd is
open. Let C∞0 (Ω) denote the space of infinitely differentiable functions
with compact support in Ω. Of course, whenever u satisfies (1.3.1) one
certainly has∫

Ω

−∆u (x) v (x) dx =

∫
Ω

f (x) v (x) dx, ∀v ∈ C∞0 (Ω) . (1.3.5)

If one interprets derivatives - in this case ∆ - in the distributional sense
and requires the validity of −∆u = f only in the above sense under
testing with “smooth” functions (which could be understood as “local
averaging”) one may indeed relax the requirements on u. We discuss next
in which sense this is indeed the case.

Domains: In what follows Ω will always denote an open bounded con-
nected domain in Rd whose boundary ∂Ω is a piecewise smooth and
Lipshitz-Graph. This means that there exists a finite covering of ∂Ω
by open sets such that on each of them the portion of ∂Ω is the graph of
a Lipshitz function.

A frequently used tool is

Green’s Formulae: Denoting by n(x) for each point x ∈ ∂Ω possessing
a unique tangent plane the outward unit normal vector, one has for any
v, w ∈ C1(Ω) ∫

Ω

∂xiwvdx = −
∫

Ω

w∂xivdx+

∫
∂Ω

vwnids, (1.3.6)
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where ni is the ith component of n. As a consequence one obtains for
vector fields w∫

Ω

(divw)vdx = −
∫

Ω

wT∇vdx+

∫
∂Ω

nTwvds. (1.3.7)

In particular, this yields for v ≡ 1 Gauß’ Theorem∫
Ω

(divw)dx =

∫
∂Ω

nTwds. (1.3.8)

To see that the tests in (1.3.5) are indeed weaker than point-wise tests in
(1.3.4) we apply (1.3.7) to obtain

−
∫
Ω

∆u (x) v (x) dx =

∫
Ω

div (∇u (x)) v (x) dx

=

∫
Ω

(∇u (x))T ∇v (x) dx−
∫
∂Ω

nT∇u (x) v (x)︸︷︷︸
=0

dx

=

∫
Ω

(∇u (x))T ∇v (x) dx, (1.3.9)

since v(x) = 0, x ∈ ∂Ω, for v ∈ C∞0 (Ω). Thus (1.3.5) reads: find u with
u|∂Ω = 0, such that∫

Ω

(∇u (x))T ∇v (x) dx =

∫
Ω

f (x) v (x) dx, ∀v ∈ C∞0 (Ω) . (1.3.10)

This is called the weak formulation of (1.3.1).

Note that, for (1.3.10) to make sense, it is no longer required to have
u ∈ C2(Ω). In fact, using Cauchy-Schwarz

∣∣∣∣∣∣
∫
Ω

(∇u (x))T ∇v (x) dx

∣∣∣∣∣∣ ≤
∫

Ω

|∇u (x)|2 dx


1

2
∫

Ω

|∇v (x)|2 dx


1

2
,

(1.3.11)
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(where |∇u(x)|2 =
∑d

i=1 | ∂∂xiu(x)|2 stands for the Euclidean norm) one
sees that the gradient of u just needs to be square integrable.

Moreover, the test functions v were chosen from C∞0 (Ω) just for conve-
nience. One can do integration by parts and saying that v|∂Ω = 0 makes
(even point-wise) sense. However, defining (with Lebesque integration) ‖v‖0,Ω = ‖v‖L2(Ω) :=

(∫
Ω

|v (x)|2 dx

)1/2

‖v‖2
1,Ω = ‖v‖H1(Ω) := ‖v‖2

0,Ω + ‖∇v‖2
0,Ω ,

(1.3.12)

it is clear that ‖ ·‖0,Ω and ‖ ·‖1,Ω are both norms (defined in particular, on
C∞0 (Ω)). Now, let v∗ be any limit of a sequence vj ∈ C∞0 (Ω) with respect
to ‖ · ‖1,Ω, i.e.

‖v∗ − vj‖1,Ω → 0, j →∞, (1.3.13)

then we still have∫
Ω

(∇u (x))T ∇v∗ (x) dx =

∫
Ω

f (x) v∗ (x) dx. (1.3.14)

Exercise 1.3.1 Prove (1.3.14) formally.

Hence, once u satisfies (1.3.10), it still holds under tests by all limits of
elements from C∞0 (Ω) in the norm ‖ · ‖1,Ω.

1.3.2 Weak Formulation of the Poisson Equation

This suggests defining

H1
0 (Ω) := H1

0 (Ω;R) := C∞0 (Ω)
‖·‖1,Ω (1.3.15)

as the closure of C∞0 (Ω) under ‖ · ‖1,Ω. Here C∞0 (Ω) denotes the space of
infinitel often differentiable functions with compact support in Ω. Note:
such functions must vanish on ∂Ω since the support is closed by defini-
tion.

11



H1
0(Ω) is an example of a Sobolev space. The subscript “0“ indicates that

(in a sense to be made precise later) its elements vanish on ∂Ω. Therefore
it makes sense to look for the solution u also in H1

0(Ω). Obviously, H1
0(Ω)

is a closed subspace of the correspondingunconstrained Sobolev space

H1(Ω) := H1(Ω;R) := C∞ (Ω)
‖·‖1,Ω. (1.3.16)

As will be discussed later in more detail H1
0(Ω), H1(Ω) are examples of

Hilbert spaces which, in particular, are complete normed linear spaces. By
the above limiting argument the validity of (1.3.6), (1.3.7), (1.3.8) extends
to elements in H1(Ω) which will be used frequently.

The above considerations lead to an abstract formulation of (1.3.10) that
will guide subsequent developments. To describe this we need a few el-
ementary functional analytic notions. Recall that a linear space X (or
more precisely the pair (X, ‖ · ‖X)) endowed with a norm ‖ · ‖X is called
a Banach space if it is complete, i.e., Cauchy sequences in X have a limit
in X.

A Banach space is a Hilbert space if the norm is induced by an inner
product ‖v‖X = (v, v)

1/2
X . Moreover, given a Banach space X, we denote

by X′ its normed dual, which is the space of all bounded linear functionals
w : X→ R, endowed with the norm

‖w‖X′ := sup
v∈X\{0}

w(v)

‖v‖X
. (1.3.17)

We sometimes write 〈w, v〉 = w(v). Now note that

f (v) := (f, v)0,Ω :=

∫
Ω

f (x) v (x) dx (1.3.18)

is a linear functional on

L2 (Ω) :=
{
w : Ω→ R, measurable : ‖w‖0,Ω <∞

}
.

Just as the Dirac functional is bounded on C(Ω) the functional repre-
sented by f is bounded on L2(Ω), (i.e. by Cauchy-Schwarz)

|f (v)| =
∣∣∣(f, v)0,Ω

∣∣∣ ≤ ‖f‖0,Ω ‖v‖0,Ω
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as long as f itself, as a function, belongs to L2(Ω). Therefore, f can also
be identified with a bounded linear functional on H1

0(Ω) ⊂ L2(Ω), or in
the above terms

f ∈ (H1
0(Ω))′ =: H−1(Ω). (1.3.19)

It will later be seen that the dual H−1(Ω) of H1
0(Ω) is actually strictly

larger than L2(Ω), i.e., contains elements that cannot be identified with
a function in L2(Ω).

Next note that

a (u, v) :=

∫
Ω

(∇u (x))T ∇v (x) dx (1.3.20)

is a symmetric bilinear form on H1
0(Ω). In fact, by (1.3.11), we have

|a(v, w)| ≤ ‖∇v‖0,Ω‖∇w‖0,Ω ≤ ‖v‖1,Ω‖w‖1,Ω, ∀ v, w ∈ H1
0(Ω). (1.3.21)

We say that the bilinear form a(·, ·) is continuous on H1
0(Ω)×H1

0(Ω). In
fact, a(·, ·) is also continuous on the larger space H1(Ω).

Weak Formulation: Therefore, (1.3.10) can be restated as:

Given f ∈ (H1
0(Ω))′ find u ∈ H1

0(Ω), such that

a (u, v) = f (v) , ∀v ∈ H1
0 (Ω) . (1.3.22)

This is a first, and perhaps simplest version of a weak formulation of a
PDE. It is a special instance of the general

Variational Problem: Let U be a Hilbert space and a(·, ·) be a continuous
bilinear form on U× U. Given f ∈ U′ find u ∈ U such that

a(u, v) = f(v), ∀ v ∈ U. (1.3.23)

Remark 1.3.1 We shall refer to U as the (infinite-dimensional) trial
space in this weak formulation. Note that we use here U also as the
(infinite-dimensional) test space. In that sense the formulation is sym-
metric, i.e., trial and test space are the same. Such formulations are also
called Galerkin formulation. 2
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Remark 1.3.2 The above scenario can be extended as follows: let U,V
be Hilbert spaces and suppose that B(·, ·) : U × V → R is bilinear. For
each u ∈ U define the functional

(Bu)(v) := B(u, v), v ∈ V. (1.3.24)

i) Bilinearity of B(·, ·) means that Bu is (for each fixed u ∈ U) a linear
functional.

ii) Bu is bounded, i.e., Bu ∈ V′, if and only if there exists a constant
C(u) (depending on u) such that

|Bu(v)| = |B(u, v)| ≤ C(u)‖v‖V. (1.3.25)

iii) Again, since B(·, ·) is bilinear, the assignement

u 7→ Bu

is a linear mapping that takes any u ∈ U to a functional Bu ∈ V′.
Therefore, we can write

Bu = Bu, B : U→ V′. (1.3.26)

iv) This allows us to reinterpret the variational problem: for f ∈ V′ find
u ∈ U such that

B(u, v) = f(v), v ∈ V′,

as an operator equation
Bu = f, (1.3.27)

i.e., we have the situation discussed before where in (1.2.1) we now
have (for A = B)

W = V′. (1.3.28)

In such a setting the range W of an operator arises naturally as a
dual space of the test space.

v) As an example, one can interpret (1.3.9) as follows: −∆u acts as a
linear functional on H1

0(Ω) which, by (1.3.21), is bounded. Therefore,
we can view −∆ as an operator that maps H1

0(Ω) into H−1(Ω) :=
(H1

0(Ω))′, i.e., U = V, W = U′ = V′.
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vi) In the case of Poisson’s equation we have taken U = V, trial- and
test-space are the same, which is the case of a symmetric variational
formulation. We will see later that in some important cases one
must take V 6= U in order to arrive at a well-conditioned variational
formulation or even at formulation with a continuous bilinear form.
Corresponding weak formulations are also called Petrov-Galerkin for-
mulations

vii) For the operator B to have a bounded condition it must be bounded.
This means C(u) ≤ CB‖u‖U must hold for some constant CB < ∞.
Therefore, for a reasonable variational formulation, we must have
that the bilinear form is continuous

|B(u, v)| ≤ CB‖u‖U‖v‖V, u ∈ U, v ∈ V. (1.3.29)

Thus, in subsequent examples continuity of the bilinear form is the
first property to be checked. By the above reasoning (1.3.29) is
equivalent to saying

B ∈ L(U,V′), ‖B‖L(U,V′) ≤ CB. (1.3.30)

viii) To show that B−1 exists and is also bounded is in general more dif-
ficult to check and will be discussed later in detail. 2
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2 Sobolev Spaces

The previous discussion indicates the relevance of “function spaces” of
the type (1.3.15) and related objects. An in-depth treatment would go
beyond the scope of this lecture and is typically part of a course on partial
differential equations. One can consult for instance [Alt85, Ada75, AU10]
for more details. To provide some underpinning for those who haven’t
taken such a course, some relevant facts and ideas are collected in this
chapter, but some proofs will have to be skipped.

The notion of Hilbert space as a generalization of Euclidean spaces plays
a pivotal role.

2.1 Hilbert spaces

Recall that a vector space H over R, equipped with a scalar product
(·, ·)H is called a Hilbert space, if (H, ‖ · ‖H) with ‖v‖H := (v, v)

1/2
H is a

complete normed linear space. As metioned earlier, “complete” means
that every Cauchy sequence in H has a limit in (H, ‖ · ‖H). As a simplest
example (Rd, | · |) is a Hilbert space over R, where |x| = (

∑d
i=1 x

2
i )

1/2. It is
sometimes necessary to consider Hilbert spaces over the complex field C.
In this case the inner product is a sesquilinear form with the property

(·, ·)H : H×H→ C, (v, w)H = (w, v)H, v, w ∈ H, (2.1.1)

where a is the complex conjugate of a ∈ C. For instance, for any countable
index set I let CI denote the set of all sequences (cλ)λ∈I and define for
|a|2 := aa, a ∈ C,

(v,w)`2(I) :=
∑
λ∈I

vλwλ, v, w ∈ CI , ‖v‖`2(I) :=
(∑
λ∈I

|vλ|2
)1/2

,

(2.1.2)
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the space

`2 (I) =
{
v ∈ CI : ‖v‖`2(I) <∞

}
.

Then (`2(I), ‖ · ‖`2(I)) is a Hilbert space over C.

Note that I is allowed to have infinite cardinality #(I) = ∞. When
#(I) = d, `2(I) can, of course, be identified with Cd endowed with the
Euclidean norm | · | = ‖ · ‖`2(I). This particular sequence space (admitting
infinite sets I) is important for the following reason. One can show that
every separable Hilbert space H, which means that H contains a countable
dense subset, possesses an orthonormal basis Ψ = {ψλ : λ ∈ I} for some
countable index set I, such that by orthonormality

‖v‖H =
(∑
λ∈I

∣∣(v, ψλ)H∣∣2)1/2

= ‖v‖`2(I), v =
(
(v, ψλ)H

)
λ∈I .

i.e., the sequence norm induces the Hilbert space topology. In this sense,
Hilbert spaces are a natural generalization of Euclidean spaces.

This is, of course, important in Harmonic Analysis but also in modern
wavelet-based solvers for PDEs.

We will primarily be concerned with function spaces that are are Hilbert
spaces.

2.2 Lebesgue spaces

Defining

‖f‖L∞(Ω) :=


(∫

Ω

|f (x)|p dx
)1/p

, 1 ≤ p <∞,

ess sup
x∈Ω
|f(x)|, p =∞,

where integration is always understood in the Lebesgue sense, the Lebesgue-
spaces

Lp (Ω) =
{
f : Ω→ R (or C) measurable : ‖f‖Lp(Ω) <∞

}
,
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are for 1 ≤ p ≤ ∞ complete normed linear spaces - Banach spaces.
Lebesgue integration, as opposed to Riemann integration, is needed to
guarantee completeness.

Strictly speaking, the elements of Lp(Ω) are equivalence classes containing
all functions that differ only on sets of measure zero. Nevertheless, we
call f ∈ Lp(Ω) a “function” instead of an equivalence class where f is just
a representer.

Here we are mainly interested in p = 2. In this case, the norm ‖ · ‖L2(Ω) is
already defined by (1.3.12) and is often denoted as

‖·‖0,Ω = ‖·‖L2(Ω)

for conventional reasons. The point that distinguishes L2(Ω) from p 6= 2
is that

‖v‖2
0,Ω = (v, v)0,Ω (2.2.1)

is induced by an inner product, namely

(v, w)0,Ω :=

∫
Ω

v (x)w (x)dx, (2.2.2)

which is a scalar product on L2(Ω). Thus, since L2(Ω) is complete(
L2 (Ω) , ‖·‖0,Ω

)
is a Hilbert space.

2.3 Weak derivatives and Sobolev spaces

Classical (strong) derivatives are defined in a point-wise sense, weak
derivatives in an average sense. To motivate the definition suppose that
v ∈ Ck(Ω) and α ∈ Zd+, |α| = α1 + . . . + αd = k. Then, using repeated
integration by parts, one has for any φ ∈ C∞0 (Ω)∫

Ω

(
∂α

∂xα
v (x)

)
φ (x) dx = (−1)|α|

∫
Ω

v (x)
∂α

∂xα
φ (x) dx.

The right hand side still makes sense when v does not belong to Ck(Ω).
This leads to the following:
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Definition 2.3.1 Let v ∈ Lp(Ω), 1 ≤ p < ∞. Dαv ∈ Lp(Ω) is called
α-th weak derivative of v in Lp(Ω) if∫

Ω

Dαv (x)φ (x) dx = (−1)|α|
∫
Ω

v (x)
∂α

∂xα
φ (x) dx. (2.3.1)

2

Exercise 2.3.1 v(x) := |x| ∈ Lp((−1, 1)) has a weak derivative

D1v (x) =

{
−1; x ∈ (−1, 0) ,

1; x ∈ (0, 1) .

which belongs to Lp ((−1, 1)) for any 1 ≤ p <∞.

Show that v has no second derivative in Lp (Ω).

The k-th order Sobolev space in Lp(Ω) is often denoted by

W k,p (Ω) := {v ∈ Lp (Ω) : Dαv ∈ Lp (Ω) , |α| = k} .

It is a Banach space when endowed with the norm

‖v‖W k,p(Ω) :=

 k∑
j=0

∑
|α|=j

‖Dαv‖pLp(Ω)

1/p

. (2.3.2)

In the special case p = 2, one often uses the notation

W k,2 (Ω) := Hk (Ω) , H0 (Ω) = L2 (Ω) .

Hk(Ω) is also a Hilbert space with scalar product

(v, w)k,Ω :=
k∑
j=0

∑
|α|=k

(Dαv,Dαw)0,Ω . (2.3.3)

The expression

|v|2k,Ω :=
∑
|α|=k

‖Dαv‖2
0,Ω (2.3.4)

is only a semi-norm when k > 0.
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Thus, we have

‖v‖k,Ω := ‖v‖Hk(Ω) =

(
k∑
j=0

|v|2j,Ω

)1/2

. (2.3.5)

Remark 2.3.1 One can show that(
‖v‖2

0,Ω + |v|2k,Ω
)1/2

is an equivalent norm on Hk(Ω), i.e. one can omit the intermediate semi-
norms |v|j,Ω, 0 < j < k. 2

Remark 2.3.2 Under the above assumptions on Ω one can show that

Hk (Ω) = C∞ (Ω)
‖·‖k,Ω, (2.3.6)

i.e., smooth functions are dense in Hk(Ω). This was the definition used
in Section 1.3.2, see (1.3.16). 2

It is not clear yet how to deal with boundary conditions in the context of
weak derivatives. For instance, it makes no sense to say “v ∈ H1

0(Ω) when
v vanishes on ∂Ω and possesses first order weak derivatives”. We will see
later that the existence of weak derivatives will allow us to say something
about values on the boundary of a domain. So for the moment, we are
content with taking up (1.3.15) and define in agreement with (2.3.6)

Hk
0 (Ω) = C∞0 (Ω)

‖·‖k,Ω ⊆ Hk (Ω) , (2.3.7)

as a closed subspace of Hk(Ω), it is again a Hilbert space, see (3.1.6) in
the context of the biharmonic equaltion.

We will have to compare different spaces with each other regarding the
“strength” of the respective norms. A space (Y, ‖ · ‖Y) is said to be
continuously embedded in (X, ‖ · ‖X) if

Y ⊆ X and ‖v‖X ≤ C ‖v‖Y ∀ v ∈ Y

holds for some constant C <∞, i.e., the “smaller” space has a “stronger”
norm.
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One has the following continuous embeddings

L2 (Ω) = H0 (Ω) % H1 (Ω) % . . . % Hk (Ω) % . . .

= $ $

H0
0 (Ω) % H1

0 (Ω) % . . . % Hk
0 (Ω) % . . .

(2.3.8)

Non-integer orders:

It is possible (in fact necessary) to define Sobolev spaces of non-integer
order Hs(Ω), s ≥ 0, which in some sense “interpolate” the Hk(Ω) k ∈ N.
(Corresponding spaces of “negative order” s < 0 are then defined as the
duals to the ones with positive order.) The s between two integers offer
a refined measure of smoothness for the L2-norm like the Hölder spaces
for the L∞-norm

Cs (Ω) = {v ∈ C (Ω) : |v (x)− v (y)| ≤ C |x− y|s , x, y ∈ Ω} , 0 < s < 1.

Such a non-integer smoothness order is easy to define when Ω = Rd, using
the Fourier transform

f̂ (ξ) =
1

(2π)d/2

∫
Rd

f (x) e−iξ
Txdx.

In fact, recalling that(
∂α

∂xα
f

)
(̂ξ) = (iξ)α f̂ (ξ) , α ∈ Zd+,

one can show that

‖v‖2
k,Rd ∼

∫
Rd

(
1 + |ξ|k

)2

|v̂ (ξ)|2 dξ.

It is then natural to define

|||v|||2s,Rd :=

∫
Rd

(1 + |ξ|s)2 |v̂ (ξ)|2 dξ, (2.3.9)

which describes “smoothness” or “regularity” by a certain decay of the
Fourier transform, because high-frequency components (f̂(ξ), |ξ| large)
are required to decay rapidly when s is large for v to be in

Hs(Rd) := {v ∈ L2(Rd) : |||v|||s,Rd <∞}. (2.3.10)
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Unfortunately, on bounded domains this is less straight-forward. There
are several possible strategies which can be shown to be all equivalent
under mild conditions on Ω.

The first is to use Whitney’s Extension Theorem, that says that v ∈ Hk(Ω)
can be extended to Hk(Rd) to some ṽ ∈ Hk(Rd) such that ‖ṽ‖k,Rd ≤
C‖v‖k,Ω for some C depending only on Ω and k. Then one can define for
s ≤ k

|||v|||s,Ω = |||ṽ|||2s,Rd

where the right hand expression is given by (2.3.9). This is an important
theoretical fact but of little help in practical computations.

The second possible strategy is to use the concept of “interpolation of
Banach spaces” which is a systematic way of filling “gaps” in a scale of
Banach spaces, see [BL76].

A third possibility is based on an explicit expression for the norm: Let
k < s < k + 1:

‖v‖2
s,Ω := ‖v‖2

k,Ω +
∑
|α|=k

∫
Ω

∫
Ω

|Dαv (x)−Dαv (y)|2

|x− y|d+2(s−k)
dxdy (2.3.11)

which is reminiscent of the Hölder norms.

Such non-integer regularity measures are not introduced for curiosity.
They are needed to properly deal with the restrictions of Sobolev func-
tions to lower dimensional manifolds like domain boundaries.

Obviously, ‖ · ‖s+ε,Ω is a stronger norm than ‖ · ‖s,Ω for any ε > 0. Hence
Hs+ε(Ω) is continuously embedded in Hs(Ω) for any ε > 0. This can be
made more precise. To this end, we need the notion of compact embed-
ding.

A Banach space (Y, ‖ · ‖Y) is compactly embedded in another Banach
space (X, ‖ · ‖X), writing Y ↪→ X, if Y ⊂ X and the unit ball

UY := {y ∈ Y : ‖y‖Y ≤ 1}
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in Y is a compact subset of X, i.e., the canonical injection is a compact
mapping. Compact embeddings play a crucial role when establishing later
convergence rates for numerical schemes.

In the finite dimensional case a continuous embedding is also compact
(by Heine-Borel). In the infinite dimensional case this is not true, i.e., a
closed bounded set is not necessarily compact. Then compactness typi-
cally results from higher regularity. The following (special case of) Rel-
lich’s Theorem is a typical example. (There are more general variants for
W k,p(Ω).)

Theorem 2.3.1 (Rellich) Whenever s < t one has the compact embed-
ding

H t (Ω) ↪→ Hs (Ω) .

2

2.4 Classical versus Weak Regularity

Weak differentiability is - as the term indicates - a weaker regularity
notion than classical point-wise regularity. The interesting point is that
the discrepancy between these notions depends on the spatial dimension
d.

Remark 2.4.1

H1 ((a, b)) ⊂ C ((a, b)) .

2

Proof Exercise. Hint: use that C∞((a, b)) is a dense subset of H1((a, b))
and employ the Arzela-Ascoli Theorem stating that a bounded equicon-
tinuous sequence has a convergent subsequence. �

However, already for d = 2 an element of H1(Ω), Ω ⊂ R2, need not be
continuous.
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Example 2.4.1 Let Ω = {x ∈ R2 : |x| < 1} be the open unit ball. Then

u (x) := log

(
log

2

|x|

)
∈ H1 (Ω)

but u is not bounded in Ω. 2

Proof Exercise. Hint: u ∈ H1(Ω) follows from

1/2∫
0

1

r log2 r
dr <∞.

�

Example 2.4.2 For d ≥ 3 one has

u (x) := |x|−t , 0 < t <
d− 2

2

belongs to H1(Ω). Obviously, the singularity at x = 0 becomes the
stronger the larger d. 2

The general situation is described by the Sobolev Embedding Theorem, a
very special case of which reads as follows.

Theorem 2.4.1 Whenever s > d
2 one has Hs(Ω) ⊂ C(Ω), (Ω ⊂ Rd) and

the embedding is compact. More generally

W s,q(Ω) ↪→ W s′,p(Ω) if d
(1

q
− 1

p

)
< s− s′. (2.4.1)

Hence, the larger d the larger is the discrepancy between pointwise (clas-
sical) and weak differentiability.

2.5 Some Important Inequalities

The next result says that the seminorm | · |1,Ω (see (2.3.5)) is even a norm
on the subspace H1

0(Ω) of H1(Ω).
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Proposition 2.5.1 (Poincaré-Friedrichs-Inequality) There exists a
constant cΩ depending only on Ω, such that

‖v‖0,Ω ≤ cΩ ‖∇v‖0,Ω = cΩ |v|1,Ω , v ∈ H1
0 (Ω) . (2.5.1)

2

Remark 2.5.1 (2.5.1) does not hold for v ∈ H1(Ω), because the constant
functions belong to H1(Ω), and ‖c‖0,Ω > 0 while |c|1,Ω = 0. This does not
contradict (2.5.1) though since the only constant in H1

0(Ω) is zero. 2

Proof (of Proposition 2.5.1) Since C∞0 (Ω) is dense in H1
0(Ω) it suf-

fices to confirm (2.5.1) for v ∈ C∞0 (Ω) and then pass to the limit. More-
over, without loss of generality we can assume that Ω ⊆ (0, s)d. Moreover,
any v ∈ C∞0 (Ω) can be extended to C∞0 ((0, s)d) by setting v(x) = 0, x ∈
(0, s)d\Ω. Then

v (x1, x2, . . . , xd) = v (0, x2, . . . , xd)︸ ︷︷ ︸
=0

+

x1∫
0

∂x1
v (y, x2, . . . , xd) dy.

Thus

|v (x)|2 ≤

 s∫
0

1dy

 s∫
0

|∂x1
v (y, x2, . . . , xd)|2 dy


and

s∫
0

|v (x)|2 dx1 ≤ s2

 s∫
0

|∂x1
v (x1, x2, . . . , xd)|2 dx1


which gives ∫

(0,s)
d

|v (x)|2 dx ≤ s2

∫
(0,s)

d

|∂x1
v (x)|2 dx

≤ s2 ‖∇v‖2
0,Ω .

(2.5.2)

�
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Corollary 2.5.1 For Ω as above, ‖ ·‖m,Ω and | · |m,Ω are equivalent norms
on Hm

0 (Ω), m ∈ N. In particular, when Ω ⊆ (0, s)d one has

|v|m,Ω ≤ ‖v‖m,Ω ≤
(
1 + s2

)m/2 |v|m,Ω . (2.5.3)

2

Proof The first inequality is trivial. We verify the second one by induc-
tion. By (2.5.1) we have

‖v‖2
0,(0,s)

d + |v|2
1,(0,s)

d ≤
(
1 + s2

)
|v|2

1,(0,s)
d ,

which is (2.5.3) for m = 1. Suppose it holds for some m ≥ 1. Then by
(2.5.1), one obtains for any α ∈ Zd+, |α| = m,

‖∂αv‖2
0,Ω ≤ s2

∥∥∂xj∂αv∥∥2

0,Ω
, j = 1, . . . , d. (2.5.4)

Therefore

‖v‖2
m+1,Ω = ‖v‖2

m,Ω + |v|2m+1,Ω

≤
(
1 + s2

)m |v|2m,Ω + |v|2m+1,Ω

(2.5.4)

≤
(
1 + s2

)m
s2 |v|2m+1,Ω + |v|2m+1,Ω

=
(
1 + s2

)m+1 |v|2m+1,Ω .

�

The fact that a semi-norm becomes a norm on a subspace of H1(Ω) can
be extended in several ways. One such extension concerns homogeneous
boundary conditions on part of ∂Ω. Let

ΓD ⊂ ∂Ω, vold−1 (ΓD) > 0,

and consider

H1
0,ΓD

(Ω) := {φ ∈ C∞ (Ω) : suppφ ∩ ΓD = ∅}‖·‖1,Ω. (2.5.5)

The following extension of Proposition 2.5.1 will later be needed.
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Proposition 2.5.2 Under the above assumptions on ΓD one still has

‖v‖0,Ω ≤ cΩ |v|1,Ω , v ∈ H
1
0,ΓD

(Ω) (2.5.6)

for some constant cΩ. 2

Proof We sketch a proof that uses “soft” functional analytic arguments.
Suppose that (2.5.6) does not hold for any constant cΩ. Hence, there must
exist a sequence (vj)j∈N ⊂ H1

0,ΓD
(Ω) such that

1 = ‖vn‖0,Ω ≥ n|vn|1,Ω, n ∈ N, (2.5.7)

which implies that
|vn|1,Ω ≤ 1/n, n ∈ N.

Hence
‖vn‖2

1,Ω ≤ 1 + n−2 ≤ 2, n ∈ N,
i.e., the vn are uniformly bounded in H1(Ω) and hence, by Rellich’s The-
orem 2.3.1, belong to a compact set in L2(Ω). Therefore, there exists a
convergent subsequence (again denoted by (vj)j∈N) with limit v∗, i.e.,

‖vn − v∗‖0,Ω → 0, n→∞.

Now we use an additional result from Functional Analysis, namely that
bounded sets are weakly compact. Hence, a subsequence of (vj)j∈N (again
denoted by (vj)j∈N) must have a weak limit in H1

0,ΓD
(Ω) which must agree

with the strong limit v∗ in L2(Ω). This means, in particular, that for each

(fixed) φ ∈
(
C∞0 (Ω)

)d
one has

|vn|1,Ω‖φ‖0,Ω︸ ︷︷ ︸
→0, n→∞

≥
∣∣(∇vn, φ)0,Ω

∣∣ =
∣∣∣ ∫

Ω

vndiv φdx
∣∣∣

=
∣∣∣ ∫

Ω

(vn − v∗)div φdx+

∫
Ω

v∗div φdx
∣∣∣

≥
∣∣∣ ∫

Ω

v∗div φdx
∣∣∣− ‖vn − v∗‖0,Ω‖div φ‖0,Ω︸ ︷︷ ︸

→0, n→∞

.

Hence, for each fixed φ ∈
(
C∞0 (Ω)

)d
one has∫

Ω

v∗div φdx = 0.
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which, in turn, means that the weak gradient of v∗ vanishes. We now
invoke another theorem that says that if the weak gradient of a func-
tion vanishes, this function must be a constant. Since the only constant
in H1

0,ΓD
(Ω) is the zero function we arrive at a contradiction to (2.5.7),

proving the assertion. �

The next result is often attributed to Deny-Lions and follows from a more
general Theorem by Whitney. It will later be crucial for establishing
error bounds for Finite Element schemes. Moreover, a special case yields
another Poincaré-type inequality.

Theorem 2.5.1 Assume that Ω ⊂ Rd is a bounded Lipshitz-domain. For
any 1 ≤ p ≤ ∞, l ≤ k ∈ N0 := N ∪ {0} there exists a constant C =
C(Ω, d, l, k, d) depending only on the listed parameters such that (with
| · |W 0(Lp(Ω)) = ‖ · ‖Lp(Ω))

inf
P∈Pk
‖v − P‖W l,p(Ω) ≤ C|v|W k,p(Ω), ∀ v ∈ W k,p(Ω)), (2.5.8)

where Pk denotes the space of all polynomials of total order k which means
total degree (sum of exponents) k − 1. 2

Proof Since the kth order derivatives of a polynomial of degree k −
1 vanish there is nothing to prove for l = k. So assume that l < k.
Again we sketch a proof by contraposition. Suppose (2.5.8) were not
true. Then there exists a sequence (vj)j∈N ⊂ W k,p(Ω) such that (upon
possibly modifying each vj by subtracting a polynomial in Pk)

inf
P∈Pk
‖vj − P‖W l,p(Ω) = ‖vj‖W l,p(Ω) = 1 ≥ 1

j
|vj|W k,p(Ω), j ∈ N. (2.5.9)

Hence the vj belong to a bounded set in W k,p(Ω) which is compactly
embedded in W l,p(Ω) (Theorem 2.4.1). Hence, there exists a convergent
subsequence (again denoted by (vj)j∈N) in W l(Lp(Ω)) with limit v∗ ∈
W l,p(Ω), i.e.,

‖v∗ − vj‖W l,p(Ω) → 0, j → 0. (2.5.10)

We wish to show that∫
Ω

v∗Dαφdx = 0, ∀φ ∈ C∞0 (Ω), |α| = k. (2.5.11)
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To see this note that for each α ∈ Nd
0, |α| = k, β � α, |β| = l,

‖Dαvn‖Lp(Ω)‖φ‖Lp(Ω)︸ ︷︷ ︸
→0, n→∞

≥
∣∣(Dαvn, φ)0,Ω =

∣∣∣(−1)k−l
∫

Ω

Dβ(vn − v∗)Dα−βφdx

+(−1)k−l
∫

Ω

Dβv∗Dα−βφdx
∣∣∣

≥
∣∣∣ ∫

Ω

v∗Dαφdx
∣∣∣− |v∗ − vj|W l,p(Ω)‖Dα−βφ‖Lp(Ω)︸ ︷︷ ︸

→0, n→∞, by (2.5.10)

.

Again we use that v∗ is the weak limit in W k,p(Ω) of a subsequence which
shows (2.5.11). We now use the fact whenever all kth order weak deriva-
tives of a function vanish then this function must be a polynomial of
degree at most k − 1 and hence belongs to Pk. This is a contradiction to
the left part of (2.5.9). �

Remark 2.5.2 One application of Theorem 2.5.1 uses the fact that when
Ω is an affine shrinkage of a domain Ω∗ of unit size the constant C(Ω, d, l, k, d)
in (2.5.8) scales like

C(Ω, d, l, k, d) ∼ (diam Ω)k−lC(d, l, k, d). (2.5.12)

This follows from (2.5.8) by a corresponding affine change of variables. 2

An important consequence of Theorem 2.5.1 reads as follows.

Corollary 2.5.2 (Poincaré-Inequality) There exists a constant CΩ <

∞ such that∥∥∥v − |Ω|−1

∫
Ω

vdx
∥∥∥

0,Ω
≤ CΩ|v|1,Ω, ∀ v ∈ H1(Ω). (2.5.13)

In particular, defining

H̃(Ω) := {v ∈ H1(Ω) :

∫
Ω

vdx = 0}, (2.5.14)

which is a closed subspace of H1(Ω) and hence again a Hilbert space, one
has

‖v‖0,Ω ≤ CΩ|v|1,Ω, v ∈ H̃1(Ω). (2.5.15)

The constant CΩ depends on Ω as stated in Remark 2.5.2. 2
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Proof Exercise �

All three inequalities (2.5.1), (2.5.6), and (2.5.15) state conditions under
which the semi-norm | · |1,Ω is a norm on some subspace of H1(Ω).

Remark 2.5.3 It is sometimes important to know how the constants in
(2.5.1), (2.5.6), (2.5.8), (2.5.13), depend on the domain Ω. The proof of
(2.5.1) shows that it scales like diam (Ω), in agreement with (2.5.12), if
one has some additional knowledge about Ω such as being an element
of a family of affine images of a fixed reference domain, where the affine
mappings have uniformly boun ded condition numbers. This will later be
used in analyzing finite element methods. 2

We conclude this section with a slightly specialized version of the above
Poincaré-Inequality and an elementary proof which also confirms the scal-
ing relation (2.5.12).

Lemma 2.5.1 Assume that Ω ⊂ (0, δ)d is convex. Then one has for every
v ∈ H1(Ω)

‖v‖0,Ω ≤ C

 1

|Ω|1/2

∣∣∣∣∣∣
∫
Ω

v (x) dx

∣∣∣∣∣∣+ δ |v|1,Ω

 , v ∈ H1 (Ω) , (2.5.16)

where C is independent of δ. 2

Proof By Cauchy Schwarz∣∣∣∣∣∣
∫
Ω

v (x) dx

∣∣∣∣∣∣ ≤
∫
Ω

|v (x)| dx ≤ |Ω|1/2 ‖v‖0,Ω

≤ |Ω|1/2 ‖v‖1 .

Hence, the average AΩv := |Ω|−1
∫

Ω vdx is well defined. Since C1(Ω) is
dense in H1(Ω) it suffices to prove (2.5.16) for v ∈ C1(Ω) and then pass
to the limit. To this end, let x0 ∈ Ω with |v(x0)| = minx∈Ω |v(x)|. Then

v (x) = v (x0) +

1∫
0

(x− x0)
T ∇v (x0 + t (x− x0)) dt
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so that

|v (x)| ≤ |v (x0)|+
1∫

0

|x− x0| |∇v (x0 + t (x− x0))| dt

≤ 1

|Ω|

∣∣∣∣∣∣
∫
Ω

v (x) dx

∣∣∣∣∣∣+ diam (Ω)

1∫
0

|∇v (x0 + t (x− x0))| dt.

Hence (using (a+ b)2 ≤ 2a2 + 2b2)

|v (x)|2 ≤ 2


∣∣∣∣∫
Ω

v (x) dx

∣∣∣∣
|Ω|


2

+ 2diam (Ω)2

1∫
0

|∇v ((1− t)x0 + tx)|2 dxdt.

Integrating over Ω yields∫
Ω

|v (x)|2 dx ≤ 2

|Ω|

∣∣∣∣∣∣
∫
Ω

v (x) dx

∣∣∣∣∣∣
2

+ 2diam (Ω)2

1∫
0

∫
Ω

|∇v ((1− t)x0 + tx)|2 dxdt.

Since Ω is convex z = (1 − t)x0 + tx ∈ Ω whenever x ∈ Ω. Thus∫ 1

0

∫
Ω |∇v((1− t)x0 + tx)|2dxdt ≤ |v|21,Ω which concludes the proof. �

2.6 Traces

For point-wise defined continuous functions it is clear what their restric-
tion to a lower dimensional set means. For elements of L2(Ω) such a
restriction has no meaning because such lower dimensional sets have mea-
sure zero. Since elements of H1(Ω), Ω ⊂ Rd, d > 1, need not be contin-
uous it is not clear in which sense the restriction of u ∈ H1(Ω) to ∂Ω is
meaningful. This, however, is needed when looking for solutions to weak
formulations like (1.3.10) in the space H1(Ω) which are required to have
“zero boundary values” or later inhomogeneous boundary values. The
answer to this question is provided by the so called Trace Theorem for
Sobolev spaces. We are content here with a weaker version and a special
case.
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Theorem 2.6.1 There exists a continuous linear operator T : H1(Ω) →
L2(∂Ω) such that Tu = u|∂Ω whenever u ∈ H1(Ω) ∩ C(Ω) and

‖Tu‖0,∂Ω ≤ C‖u‖1,Ω, ∀u ∈ H1(Ω), (2.6.1)

where C is independent of u. 2

Proof Suppose that we have already shown that for u ∈ C∞(Ω) (or
C1(Ω))

‖u|∂Ω‖L2(∂Ω) ≤ C ‖u‖1,Ω (2.6.2)

holds for some constant C independent of u. Now, by Remark 2.3.2,
we know that for any v ∈ H1(Ω) there exists a sequence {vj}j∈N, with
vj ∈ C∞(Ω) such that

‖v − vj‖1,Ω → 0, j →∞. (2.6.3)

Hence {vj} is a Cauchy sequence in H1(Ω) and, by (2.6.2), {vj|∂Ω}j∈N is
a Cauchy sequence in L2(∂Ω). Since L2(∂Ω) is complete, there exists a
limit of vj|∂Ω in L2(∂Ω) which we call Tv.

Exercise 2.6.1 Show that v → Tv is well defined, i.e., Tv is independent
of the particular sequence. Moreover T is a linear operator from H1(Ω)
into L2(∂Ω) satisfying

‖Tv‖0.∂Ω ≤ C ‖v‖1,Ω . (2.6.4)

Therefore, it remains to prove the validity of (2.6.2) for any u ∈ C∞(Ω).

This is typically done in two steps. To simplify technicalities we assume
that ∂Ω is a C1 boundary. This means there exists a neighborhood U ⊂ Rd

such that ∂Ω∩U is the graph of a C1-function g(y), |y| < r, with respect
to some suitable local coordinate system.

To prepare for the computation of an L2-norm on ∂Ω, suppose that
Ω ⊂ R2, i.e., ∂Ω is a curve, parametrized locally by the function g(y).
Then, a small line segment dΓ on ∂Ω has by Pythagoras’ Theorem length
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dΓ ≈ h
√

1 + (g(y+h)−g(y))2

h2 so that
∫
∂Ω |u(x)|2dΓ =

∫
|y|<r |u(y, g(y))|2

(
1 +

g′(y)2
)1/2

dy. Below we use the corresponding multivariate analog for
y ∈ Rd−1.

Localization: suppose that supp(u) ⊂ U ∩ Ω so that

‖u|∂Ω‖2
0,∂Ω =

∫
|y|<r, y∈Rd−1

|u (y, g (y))|2
√

1 + |∇g (y)|2dy

≤c∗1
∫
|y|<r

|u (y, g (y))|2 dy, c∗1 := sup
|y|<r

√
1 + |∇g (y)|2

=c∗1

∫
|y|<r

h∫
0

− ∂

∂s

[
u (y, g (y) + s)2

]
dsdy (u(y, g(y) + h) = 0)

=c∗1

∫
|y|<r

h∫
0

−
{

2u (y, g (y) + s)
∂

∂yd
u (y, g (y) + s)

}
dsdy

|2ab|≤a2+b2

≤ c∗1

∫
|y|<r

h∫
0

{
u (y, g (y) + s)2 +

(
∂

∂yd
u (y, g (y) + s)

)2
}

dsdy

=c∗1

∫
Ω∩U

u (x)2 + |∇u (x)|2 dx

=c∗1 ‖u‖
2
1,Ω∩U

(2.6.5)

Partition of unity: Since ∂Ω is compact, one can find neighborhoods Uk, k =

1, . . . , N , such that ∂Ω ⊂
N⋃
k=1

Uk and each ∂Ω ∩ Uk is a C1-graph (in

a suitable coordinate system). Consider a partition of unity {ηk}Nk=1,

33



ηk ∈ C∞0 (Rd) such that

supp ηk ⊂ Uk, 0 ≤ ηk ≤ 1
N∑
k=1

ηk (x) = 1, x ∈ Ω.

Now for u ∈ H1(Ω) ∩ C∞(Ω) we define uk := ηku ∈ C∞(Ω) ∩H1(Ω) and
conclude that supp uk ⊂ Uk while

∑N
k=1 uk = u. Therefore

‖u|∂Ω‖0,∂Ω =

∥∥∥∥∥
N∑
k=1

uk|∂Ω

∥∥∥∥∥
0,∂Ω

≤
N∑
k=1

‖uk|∂Ω‖0,∂Ω .

Applying (2.6.5) to each uk with ck = c∗1 we conclude that

‖u|∂Ω‖0,∂Ω ≤
N∑
k=1

ck ‖uk‖1,Ω ≤ C ‖u‖1,Ω .

Since ∥∥∂xj (ηku)
∥∥

0,Ω
≤
∥∥∂xjηk∥∥L∞(Ω)

‖u‖0,Ω +
∥∥∂xju∥∥0,Ω
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we conclude that

‖uk‖1,Ω ≤ C̃ ‖u‖1,Ω ,

which completes the proof. Note that C depends on Ω through the deriva-
tives of the ηk. �

For later purposes we record the following “localized version” of the above
Trace-inequality.

Remark 2.6.1 Suppose that u ∈ C∞(Ω) satisfies suppu ⊂ U ∩ Ω for
some open subset U and diam (U ∩ Ω) = h. Then there is a constant C
depending only on ∂Ω such that∥∥u|∂Ω

∥∥2

0,∂Ω
≤ C

{
h−1‖u‖2

0,Ω∩U + h‖∇u‖2
0,Ω∩U

}
. (2.6.6)

Proof In the step from line 4 to line 5 in (2.6.5) we use the Young
inequality |2ab| ≤ h−1a2 + hb2 to arrive at (2.6.6). �

The following theorem explains in which sense we can say that H1
0(Ω)

consists exactly of thos functions in H1(Ω) which have zero boundary
values.

Theorem 2.6.2 Asume that Ω is a Lipshitz domain. Then one has

H1
0(Ω) = {u ∈ H1(Ω) : Tu = 0}.

The direction u ∈ H1
0(Ω) ⇒ Tu = 0 is simple: in fact, since H1

0(Ω) =

C∞0 (Ω)
‖·‖1,Ω

there exists a sequence (vj)j∈N ⊂ C∞0 (Ω) with ‖u−vj‖1,Ω → 0,
j →∞. Hence

‖Tu‖0,∂Ω = ‖Tu−Tvj‖0,∂Ω = ‖T (u−vj)‖0,∂Ω

(2.6.1)

≤ C‖u−vj‖1,Ω → 0, j →∞.

The converse direction: u ∈ H1(Ω), Tu = 0 ⇒ u ∈ H1
0(Ω) can be found

e.g. in [Ada75, Eva98].

It is important to note that the trace operator T : H1(Ω) → L2(∂Ω) is
not surjective, i.e., the range of T is a strict subspace of L2(∂Ω). In fact,
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the traces of H1-functions have some regularity. Consider for the range
T
(
H1 (Ω)

)
of the trace operator on H1(Ω)

|||w|||∂Ω := inf
v∈H1(Ω), T v=w

‖v‖1,Ω . (2.6.7)

It is easy to see that this defines a norm on the trace space T (H1(Ω)) ⊂
L2(∂Ω). To characterize this subspace by a “smoothness property” one
needs Sobolev regularity of non-integer order. Without proof we record
the following fundamental result because it is essential for dealing with
boundary conditions, see [Eva98].

Theorem 2.6.3 The norm |||·|||∂Ω, defined by (2.6.7), is equivalent to ‖ ·
‖1/2,∂Ω and H1/2(∂Ω) = T (H1(Ω)), i.e., the two spaces agree as sets and
both norms are equivalent. 2

The general Trace-Theorem says that T
(
Hk(Ω)

)
= Hk−1/2(∂Ω), k ≥ 1.

Even more generally, for 1 ≤ p ≤ ∞ T
(
W k,p((Ω)

)
= W k−1/p,p(∂Ω),

[Ada75].

2.7 Duality and Gelfand-Tripel

We have already seen that the right hand side f in (1.3.10) can be iden-
tified with a bounded linear functional on H1

0(Ω) when f ∈ L2(Ω). Gen-
erally speaking, in weak formulations the right hand side data act as
functionals on the test space. The notion of “dual” space provides an ap-
propriate framework. We recall from (1.3.17) that for any Banach space X
with norm ‖ · ‖X the set of all bounded linear functionals on X is denoted
by X′. X′ - the normed dual - is also a Banach space under the norm

‖w‖X′ := ‖w‖L(X,R) := sup
v∈X

w (v)

‖v‖X
.

As before we are mostly interested in the case that X is a Hilbert space
H (like H1(Ω), or H1

0(Ω) or more generally Hs(Ω)) with norm ‖ · ‖H =

(·, ·)1/2
H , induced by an inner product on. When H = Rd endowed with the

standard inner product, H′ can be identified with itself, i.e., every linear
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(automatically bounded, since Rd is finite dimensional) functional ` on Rd

can be realized as a standard inner product with an element of Rd, i.e.,
for ` ∈ (Rd)′ there exists y` ∈ Rd, such that

` (x) = yT` x, ∀x ∈ Rd.

This is a special case of the Riesz-Representation Theorem. One says: y`
is a representer of ` with respect to the dual pairing

〈`, x〉 = `(x) = yT` x.

Things are slightly more involved in infinite dimensions. In all the previ-
ous examples we have

H ⊆ L2(Ω)

with (at least) a continuous embedding. Since in this case for f ∈ L2(Ω),
v ∈ H,

|f (v)| :=

∣∣∣∣∣∣
∫
Ω

f (x) v (x) dx

∣∣∣∣∣∣ =
∣∣∣(f, v)0,Ω

∣∣∣ ≤ ‖f‖0,Ω ‖v‖0,Ω

≤‖f‖0,Ω ‖v‖H
we see that L2(Ω) is (can be identified with) a subspace of H′, i.e.

H ⊆ L2 (Ω) ⊆ H′, (2.7.1)

with continuous (actually dense) embeddings. A triple (H, L2(Ω),H′) with
the embeddings (2.7.1) is called a Gelfand-triple.

A common notation: In the case (2.7.1) one often expresses the action of
a functional f ∈ H′ on H as

f : v → f (v) = 〈f, v〉.

We shall see later that this notation reflects a certain representation of
the functional f depending on the pivot space L2(Ω).

In fact, it means that whenever f ∈ L2(Ω) ⊂ H′ one has

〈f, v〉 = (f, v)0,Ω =

∫
Ω

f (x) v (x) dx,

i.e., f is realized through the standard inner product in L2(Ω).
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Exercise 2.7.1 Find other possible representations.

In view of the weak formulation (1.3.10), we are particularly interested in
H = H

′

0(Ω) and recall the notation(
H1

0 (Ω)
)′

=: H−1 (Ω) .

We have already seen that L2(Ω) ⊂ H−1(Ω). Here are some examples
that show that L2(Ω) is a strict subset of H−1(Ω).

Example 2.7.1 Let Ω = (−1, 1)× (0, 1) ⊂ R2 and

s (x, y) =

{
0, x ∈ (−1, 0)× (0, 1)
1, x ∈ (0, 1)× (0, 1) .

(2.7.2)

Clearly, s ∈ L2(Ω), so that

` (v) := 〈`, v〉 := − (s, ∂xv)0,Ω

belongs to H−1(Ω) because, by Cauchy-Schwarz,

|〈`, v〉| =
∣∣∣(s, ∂xv)0,Ω

∣∣∣ ≤ ‖s‖0,Ω ‖∂xv‖0,Ω

≤‖s‖0,Ω ‖v‖1,Ω ,

i.e., ` is bounded. Note that, if s was differentiable, one would have

〈`, v〉 = (∂xs, v)0,Ω ,

i.e., ` = ∂xs is the distributional derivative of s which no longer belongs
to L2(Ω) but still to H−1(Ω).

However, s can be approximated in L2(Ω) by a sequence sj ∈ C∞(Ω)
(exercise). Let

〈`j, v〉 := − (sj, ∂xv)0,Ω = (∂xsj, v)0,Ω = 〈∂xsj, v〉
be the corresponding (smoothed) functionals.

Then

‖`− `j‖−1,Ω := ‖`− `j‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈`− `j, v〉
‖v‖1,Ω

= sup
v∈H1

0 (Ω)

(sj − s, ∂xv)0,Ω

‖v‖1,Ω

≤ sup
v∈H ′0(Ω)

‖sj − s‖0,Ω ‖∂xv‖0,Ω

‖v‖1,Ω

≤‖sj − s‖0,Ω → 0, j →∞,
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which shows that ` can be approximated in H−1(Ω) by functionals repre-
sented by C∞ functions. 2

This example shows that H−1(Ω) contains functionals that cannot be
represented directly through the L2-scalar product with an L2-function
(∂xs /∈ L2(Ω)). However, the functional ` defined above, that as a dis-
tribution agrees with ∂xs can be approximated with respect to the norm
‖ · ‖−1,Ω arbitrarily well by functionals that do have infinitely often dif-
ferentiable representers in L2(Ω). We shall see soon that in this sense
C∞(Ω) is dense in H−1(Ω) = (H1

0(Ω))
′
.

Finally, we have the following representation of `:

− (s, ∂xv)0,Ω =−
1∫

0

1∫
0

∂xv (x, y) dxdy

=−
1∫

0

v (1, y)− v (0, y) dy

=

1∫
0

v (0, y) dy,

(2.7.3)

since v has compact support in Ω. Hence ` is the trace integral over the
interface Γ := {(0, y) : y ∈ (0, 1)} ⊂ Ω. So we could also argue that

|〈`, v〉| =

∣∣∣∣∣∣
1∫

0

v (0, y) dy

∣∣∣∣∣∣ C.S.
≤

 1∫
0

|v (0, y)|2 dy

1/2

= ‖Tv‖0,Γ .

More generally, for any r ∈ L2(Γ) we could define (since v ∈ H1(Ω)
possesses a trace in L2(Γ))

` (v) :=

∫
Γ

r (y)Tv (y) dy, (2.7.4)
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which is clearly a linear functional on H1
0(Ω). By Theorem 2.6.1 we obtain

as before

|` (v)| ≤ ‖r‖0,Γ ‖Tv‖0,Γ

(2.6.4)

≤ C ‖r‖0,Γ ‖v‖1,Ω

i.e. ‖`‖−1,Ω ≤ c‖r‖0,Γ and ` ∈ H−1(Ω).

Example 2.7.2 The stronger trace Theorem 2.6.3 says that r in (2.7.4)
need not even be in L2(Γ). In fact, let for Ω as before

r ∈
(
H1/2 (∂Ω)

)′
=: H−1/2 (∂Ω) (2.7.5)

be a bounded linear functional on the trace space H1/2(∂Ω), then

` (v) := r (Tv) (2.7.6)

belongs to H−1(Ω). In this sense one has

H−1/2 (∂Ω) ⊂
(
H1 (Ω)

)′
(2.7.7)

with a continuous embedding (Proof Exercise). 2

Remark 2.7.1 The space H−1/2(∂Ω) =
(
H1/2(∂Ω)

)′
can be character-

ized as the space of normal traces of H(div)-functions. More procesely,
let

H(div; Ω) := {w ∈ L2(Ω)d : divw ∈ L2(Ω)}
(always understood in the sense of weak derivatives). Then, the space
spanned by the normal traces of vector fields in H(div; Ω) can be identified
with the dual of H1/2(Ω), i.e.,

H−1/2(∂Ω) :=
(
H1/2(Ω)

)′
= {g = T (n · w) : w ∈ H(div; Ω)}, (2.7.8)

see [BF91]. 2
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3 Variational Formulations and the
Inf-Sup-Condition

3.1 Further Important Examples

Before addressing the solvability of problems of the form (1.3.23) and their
numerical solution, we collect several further important examples of PDEs
and present their weak formulation. We then proceed characterizing the
solvability of such variational problems.

3.1.1 2nd Order Elliptic Boundary Value Problems

Let A(x) ∈ L∞(Ω;Rd×d) be a uniformly positive definite symmetrix ma-
trix on Ω, b(x) ∈ L∞(Ω;Rd), c(x) ∈ L∞(Ω). By the same use of Green’s
formulas as above the weak formulation of

−div(A(x)∇u)(x) + b(x) · ∇u(x) + c(x)u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω, (3.1.1)

for some f ∈ L2(Ω) takes the form: find u ∈ U := H1
0(Ω) such that

B(u, v) :=

∫
Ω

∇v · A∇u+ vb · ∇u+ cuvdx = f(v), v ∈ U := H1
0(Ω).

(3.1.2)

Note that by Cauchy-Schwarz

|B(u, v)| ≤ |A| |u|1,Ω|v|1,Ω + ‖b‖L∞(Ω)‖v‖0,Ω|u|1,Ω + ‖c‖L∞(Ω)‖u‖0,Ω‖v‖0,Ω

≤ 3 max
{
|A|, ‖b‖L∞(Ω), ‖c‖L∞(Ω)

}
‖u‖1,Ω‖v‖1,Ω

=: CB‖u‖1,Ω‖v‖1,Ω, u, v ∈ H1
0(Ω), (3.1.3)
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i.e., the bilinear form is continuous on H1
0(Ω)×H1

0(Ω).

We shall later discuss other boundary conditions as well which effects the
choice of U since in the above case the homogeneous boundary conditions
are incorporated in U. As in the case of the Poisson problem we have
chosen here the trial space equal to the test space. We will see later that
this turns out to be problematic when the convection b strongly dominates
the diffusion A.

3.1.2 The Biharmonic Equation

The displacement of (the middle surface) of a clamped plate covering
Ω ⊂ R2 (thin enough to neglect shear effects) under a vertically acting
force f ∈ L2(Ω) can be modeled by the biharmonic equation

∆2u = f in Ω,
u = ∂nu = 0 on ∂Ω.

(3.1.4)

The classical solution would have to belong to C4(Ω). A weak formulation
requires higher order Sobolev spaces Hk(Ω) to be discussed later in more
detail. The corresponding norm for Hk(Ω) is

‖v‖2
k,Ω := ‖v‖2

0,Ω + |v|2k,Ω, |v|2k,Ω :=
∑
|α|=k

‖∂αv‖2
0,Ω. (3.1.5)

In analogy to the preceding discussion we can then consider the spaces

H2(Ω) := C∞(Ω)
‖·‖k,Ω

, H2
0(Ω) := C∞0 (Ω)

‖·‖2,Ω
. (3.1.6)

Note that the elements v in H2
0(Ω) now satisfy v = ∇nv = 0 on ∂Ω, i.e.,

not only v but also the normal derivative ∇nv vanishes on the boundary
∂Ω (again in a sense to be made precise later).

Exercise 3.1.1 Use the Green’s formulas to show that the weak formula-
tion of (3.1.4) is: find u ∈ U := H2

0(Ω) such that

B(u, v) :=

∫
Ω

∆u∆vdx =

∫
Ω

vfdx =: f(v), v ∈ H2
0(Ω), (3.1.7)

and that

|B(u, v)| ≤ d‖u‖2,Ω‖v‖2,Ω, ∀u, v ∈ H2(Ω). (3.1.8)
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3.1.3 3D-Eddy Current Equations

The next example is a system, namely a special case of Maxwell’s equations
where the unknowns are 3D-vector fields representing (electric) currents.
Defining the “curl” operator of a smooth vector field

curl v := ∇∧ v :=
(
∂x2
v3 − ∂x3

v2, ∂x3
v1 − ∂x1

v3, ∂x1
v2 − ∂x2

v1

)T
,

with the vector product

w ∧ v := (w2v3 − w3v2, w3v1 − w1v3, w1v2 − w2v1)
T ,

for f ∈ L2(Ω;R3) find

u ∈ U := H0(curl; Ω) := C∞0 (Ω;R3)
‖·‖H(curl;Ω)

, (3.1.9)

‖v‖2
H(curl;Ω) := ‖v‖2

0,Ω + ‖curl v‖2
0,Ω, (3.1.10)

such that

curl (µ curlu) + κu = f in Ω
u ∧ n = 0 on ∂Ω.

(3.1.11)

Note that u ∧ n is tangent to ∂Ω so that we encounter here a different
type of boundary condition. Note also that H1

0(Ω;R3) ⊂ H(curl; Ω).

Exercise 3.1.2 Defining H(curl; Ω) as in (3.1.9) with C∞0 (Ω;R3) replaced
by C∞(Ω;R3), show that∫

Ω

(curlw) · vdx =

∫
Ω

w · curl vdx+

∫
∂Ω

w · (v ∧ n)ds.

The weak formulation of (3.1.11) then reads: for f ∈ U′, U = H0(curl; Ω),
find u ∈ U such that

B(u, v) :=

∫
Ω

µ curlu · curl v + κuvdx =

∫
Ω

f · vdx =: f(v), v ∈ U.

(3.1.12)
Again we obtain by Cauchy-Schwarz

|B(u, v)| ≤ max
{
‖µ‖L∞(Ω), ‖κ‖L∞(Ω)

}
‖u‖H(curl;Ω)‖v‖H(curl;Ω), (3.1.13)

holds for all u, v ∈ H(curl; Ω).
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3.1.4 The Stokes System

The next example is the classical model for a very viscous stationary
incompressible fluid flow where the unknowns is the velocity vector field u
with values in Rd and the scalar pressure field p. Here no-slip (Dirichlet)
boundary conditions are imposed on the velocity field:

−∆u +∇p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω,
(3.1.14)

Note that the pressure is only defined up to a constant factor which has
to be accounted for in a weak formulation. The first equation represents
the momentum balance while the second equation implies preservation of
mass for incompressible fluids.

Exercise 3.1.3 To derive such a weak formulation, show that for two
sufficiently smooth vector fields v, w vanishing on ∂Ω one has

−
∫

Ω

∆v · wdx =

∫
Ω

∇v : ∇wdx =
d∑
i=1

∇vi · ∇widx. (3.1.15)

Since the right hand side of (3.1.15) makes sense for v, w ∈ H1
0(Ω;Rd)

we will seek the solution component u in H := H1
0(Ω;Rd) = (H1

0(Ω))d.
Moreover, when v ∈ H = H1

0(Ω;Rd) we can use Green’s Theorem to
write ∫

Ω

∇p · vdx = −
∫

Ω

p div vdx =: b(p, v). (3.1.16)

Since
|b(p, v)| ≤ ‖p‖0,Ω|v|1,Ω, v ∈ H1

0(Ω;Rd), (3.1.17)

the pressure p need only belong to L2(Ω). Since we have to factor out
constance, let

Q := {q ∈ L2(Ω) :

∫
Ω

qdx = 0} ≡ L2(Ω)/R. (3.1.18)
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Setting in this case

U := H×Q, ‖[v, q]‖U := ‖v‖H + ‖q‖Q, (3.1.19)

the weak formulation of (3.1.14) reads: given

[f, 0] ∈ H′ ×Q′ = (H×Q)′ = U′,

find [u, p] ∈ U such that

a(u, v) + b(p, v) = f(v), ∀ v ∈ H,
b(q, u) = 0, ∀ q ∈ Q.

(3.1.20)

It will later be convenient to write (3.1.20) in a more compact form,
collecting the unknowns, test functions, and data in

U := [u, p], V := [v, q] ∈ U = H×Q, F := [f, 0] ∈ U′ = H′ ×Q′,

and defining the bilinear form B(U, V ) := a(u, v) + b(p, v) + b(q, u) we see
that (3.1.20) is equivalent to finding U ∈ U such that

B(U, V ) = F (V ), ∀ V ∈ U′, (3.1.21)

which formally resembles to all earlier examples. In fact, defining now
for the vector fields v ∈ H1

0(Ω;Rd) in analogy to the scalar case |v|1,Ω :=
‖∇v‖0,Ω and recalling (3.1.17), we obtain

|B(U, V )| ≤ |a(u, v)|+ |b(p, v)|+ |b(q, u)|
≤ |u‖1,Ω|v‖1,Ω + ‖p‖0,Ω|v|1,Ω + ‖q‖0,Ω|u|1,Ω
=
(
|u|1,Ω + ‖p‖0,Ω

)
|v|1,Ω + |u|1,Ω‖q‖0,Ω

≤
(
|u|1,Ω + ‖p‖0,Ω

)
|v|1,Ω +

(
|u|1,Ω + ‖p‖0,Ω

)
‖q‖0,Ω

≤
(
|u|1,Ω + ‖p‖0,Ω

)(
|v|1,Ω + ‖q‖0,Ω

)
≤ ‖U‖U‖V ‖U (here U = V). (3.1.22)

Thus, also in this case the bilinear form B(·, ·) is continuous on U×U =(
H1(Ω;Rd)× L2,0(Ω)

)
×
(
H1(Ω;Rd)× L2,0(Ω)

)
.

Nevertheless, there are essential structural differences between (3.1.21)
and earlier examples of variational formulations that will be discussed
later.
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3.1.5 Time-Dependent Incompressible Navier-Stokes Equations

The Stokes System is a simplified special case of the full incompressible
time-dependent Navier-Stokes equations which models also less viscous
flows where transport effects can no longer be neglected. u, p denote
again the velocity and pressure fields but are allowed to depend on time
t as well. Allowing the viscosity ε to become small the momentum and
continuity equations now read

∂tu− div(ε∇u) + u · ∇u+∇p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω,
u(·, 0) = u0 in Ω.

(3.1.23)

Aside from the fact that the unknowns u(x, t), p(x, t) are now time de-
pendent the main distinction from the preceding examples is that the
system is now nonlinear (because of the third term in the first equation).
Nevertheless, for large viscosity ε the first equation is essentially parabolic
so that the initial-boundary conditions in the last two lines of (3.1.23)
appear to be reasonable.

To relate the above system to the preceding examples one can first dis-
cretize in time and linearize which leads to the following Oseen formula-
tion of the Navier-Stokes equations. To describe this, let us set

un(x) = u(x, tn), pn(x) := p(x, tn), fn(x) := f(x, tn),

for a sequence of discrete time steps

0 = t0 < t1 < · · · < tN = T, τ := tn+1 − tn,

with time increments τ which could vary but are here kept constant for
convenience. Then, taking for convenience ε ≡ constant, the time evolu-
tion in (3.1.23) can be approximated by

un+1 − τε∆u+ τun · ∇un+1 + τ∇pn+1 = un + τfn+1 in Ω,
div un+1 = 0 in Ω,

un+1 = 0 on ∂Ω,
un+1(·, tn) = un in Ω.

(3.1.24)
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Since un in the third summand of the first equation is now a known velocity
field from the preceding time step, the first equation in the unknwon un+1

is now a linear convection diffusion equation with c(x) = 1, A = τε, b =
τun, and right hand side un + τfn+1 in the convection-diffusion equation
(3.1.1) (ignoring for the moment ∇pn+1). Defining the bilinear form

ā(v, w) = āε,τ(v, w) =

∫
Ω

ετ∇v : ∇w + τ(un · ∇v)w + vwdx, (3.1.25)

and b(q, v) as in (3.1.16), the weak formulation of (3.1.24) becomes with
the same choice of trial spaces U

āε,τ(u
n+1, v) + b(pn+1, v) = fn+1, ∀ v ∈ H,

b(un+1, q) = 0, ∀ q ∈ Q,
(3.1.26)

and hence can again be cast in the form (3.1.21). Accordingly, the lin-
earized problems have continuous bilinear forms over the same spaces as
the Stokes problem.

The particular difficulty when trying to solve the Navier-Stokes equa-
tions numerically arises for small viscosity (large “Reynolds numbers”
proporial to the inverse of the kinematic viscosity) because the underly-
ing convection-diffusion equation becomes then strongly convection dom-
inant. Again, the above choice of U then turns out to become problem-
atic.

3.1.6 Pure Transport - an Unsymmetric Formulation

In the limit ε → 0 the bilinear form āε,τ(v, w) from (3.1.25) changes its
character. It is therefore instructive to discuss as the last example the
pure transport equation

b · ∇u+ cu = f in Ω, u = 0 on Γ−, (3.1.27)

which is well-posed only when the boundary conditions are confined to
the inflow-boundary

Γ− := {x ∈ ∂Ω : n(x) · b(x) < 0}.
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Note that the time-dependent analog ∂tu + b · ∇u + cu = f can be
treated in exactly the same manner by replacing x by x̂ := (x, t) and b by
(bT , 1)t with a corresponding inflow-boundary of the space-time cylinder
Ω× [0, T ).

To arrive at a weak formulation of (3.1.27) one can again multiply the
equation by test functions. But now we have two options, namely consid-
ering the bilinear form

B1(u, v) :=

∫
Ω

(b · ∇u)v + cuvdx, (3.1.28)

or, by applying Green’s Theorem to obtain

B2(u, v) :=

∫
Ω

u(−div(bv)) + cuvdx+

∫
∂Ω

b · nuvds

=

∫
Ω

−u(b · ∇v)u+ (c− div b)uvdx

+

∫
∂Ω

b · nuvds, (3.1.29)

When using B1(·, ·) we are led to seek the solution in the space

U = Hb
−(Ω) := {v ∈ C1(Ω) : v|Γ− = 0}‖·‖Hb(Ω),

‖v‖2
Hb(Ω) := ‖v‖2

0,Ω + ‖b · ∇u‖2
0,Ω. (3.1.30)

Roughly speaking the trial space is comprised of those functions in L2(Ω)
whose streamwise directional derivatives also belong to L2(Ω) and which
vanish on Γ−. The latter fact is actually an issue because it is not clear
beforehand whether the restriction of an L2(Ω)-function to Γ−, which has
measure zero, is meaningful. Note that this permits discontinuities along
characteristic curves but not across.

For this choice of U the problem B1(u, v) = f(v) =
∫

Ω fvdx makes sense
when the test functions should be taken as arbitrary elements in

V = V1 := L2(Ω),

i.e., trial and test space are now different, because

|B1(v, w)| ≤ ‖v‖Hb(Ω)‖w‖0,Ω, v ∈ U1 := Hb(Ω), w ∈ V1 := L2(Ω).
(3.1.31)
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For the second choice B2(·, ·) from (3.1.29) the unknown u has been
“freed” from all derivatives. Defining in this case the test space

V2 := Hb
+(Ω) = {v ∈ C1(Ω) : v|Γ+

= 0}‖·‖Hb(Ω), (3.1.32)

where Γ+ := {x ∈ ∂Ω : n(x) · b(x) > 0} is the outflow-boundary and
since u is to vanish on Γ−, the weak formulation according to (3.1.29)
becomes∫

Ω

−u(b · ∇v)u+ (c− div b)uvdx =

∫
Ω

fvdx, v ∈ V2, (3.1.33)

and for V2 := Hb
+(Ω) one has

|B2(v, w)| ≤ ‖v‖0,Ω‖w‖Hb(Ω), v ∈ U2 := L2(Ω), w ∈ V2. (3.1.34)

In this case essentially no regularity properties are imposed on the solu-
tion. This is often referred to as ultra-weak formulation of (3.1.27).

In either case, it seems that a meaningful variational formulation, namely
ensuring that the involved bilinear forms are continuous, requires in this
case to take the trial space U different from the test space V.

3.1.7 Discussion

The common abstract formulation of all the preceding examples is the
following: given a bilinear form

B(·, ·) : U× V→ R

where U,V are Hilbert spaces endowed with inner products and norms

(·, ·)U, ‖u‖2
U = (u, u)U, (·, ·)V, ‖v‖2

V = (v, v)V,

and given f ∈ V′, find u ∈ U such that

B(u, v) = f(v), v ∈ V, (3.1.35)

noting that both sides of the equation are well-defined when the bilinear
form B(·, ·) is continuous on U× V, see (1.3.21).

When U = V and Un = Vn in (4.9.7), this is called Galerkin formulation.
When Un 6= Vn it is called Petrov-Galerkin formulation.

The subsequent discussions will be guided by the following issues:
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• Although in most of the examples we had U = V, the last exam-
ple indicates that it may be important to cover the case where test
and trial spaces are different. We refer to this as an unsymmetric
formulation. In a sense, the original classical Poisson problem can
be viewed as an unsymmetric formulation where the test space is
spanned by Dirac-functionals.

• In the pure transport case unsymmetric formulations cannot be avoided.
In the convection dominant cases it will be seen later that unsymmet-
ric formulations may be highly beneficial. After all, the underlying
equations are unsymmetric.

• Starting with the strong classical formulation of a PDE, it may be
an important part of the solution to find suitable pairs U,V of trial
and test spaces for which the weak formulation can be shown to be
well-posed or even well-conditioned in a sense to be explained later.

• It is plausible that a stable numerical scheme as a discrete analog to
the infinite dimensional problem has a better chance to be stable if
the infinite dimensional formulation is well-conditioned or stable.

One may be deterred at the first glance by an abstract formulation like
(4.9.7) because it involves a continuum of test conditions. However, such
a formulation actually leads in a very natural way to finite dimensional
analogs and numerical schemes. In fact, given (4.9.7), choose finite di-
mensional subspaces Un ⊂ U, Vn ⊂ of equal dimension n, spanned by
respective bases

Φn = {φ1, . . . , φn}, Ψn = {ψ1, . . . , ψn}, (3.1.36)

and consider the finite dimensional analog: find un ∈ Un such that

B(un, v) = f(v), ∀ v ∈ Vn. (3.1.37)

Although this looks exactly the same as (4.9.7), it is actually a linear
system of equations. In fact, making the ansatz

un =
n∑
k=1

un,kφk
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with unknown coefficient vector un := (un,k)
n
k=1 ∈ Rn, plugging the ansatz

for un into (3.1.37), using the fact that “testing with all v ∈ V is equivalent
to testing by all test-basis functions ψi, (3.1.37) takes the form

Anun = fn, where An :=
(
B(φk, ψi)

)n
i,k=1

, fn =
(
f(ψi)

)n
i=1
. (3.1.38)

Here are some of the issues arising in this context.

• In the above cases the trial spaces Un are by construction contained
in the (infinite dimensional) trial space U for the infinite dimensional
problem. Such a method is called conforming. There are actually
alternative options that will be discussed later.

• In contrast to finite difference methods the numerical solution is not
only defined on a grid but is defined as a function “living” - in the
conforming case - already in the function space which hosts also
the exact solution. It is therefore natural to estimate errors in the
corresponding norms.

• The estimation of these errors as well as the solvability and condi-
tion of the linear systems (3.1.37) will therefore, of course, depend
strongly on the underlying problem and the governing norms.

3.2 The Inf-Sup-Condition

In this section we characterize the unique solvability of the abstract vari-
ational problem (4.9.7). These results apply to the infinite dimensional
problem as well as to the finite dimensional counterpart (3.1.37). First,
for any two Banach spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y) we denote by L(X,Y)
the space of all bounded linear operators from X to Y which is again a
normed space under the norm

‖B‖L(X,Y) := sup
v∈X

‖Bv‖Y
‖v‖X

.

The next theorem clarifies under which circumstances for a bilinear form
B(·, ·) : U× V→ R the variational problem

B(u, v) = f(v), ∀ v ∈ V, (3.2.1)
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has for any f ∈ V′ a unique solution u ∈ U.

Theorem 3.2.1 (Banach-Nečas) Let B(·, ·) : U×V→ R be a continuous
bilinear form, i.e.,

‖B‖ := sup
u∈U

sup
v∈V

B(u, v)

‖u‖U ‖v‖V
<∞. (3.2.2)

Then there exists a unique linear operator B ∈ L(U,V′) such that

〈Bw, v〉 := (Bw)(v) = B(w, v), ∀ w ∈ U, v ∈ V, (3.2.3)

with operator norm

‖B‖L(U,V′) = ‖B‖. (3.2.4)

Moreover, the operator B : U → V′ is a (norm-) isomorphism (i.e., in-
jective and surjective with bounded inverse) if and only if there exists a
cB > 0 such that

inf
w∈U

sup
v∈V

B(w, v)

‖w‖U ‖v‖V
≥ cB, (3.2.5)

and
∀ v ∈ V, v 6= 0 ∃ w ∈ U such that B(w, v) 6= 0. (3.2.6)

Moreover, one has then

‖B−1‖L(V′,U) ≤
1

cB
, (3.2.7)

i.e., the infs-up constant cB determines the bound for ‖B−1‖L(V′,U). 2

Proof The proof will consist of several steps.

Existence and Boundedness of B: Fix w ∈ U. Then

Fw : v ∈ V→ Fw(v) := B(w, v) ∈ R

defines a functional on V which, by bilinearity of B(·, ·), is linear. Since
by (3.2.2)

|Fw(v)| = |B(w, v)| ≤ ‖B‖‖w‖U‖v‖V, (3.2.8)
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Fw is for each w ∈ U bounded, we have Fw ∈ V′ with norm

‖Fw‖L(V,R) = ‖Fw‖V′ = sup
v∈V

B(w, v)

‖v‖V
.

Thus, the mapping B : w ∈ U → Fw ∈ V′ is well defined and, because of
Fw1+w2

(v) = B(w1 +w2, v) = Fw1
(v)+Fw2

(v), obviously linear. Moreover,
by (3.2.8),

‖B‖L(U,V′) = sup
w∈U

‖Bw‖V′
‖w‖U

= sup
w∈U

‖Fw‖V′
‖w‖U

= sup
w∈U

sup
v∈V

B(w, v)

‖w‖U‖v‖V
= ‖B‖

which shows (3.2.4).

Assume now the validity of (3.2.5) and (3.2.6). We wish to show that B
is an isomorphism satisfying (3.2.7). We proceed in several steps:

Injectivity of B: Condition (3.2.5) says that

cB‖w‖U ≤ sup
v∈V

(Bw)(v)

‖v‖V
= ‖Bw‖V′, ∀ w ∈ U, (3.2.9)

which means that B is injective.

B has closed range: To prove the closedness of B(U) consider a sequence
(wk)k∈N ⊂ U for which zk := Bwk converges in V′ to some z ∈ V′. We
have to show that there exists a w ∈ U such that z = Bw. By (3.2.9), we
have

cB‖wk − wj‖U ≤ ‖B(wk − wj)‖V′ = ‖zk − zj‖V′ → 0, k, j →∞.

Thus, (wk)k∈N is a Cauchy sequence which, by completeness of U has a
limit w ∈ U. Boundedness and hence continuity of B yields w = Bz which
confirms closedness of the range B(U).

Surjectivity of B: Suppose B were not surjective, i.e., B(U) 6= V′. Since
B(U) is closed we can decompose V′ as V′ = B(U) ⊕ B(U)⊥ where or-
thogonality refers to the scalar product (·, ·)V′ in V′, see e.g. [Ha06, Prop.
3.6.9] or [Alt85] or any textbook on Functional Analysis. By assumption
B(U)⊥ 6= {0}. Hence, there exists a 0 6= z0 ∈ B(U)⊥ such that

(z, z0)V′ = 0, ∀ z ∈ B(U) ⇔ (Bw, z0)V′ = 0, ∀ w ∈ U.
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By the Riesz-Representation Theorem, there exists a v0 ∈ V such that
(z, z0)V′ = z(v0) for all z ∈ V′. Thus

(Bw)(v0) = B(w, v0) = 0, ∀ w ∈ U,

which contradics (3.2.6). Thus B : U→ V′ is an isomorphism.

The Bound (3.2.7): We can now rewrite (3.2.9) as

cB‖B−1z‖U ≤ ‖z‖V′, ∀ z ∈ V′,

which is (3.2.7).

(3.2.7) implies (3.2.5): By definition of the operator norm, we have

inf
w∈U

sup
v∈V

B(w, v)

‖w‖U ‖v‖V
= inf

w∈U
sup
v∈V

(Bw)(v)

‖w‖U ‖v‖V

= inf
w∈U

‖Bw‖V′
‖w‖U

= inf
z∈V′

‖z‖V′
‖B−1z‖U

=

(
sup
z∈V′

‖B−1z‖U
‖z‖V′

)−1

=
1

‖B−1‖L(V′,U)

(3.2.7)

≥ cB,

which confirms the validity of (3.2.5).

Finally, and (3.2.6) is an immediate consequence of the bijectivity of B.�

Comments:

(i) The first part of Theorem 3.2.1 says that whenever the bilinear form
B(·, ·) is continuous on U×V then the variational problem (3.2.1) is equiv-
alent to the operator equation: for a given f ∈ V′ find u ∈ U satisfying

Bu = f, (3.2.10)
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where B : U → V′ is bounded. Note that in all examples discussed in
Section 3.1 the spaces U,V (mostly U = V) were chosen in a way that
the respective bilinear forms are indeed continuous. For instance, the
discussion in Section 1.3.2 says that the weak formulation (1.3.22) of
Poisson’s equation can be interpreted as an operator equation for the
Laplacian as a mapping from H1

0(Ω) onto H−1(Ω) = (H1
0(Ω))′.

(ii) The second part of Theorem 3.2.1 characterizes when (3.2.10) has a
unique solution for every right hand side. Clearly, unique solvability for
any right hand side f ∈ V′ is equivalent to bijectivity of B. The condition
of the problem can now be bounded by the condition number

κU,V′(B) := ‖B‖L(U,V′)‖B−1‖L(V′,U) ≤
‖B‖
cB

. (3.2.11)

Hence, the larger cB the better conditioned is (3.2.10). In particular, one
has the stability relation

‖u‖U ≤ c−1
B ‖f‖V′. (3.2.12)

Hence, Theorem 3.2.1 not only ensures unique solvability but also contin-
uous dependence on the data and hence well-posedness.

In the finite dimensional case the inf-sup condition has a simple interpre-
tation.

Exercise 3.2.1 When U = V = Rd, ‖ · ‖U = ‖ · ‖V = | · | (Euclidean
norm), B ∈ Rd×d, then

inf
w∈Rd

sup
v∈Rd

vTBw

|w| |v|
= σd(B), (3.2.13)

where σd(B) is the smallest singular value of B.

The above results are often formulated in the following way.

Theorem 3.2.2 (Nečas, 1962) Let B(·, ·) : U × V → R be continuous,
where U,V are Hilbert spaces. The unique solvability of the variational
problem:

B(u, v) = f(v), ∀ v ∈ V,
for each f ∈ V′ where u depends continuously on f , is equivalent to each
one of the following conditions:
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(i) There exists a cB > 0 such that

infw∈U supv∈V
B(w,v)
‖w‖U ‖v‖V > cB,

for every v ∈ V, v 6= 0 there exists a w ∈ U such that

B(w, v) 6= 0.

(ii) There exists an α > 0 such that

inf
w∈U

sup
v∈V

B(w, v)

‖w‖U ‖v‖V
= inf

v∈V
sup
w∈U

B(w, v)

‖w‖U ‖v‖V
= α. (3.2.14)

2

In addition, for u satisfying (3.2.1), one has

‖u‖U ≤ α−1‖f‖V′.

Proof One only has to verify the equivalence of (i) and (ii). To this end,
recall that the adjoint B′ of B maps V onto U′ and is defined by

(Bw)(v) = 〈Bw, v〉 = 〈w,B′v〉 = (B′v)(w).

It is well-known (see any Functional Analysis textbook) that

‖B‖L(U,V′) = ‖B′‖L(V,U′). (3.2.15)

Furthermore, recall from the above proof that

inf
w∈U

sup
v∈V

B(w, v)

‖w‖U ‖v‖V
= ‖B−1‖−1

L(V′,U).

The assertion follows then from ‖B‖L(U,V′) = ‖B′‖L(V,U′). �

The above theorems will be employed in the following sections to establish
well-posedness of variational formulations for both, the infinite as well as
finite dimensional problems.
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4 Projection Methods

In this chapter we discuss the basic principles of discretization schemes
based on the underlying weak formulation of the PDE.

Throughout this section we make the following

Assumption 4.0.3 Suppose that for a given pair of Hilbert spaces U,V
and a bilinear form B(·, ·) : U × V the problem: for f ∈ V′ find u ∈ U
such that

B(u, v) = f(v), v ∈ V (4.0.1)

is well-posed. That is, the conditions (3.2.2), (3.2.5), and (3.2.6) hold
with constants CB = ‖B‖ <∞, cB > 0.

Remark 4.0.1 Recall that under the above assumption one has

κU,V′(B) ≤ CB
cB
, (Bw)(v) = B(w, v), w|inU, v ∈ V.

In particular, the error-residual relations (1.2.4) hold for W = V′, i.e.,

C−1
B ‖f − Bw‖V′ ≤ ‖u− w‖U ≤ c−1

B ‖f − Bw‖V′, w ∈ U, (4.0.2)

where ‖f − Bw‖V′ = supv∈V
f(v)−B(w,v)
‖v‖V . 2

4.1 Petrov-Galerkin Scheme

We take up the brief discussion in Section 3.1.7. A natural way of deriving
from (4.0.1) a finite-dimensional discrete problem yielding approximate
solutions to (4.0.1) looks as follows:

57



i) Choose finite-dimensional subspaces Un ⊂ U, Vh ⊂ V such that

dimUh = dimVh. (4.1.1)

ii) compute uh ∈ Uh satisfying

B(uh, vh) = f(vh), vh ∈ Vh. (4.1.2)

Condition (4.1.1) ensures that (4.1.2) is a quadratic linear system, i.e., we
have as many unknows as linear equations. As indicated in Section 3.1.7,
computationally (4.1.2) means the following.

Choose bases

Φn = {φ1, . . . , φn}, Ψn = {ψ1, . . . , ψn}, n = nh. (4.1.3)

Then (4.1.2) is equivalent to

B(uh, ψj) = f(ψj) =: fj, j = 1, . . . , n.

Substituting the ansatz

uh =
n∑
k=1

uh,kφk

for uh, bilinearity of B(·, ·) yields the linear system

Ahuh = fn, (4.1.4)

with an unknown coefficient vector uh := (uh,k)
n
k=1 ∈ Rn where

Ah :=
(
B(φk, ψi)

)n
i,k=1

, fh =
(
f(ψi)

)n
i=1
.

In analogy to the infinite-dimensional case

(Bh(wh)(vh) = B(wh, vh), wh ∈ Uh, vh ∈ Vh,

defines a linear operator, taking Uh ⊂ U into a subspace of V′. Defining

κU,V′(Bh) :=
supwh∈Uh,‖wh‖U=1 ‖Bhwh‖V′
infwh∈Uh,‖wh‖U=1 ‖Bhwh‖V′

, (4.1.5)

(4.1.2) is well-posed if and only if κU,V′(Bh) is finite.

Main Questions:
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(Q1) Does (4.1.4) (or (4.1.2)) have a unique solution and if so what can
be said about κU,V′(Bh) ?

(Q2) How to choose the test space Vh, in particular, so that (Q!) has a
positive answer?

(Q3) How to bound the error ‖u − uh‖U in comparison with the best ap-
proximation inf ū∈Uh ‖u− ū‖U?

4.2 The Galerkin Case

When the variational formulation (4.0.1) is symmetric, i.e., U = V, and
the problem is coercive, the above questions (Q1) - (Q3) have rather
simple answers (given already in Numa IV). Taking then Uh = Vh, i.e.,
trial- and test-space are the same, the discrertization (4.1.2) reduces to
the classical Galerkin scheme: find uu ∈ Uh such that

B(uh, vh) = f(vh), vh ∈ Uh. (4.2.1)

The main facts are collected in the following exercise:

Exercise 4.2.1 Assume that B(·, ·) is a continuous and coercive bilinear
form on U× U (U a Hilbert space), i.e.,

|B(w, v)| ≤ CB‖w‖U‖v‖U, B(w,w) ≥ cB‖w‖2
U, v, w ∈ U. (4.2.2)

i) Show that B : U→ U′, defined by (Bw)(v) = B(w, v), w, v ∈ U, has
a bounded condition

κU,U′(B) ≤ CB
cB
. (4.2.3)

ii) For any subspace Uh ⊂ U, the Galerkin scheme (4.2.1) has a unique
solution uh ∈ Uh and the induced discrete operator

(Bhwh)(vh) = f(vh), wh, vh ∈ Uh

has the same condition bound

κU,U′(Bh) ≤
CB
cB
, (4.2.4)

independent of Uh.
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iii) (Ceà-Lemma) One has the best approximation property (BAP)

‖u− uh‖U ≤
CB
cB

inf
ūh∈Uh

‖u− ūh‖U. (4.2.5)

iv) Show that when B(·, ·) is in addition symmetric one even has

‖u− uh‖U ≤
√
CB
cB

inf
ūh∈Uh

‖u− ūh‖U. (4.2.6)

Remark 4.2.1 i) The condition number estimate in (4.2.4) refers to
Bh as mapping from Uh ⊂ U to a subspace of U′. That does not
mean that the matrix representation Ah from (4.1.4) is independent
of the discretization. In fact, κ2(Ah) = κ`2(Rn),`2(Rn)(Ah) will typically
grow towards infinity when dimUh increases, because Ah is treated
as an operator from `2(Rn) into the same space `2(Rn), ignoring
the mapping properties of the underlying continuous operator. A
preconditioner can only retrieve at best the condition of the infinite-
dimensional variational problem!

ii) Under the abobe hypotheses the accuracy of the Galrkin methods
is determined by the approximation properties of the trial space Uh

alone, i.e., up to a fixed constant κU,U′(B) (the condition of the con-
tinuous problem) the error behaves like the best approximation error.

iii) The larger κU,U′(B) the worse gets the error bound. That is, a large
condition number of the infinite-dimensional continuous problem di-
rectly impedes the accuracy of the Galerkin approximation. Also
from this point of view it is important that the infinite-dimensional
problem is not only well-posed but also well-conditioned. 2

Questions (Q1) - (Q3) for the general Petrov-Galerkin case are discussed
next.

4.3 Well-Posedness of Petrov-Galerkin Schemes

The Banach-Nečas-Theorem 3.2.1 applies, of course, in the same way to
the pair Uh × Vh (simply restricting the bilinear form B(·, ·)). However,

60



there is one noteworthy distinction from the Galerkin case for coercive
problems.

Remark 4.3.1 Coercivity of the bilinear form B(·, ·) is trivially inher-
ited by any subspace Uh ⊂ U, i.e., the choice Vh = Uh guaranties the
same positive inf-sup constants for any subspace Uh. For an indefinite
problem with unsymmetric variational formulation (U 6= V) the situation
is fundamnentally different. Given Uh ⊂ U it is, in general, by no means
clear which test-space Vh ensures a positive inf-sup constant. 2

Exercise 4.3.1 Assume that for B(·, ·), U, V, the conditions (3.2.2),
(3.2.5), and (3.2.6) hold with continuity constant ‖B‖ = CB. Show that
for a given pair of finite-dimensional subspaces Uh ⊂ U, Vh ⊂ V

κU,V′(Bh) ≤
CB
cBh

, (4.3.1)

holds if and only if

inf
wh∈Uh

sup
vh∈Vh

B(wh, vh)

‖wh‖U ‖vh‖V
≥ cBh (4.3.2)

holds for some postive cBh > 0. Moreover, if for a given sequence of pairs
Un ⊂ U,Vn ⊂ V, n ∈ N, of trial- and test-spaces the union of the trial
spaces Un is dense in U, then one has

lim sup
n∈N

cBn ≤ cB. (4.3.3)

Here, the induced finite-dimensional operators Bn are again defined by

(Bnwh)(vh) = B(wn, vn), wn ∈ Un, vn ∈ Vn.

In brief: A positive answer to (Q1) is equivalent to the validity of (4.3.2)
for some positive cBh.

Remark 4.3.2 Thus, once we have a well-posed infinite-dimensional prob-
lem, to ensure well-posedness of a Petrov-Galerkin scheme one only has
to re-check one inf-sup condition, rather than all three conditions in The-
orem 3.2.1. But in contrast to the Galerkin case for coercive problems,
this single inf-sup condition is not automatically satisfied and its validity
depends on the choice of the test-space Vh. A systematic choice of a good
test-space (see (Q2)) will be discussed in a later section. 2
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Remark 4.3.3 When writing in what follows Bh ∈ L(U,V′) this is to
express that the operator norm is defined with respect to the norms for
U and V′, i.e., its range Bh(Uh) is viewed as a (closed) subspace of V′
endowed with the norm ‖ · ‖V′. 2

4.4 BAP of Petrov-Galerkin Solutions

We postpone the choice of Vh and assume throughout this section that
for a given pair Uh ⊂ U, Vh ⊂ V the inf-sup condition (4.3.2) is valid.

Exercise 4.4.1 Assume that under the hypotheses of Exercise 4.3.1 the
discrete inf-sup condition (4.3.2) holds for the pair Uh ⊂ U, Vh ⊂ V.
Let u, uh denote the solutions of (4.0.1), (4.1.2), respectively. Then, the
mapping

ΠUh,Vh : u→ uh (4.4.1)

is a well defined linear projector, i.e., in particular,

ΠUh,Vh(ΠUh,Vhu) = ΠUh,Vhu.

Hint: Note first that

B(ΠUh,Vhu, vh) = B(u, vh), vh ∈ Vh. (4.4.2)

Theorem 4.4.1 When (4.3.2) holds the PG-scheme

B(uh, vh) = f(vh), vh ∈ Vh,

is stable, i.e.,
‖uh‖U = ‖ΠUh,Vhu‖U ≤ c−1

Bh‖f‖V′. (4.4.3)

Moreover, one has

‖u− ΠUh,Vhu‖U ≤
‖B‖L(U,V′)

cBh
inf
ūh∈Uh

‖u− ūh‖U, (4.4.4)

i.e., the Petrov-Galerkin approximation behaves like the best approxima-
tion up to a constant factor given by the condition of the discrete operator
Bh. 2
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Proof Abbreviate for convenience Π = ΠUh,Vh. By (4.3.2), we have

cBh‖uh‖U ≤ sup
vh∈Vh

B(uh, vh)

‖vh‖V
= sup

vh∈Vh

B(Πu, vh)

‖vh‖V

= sup
vh∈Vh

B(u, vh)

‖vh‖V
≤ sup

v∈V

B(u, v)

‖v‖V

= sup
v∈V

f(v)

‖vh‖V
= ‖f‖V′, (4.4.5)

which shows (4.4.3).

By Exercise 4.4.1, Π ∈ L(U,Uh) is a projector. By Kato’s Theorem (see
[Szy06]) one has

‖Π‖L(U,U) = ‖I − Π‖L(U,U), (4.4.6)

where I denotes the identity. Thus,

‖u− Πu‖U = ‖(I − Π)u‖U = ‖(I − Π)(u− ūh)‖U
≤ ‖I − Π‖L(U,Uh)‖u− ūh‖U = ‖Π‖L(U,Uh)‖u− ūh‖U

holds for any ūh ∈ Uh. Therefore, it remains to show that

‖Π‖L(U,U) ≤
‖B‖L(U,V′)

cBh
. (4.4.7)

Noting that
‖f‖V′ = ‖Bu‖V′ ≤ ‖B‖L(U,V′)‖u‖U,

(4.4.7) follows directly from (4.4.5), which completes the proof. �

Formally, the error bound (4.4.4) looks the same as for the Galerkin case
for coercive problems. Again there is an important difference.

Remark 4.4.1 The quantitative performance is again determined by the
condition of the discrete problem. In contrast to the Galerkin case the
condition of the discrete problem, however, is not determined by the un-
derlying infinite-dimensional problem but depends crucially on the choice
of the test-space Vh. In fact, by (4.3.3) one always has for any family of
trial-spaces whose union is dense in U that

lim sup
h≥0

κU,V(Bh) ≥ κU,V(B), (4.4.8)
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and the left hand side may be much larger than the right hand side,
depending on the choice of Vh. 2

4.5 Optimal Test Spaces

Recall Assumption 4.0.3. Suppose further that Uh ⊂ U is a finite dimen-
sional subspace in which we wish to find an approximation to the exact
solution u of (??). When U = V and B(·, ·) is coercive, a Galerkin dis-
cretization with Vh = Uh as the test-space is the natural way to go.

Central Issue: In general, when V 6= U, the main question is to choose a
“good” test-space VUh ⊂ V such that the corresponding Petrov-Galerkin
scheme is stable.

As a first step we identify in this section for a given trial space Uh ⊂ U and
optimal test-space Vh(Uh) in the sense that the Petrov-Galerkin scheme

B(uh, vh) = f(vh), vh ∈ Vh(Uh), (4.5.1)

inherits the stability properties of the infinite-dimensional problem (??).

We will then see that these optimal spaces are not practical but will serve
as a starting point for generating practically feasible near-optimal test-
spaces.

To that end, let (·, ·)H denote the inner product on the Hilbert-space H.
An important tool in what follows is the notion of Riesz-map

RH : H′ → H,

defined as follows: for any linear functional ` ∈ H′, z` = RH` ∈ H is the
unique element in H such that

(z`, v)H = `(v), v ∈ H. (4.5.2)
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Remark 4.5.1 (4.5.2) has a unique solution. Moreover, RH is an isom-
etry, i.e,,

‖RH`‖H = ‖`‖H′, ` ∈ H′, R−1
H = RH′. (4.5.3)

This is just the formalization of the Riesz-Representation Theorem, saying
that any bounded linear functional on a Hilbert-space is represented by
a unique element of the Hilbert space and realized through the scalar-
product on H. Computing the Riesz-representer means to solve the elliptic
problem (4.5.2). 2

Proof The bilinear form (·, ·)H trivially satisfies all conditions in the
Banach-Nečas-Theorem 3.2.1 with continuity- and inf-sup constants both
equal to one. This proves the claim. (Lax-Milgram already would have
worked because a scalar product is triavially coercive and continuous with
continuity and coercivity constants both equal to one). �

Exercise 4.5.1 Show that one has for any v ∈ H, `, `′ ∈ H′

(`, `′)H′ = `(RH`
′) = `′(RH`) = (RH`,RH`

′)H. (4.5.4)

The next important notion is the so called trial-to-test map T : U → V
associated with the bilinear form B(·, ·):

(T w, v)V = B(w, v), v ∈ V. (4.5.5)

Remark 4.5.2 T defined by (4.5.5) is an isomorphism, i.e.,

T ∈ L(U,V), T −1 ∈ L(V,U),

and
T = RH ◦ B. (4.5.6)

Proof (4.5.6) follows from B(w, v) = (Bw)(v) = (RVBw, v)V and Re-
mark 4.5.1. Under the given assumptions on B(·, ·) B : U → V′ is an
isomorphism. The compositions of isomorphisms is an isomorphism. �

Remark 4.5.3 The mapping T is sometimes called “supremizer” be-
cause

sup
v∈V

B(w, v)

‖v‖V
= ‖T w‖V, w ∈ U. (4.5.7)
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Moreover, under Assumption 4.0.3, the inf-sup condition combined with
(4.5.5) yields

‖T w‖V ≥ cB‖w‖U, w ∈ U, (4.5.8)

while continuity of B yields

‖T w‖V ≤ CB‖w‖U. (4.5.9)

Clearly, since RV is an isometry, T has the same condition number as B.2

Proof In fact, one has

sup
v∈V

B(w, v)

‖v‖V
(4.5.5)

= sup
v∈V

(T w, v)V
‖v‖V

= ‖T w‖V,

which yields (4.5.7). (4.5.14) follows from (4.5.7) and Assumption 4.0.3.�

We can describe now the optimal test space associated with a given trial
space Uh.

Proposition 4.5.1 Let Assumption 4.0.3 hold and define the space

Vh := T (Uh) = {T wh : wh ∈ Uh} ⊂ V. (4.5.10)

Then, the Petrov-Galerkin problem: find uh ∈ Uh such that

B(uh, vh) = f(vh), vh ∈ T (Uh), (4.5.11)

is inf-sup stable, i.e.,

inf
wh∈Uh

sup
vh∈T (Uh)

B(wh, vh)

‖wh‖U‖vh‖V
≥ cB, (4.5.12)

where cB is the inf-sup constant of the infinite-dimensional problem (4.5.1).
In particular, it follows from (4.4.3) in Theorem 4.4.1 that

‖uh‖U ≤ c−1
B ‖f‖V′. (4.5.13)
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Proof Since T is an isomorphism we have dim T (Uh) = dimUh, so that
T (Uh) is viable. Moreover

sup
vh∈T (Uh)

B(wh, vh)

‖vh‖V
= sup

vh∈T (Uh)

(T wh, vh)V
‖vh‖V

≥ (T wh, T wh)V
‖T wh‖V

= ‖T wh‖V
(4.5.7)

= sup
v∈V

B(wh, v)

‖v‖V
≥ cB‖wh‖U, (4.5.14)

where we have used Assumption 4.0.3 in the last step. This shows (4.5.12).
By Theorem 3.2.1, (4.5.11) has a unique solution uh ∈ Uh. The rest follows
from (4.4.3) in Theorem 4.4.1. �

Exercise 4.5.2 Suppose that Sh ⊂ V is a closed subspace and let PSh =
PV,Sh denote the V-orthogonal projector into Sh (i.e., (v−PShv, vh)V = 0,
for all vh ∈ Sh). Show that

Q := RV′PShRV

is a V′-orthogonal projector into RV′(Sh) ⊂ V′.

Can you improve the estimate (4.5.13) somewhat, i.e., which portion of
the data f is actually “seen” by the method?

A direct way of expressing (4.5.11) as a linear system is to choose a basis

Φh = {φh,1, . . . , φh,n} ⊂ Uh, n = nh = dimUh,

and compute

Ψh = {ψh,1, . . . , ψh,n} ⊂ T (Uh), ψh,k = T φh,k, 1 ≤ k ≤ n. (4.5.15)

Thus each test-basis function is the solution of the (infinite-dimensional)
variational (elliptic) problem

(ψh,k, v)V = B(φh,k, v), v ∈ V. (4.5.16)

Then (4.5.11) is equivalent to solving the linear system

Bhuh = fh, (4.5.17)

where uh = (uh,1, . . . , uh,n)
T is the unknown coefficient vector of the

Petrov-Galerkin solution uh =
∑n

k=1 uh,kφh,k and

Bh =
(
B(φh,i, ψh,k)

)n
i,k=1

, fh = (f(ψh,1), . . . , f(ψh,n)
T . (4.5.18)
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Remark 4.5.4 The system matrix Bn is symmetric positive definite, re-
gardless of whether the bilinear form B(·, ·) is symmetric positive definite
or not, because

B(φh,i, ψh,k)
(4.5.5)

= (T φh,i, ψh,k)V
(4.5.15)

= (T φh,i, T φh,k)V. (4.5.19)

Thus, one can use (preconditioned) conjugate gradient methods for solv-
ing (4.5.17). 2

Unfortunately, the scheme (4.5.11) is completely impractical for the fol-
lowing reasons:

(I) The computation of each test-basis function requires solving an infinite-
dimensional elliptic problem (4.5.16).

(II) Even if one replaces (4.5.16) by a finite-dimensional discretized prob-
lem, then this problem is in general a global one and of comparable
complexity as the original one, i.e., the overall complexity scales at
least as (dimUh)

2 which is not acceptable.

Nevertheless, the scheme serves as a starting point for the development
of practically feasible versions that still exhibit nearly optimal stability.

4.6 Near-Optimal Test Spaces

We address first issue (I) and replace (4.5.16) by a finite-dimensional
problem. The principal idea is quite simple, namely one picks

a sufficiently large but finite-dimensional subspace Sh ⊂ V, called
test-search space

(which does not play the role of the test space, it will contain the test-space).

Since the scalar product (·, ·)V is trivially V-elliptic and B(wh, ·) is a
continuous linear functional on V there exists for every wh ∈ Uh a unique
T hwh ∈ Sh such that

(T hwh, vh)V = B(wh, vh), vh ∈ Sh. (4.6.1)

Thus, (4.6.1) defines a linear mapping T h := TSh : Uh → Sh.
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Remark 4.6.1 One has

T h = PSh ◦ T = PSh ◦ RV ◦ B. (4.6.2)

This allows us to view TSh as a mapping into V.

Proof Defining T̃ hwh by

(T̃ hwh, v)V = B(wh, PShv), v ∈ V, (4.6.3)

(where PSh : V → Sh is again the V-orthogonal projection) one has by
(4.5.5) and self-adjointness of the orthogonal projection

B(wh, PShv) = (T wh, PShv)V = (PShT wh, v)V, v ∈ V,

In particular, this holds for v ∈ Sh ⊂ V which by (4.6.3) confirms the first
relation in (4.6.2). The second relation is just (4.5.6). �

In a similar fashion as before one can show the following analogue to
Remark 4.5.3

Remark 4.6.2 For T h, defined by (4.6.2), one has for any wh ∈ Uh

‖T hwh‖V = sup
vh∈T h(Uh)

B(wh, vh)

‖vh‖V
= sup

vh∈Sh

B(wh, vh)

‖vh‖V
, . (4.6.4)

Thus, T h = TSh produces the supremizer over T h(Uh) and over the larger
space Sh. 2

Proof As before one argues

sup
vh∈Sh

B(wh, vh)

‖vh‖V
(4.6.1)

= sup
vh∈Sh

(T hwh, vh)V
‖vh‖V

T hwh∈Sh= ‖T hwh‖V

= sup
vh∈T h(Uh)

(T hwh, vh)V
‖vh‖V

(4.6.1)
= sup

vh∈T h(Uh)

B(wh, vh)

‖vh‖V
,

which confirms the claim. �

The idea is now to take T h(Uh) ⊂ Sh ⊂ V as the test space in the

Petrov-Galerkin (PG) scheme: find uh ∈ Uh such that

B(uh, vh) = f(vh), vh ∈ T h(Uh) = PSh(T (Uh)). (PGh)
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Remark 4.6.3

i) For the test-space to have the same dimension as Uh one must have
at least

dimSh ≥ dimUh.

ii) It is in general not clear beforehand, how to choose the search-test-
space Sh. The rationale is that under Assumption 4.0.3, the choice
Sh = V would ensure uniform inf-sup stability for all h. In view of
the rightmost equality in (4.6.4), Sh “large enough” should provide
a positive inf-sup constant.

iii) For the computational work to scale favorably in the end, it would
be good to ensure though that

dimSh ≤ CdimUh (4.6.5)

for some uniform constant C independent of h. Whether this is
possible will have to be seen.

iv) Although Vh = T h(Uh) = PSh(T (Uh)) is the V-orthogonal projection
of the optimal (impractical) test-space T (Uh), one does not need to
know T (Uh). Instead one now solves the finite-dimensional problems:
find ψh,k ∈ Sh such that

(ψh,k, zh)V = B(φh,k, zh), zh ∈ Sh. k = 1, . . . , n, (4.6.6)

to compute the test-basis-functions ψh,k. This requires solving dimUh

linear systems of size dim Sh.

v) The new system matrix

Bh =
(
B(φh,i, ψh,k)

)n
i,k=1

=
(
(T hφh,i, T hφh,k)V

)n
i,k=1

is still symmetric and at least positive semi-definite.

vi) Bh is invertible, i.e., (PGh) has a unique solution, if and only if there
exists a cBh > 0 such that

inf
wh∈Uh

sup
vh∈T h(Uh)

B(wh, vh)

‖wh‖U‖vh‖V
≥ cBh. (4.6.7)
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Remark 4.6.4 By continuity of the bilinear form B(·, ·) and of the V-
orthogon al projection PSh,

(Bhwh)(v) := B(wh, PShv), v ∈ V, (4.6.8)

is a bounded linear functional over V. Thus, Bh : Uh → V′, defined by
(4.6.8) is a bounded linear mapping having a natural extension to U. By
Exercise 4.5.2, its range is RV′Sh ⊂ V′. 2

Remark 4.6.5 Since trivially ‖Bh‖L(Uh,V′) ≤ ‖B‖L(U,V′) one has

Bh ∈ L(U,V′), (4.6.9)

see Remark 4.3.3. Moreover, for vh = PShRVBzh = T hzh ∈ T h(Uh),
(4.6.8) becomes

(Bhwh)(vh) = B(wh, vh), wh ∈ Uh, vh ∈ T h(Uh), (4.6.10)

which (see also Exercise 4.3.1) is invertible if and only if the inf-sup con-
dition (4.6.7) holds. According to (4.1.5) one then has

κU,V′(Bh) ≤
CB
cBh

,

where CB is the continuity constant for the infinite-dimensional problem,
see Assumption 4.0.3. Thus, if one manages to keep the discrete inf-sup
constants cBh uniformly bounded away from zero, cBh ≥ β > 0, indepen-
dently of the dimension of Uh, the operators Bh would have uniformly
bounded condition as mappings from U into V. This does not imply
that the matrices Bh have uniformly bounded spectral condition numbers
κ2(Bh) = κ`2,`2(Bh), why? 2

The concrete choice of the test-search-space depends on the concrete weak
formulation. In this context the following general criterion is often use-
ful.

Definition 4.6.1 Let δ ∈ (0, 1). The space Vδ ⊂ V is called δ-proximal
for Uh ⊂ U if

‖v − PVδv‖V ≤ δ‖v‖V, v ∈ T (Uh). (4.6.11)
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Thus, δ-proximality of Vδ means that all elements of the optimal test-
space T (Uh) can be approximated by elements in Vδ uniformly with rel-
ative accuracy δ < 1.

The next result says that the Petrov-Galerkin scheme (PGh) with respect
to the spaces Uh, TSh(Uh) is inf-sup stable if and only if Sh is δ-proximal
for Uh for some δ ∈ [0, 1).

Proposition 4.6.1 If Vδ ⊂ V is δ-proximal for Uh then

inf
wh∈Uh

sup
vh∈Vδ

B(wh, vh)

‖wh‖U‖vh‖V
≥ cB
√

1− δ, (4.6.12)

where cB is the inf-sup constant of the infinite-dimensional problem (??).

Conversely, if for some β > 0

inf
wh∈Uh

sup
vh∈Vδ

B(wh, vh)

‖wh‖U‖vh‖V
≥ β, (4.6.13)

then (4.6.11) holds with δ =
√

1− (β/CB)2, where CB is the continuity
constant in Assumption 4.0.3. 2

Proof Suppose that (4.6.11) holds. By orthogonality (4.6.2), we have

‖T hwh‖2
V = ‖T wh‖2

V − ‖(I − PSh)T wh‖2
V

(4.6.2)

≥ ‖T wh‖2
V(1− δ2)

(4.5.14)

≥ c2
B(1− δ2)‖wh‖2

U. (4.6.14)

Hence

sup
vh∈Vδ

B(wh, vh)

‖vh‖V
(4.6.4)

= ‖T hwh‖V
(4.6.14)

≥ cB(1− δ2)1/2‖wh‖U, (4.6.15)

confirming (4.6.12).

Conversely, by (4.5.6) and boundedness of B (see Assumption 4.0.3), we
have

‖T wh‖L(U,V)≤‖Bwh‖L(U,V′) ≤ CB‖wh‖U, wh ∈ Uh. (4.6.16)

72



Moreover, combining (4.6.13) and (4.6.4) yields

‖T hwh‖V ≥ β‖wh‖U, wh ∈ Uh. (4.6.17)

Now, by the first line in (4.6.14), we have, ,

‖(I − PSh)T wh‖2
V = ‖T wh‖2

V − ‖T hwh‖2
V

(4.6.17)

≤ ‖T wh‖2
V − β2‖wh‖2

U

=

{
1− β2

( ‖wh‖U
‖T wh‖V

)2
}
‖T wh‖2

V

(4.6.16)

≤
{

1−
( β
CB

)2
}
‖T wh‖2

V,

which completes the proof. �

Remark 4.6.6 If Vδ ⊂ V is δ-proximal for Uh ⊂ U, taking Vδ = Sh as the
search-test-space, the corresponding PG-scheme with test-space TVδ(Uh)
is well posed and, by Remark 4.6.2, one has

inf
wh∈Uh

sup
vh∈TVδ (Uh)

B(wh, vh)

‖wh‖U‖vh‖V
≥ cB
√

1− δ.

Remark 4.6.7 When B : U → V′ is an isometry, i.e., cB = CB = 1, inf-
sup stability with constant

√
1− δ2 and δ-proximality are equivalent. 2

In general, Proposition 4.6.1 says that inf-sup stability of a Petrov-Galerkin
formulation is equivalent to the approximability of the optimal test-space
by the search-test space within some uniform relative accuracy strictly
less than one. This is best explained by the following general setting.

Exercise 4.6.1 Let X,Y be finite-dimensional subspaces of a Hilbert space
H with inner product (·, ·) and norm ‖ · ‖2 = (·, ·). Define

β(X,Y) := inf
v∈X

sup
z∈Y

(v, z)H
‖v‖H‖z‖H

.

Prove the following properties:
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i) Let PY denote the H-orthogonal projector onto Y, then

β(X,Y) = inf
v∈X

‖PYv‖
‖v‖

.

ii) One has

sup
0 6=v∈X

inf
z∈Y

‖v − z‖
‖v‖

≤
√

1− β(X,Y)2.

iii) Let Φ = {x1, . . . , xn}, Ψ = {y1, . . . , ym} be bases of X,Y (formally
viewed as column vectors), respectively and let

G := (Φ,ΨT ) :=
(
(xi, yk)

)n,m
i=1,k=1

be the corresponding cross-Gramian of the two bases. Then

β(X,Y) = σmin(G)

is the smallest singular value of G := (Φ,ΨT ).

iv) Interpret β(X,Y) geometrically in terms of angles.

Exercise 4.6.2 (Fortin’s Criterion) Assume that there exists a projector
Πh : V→ Sh such that

B(wh,Πhv) = B(wh, v), v ∈ V.

Show that then

inf
wh∈Uh

sup
vh∈Sh

B(wh, vh)

‖wh‖U‖vh‖V
≥ cB
‖Πh‖L(V,V)

.

So far we have only acquired some information concerning issue (I), namely
what is relevant when replacing an infinite-dimensional variational prob-
lem for the computation of the optimal test-functions by finite-dimensional
problems. However, as it stands, this would still require solving for each
basis function in Uh a linear problem of size dim Sh ≥ dimUh, see Remark
4.6.3, (i). So, even if one manages the validity of Remark 4.6.3, (ii), the
total work needed to compute the solution of the Galerkin scheme (PGh)
scales at best as (dimUh)

2, which for large scale problems is not accept-
able. Therefore, we discuss next principal strategies for coping with this
essential obstruction.
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4.7 A Minimum Residual Scheme

A key step is to reinterpret the Petrov-Galerkin (PG) scheme (PGh) as a
least squares problem in V′.

Theorem 4.7.1 Assume that (4.6.7) holds for the test-search-sspace Sh.
Then, the uh ∈ Uh solves

B(uh, vh) = f(vh), vh ∈ TSh(Uh) = PSh(T (Uh)), (4.7.1)

if and only if

uh = argmin
wh∈Uh

{
sup
vh∈Sh

f(vh)−B(wh, vh)

‖vh‖V

}
. (4.7.2)

Proof Rewrite

sup
vh∈Sh

f(vh)−B(wh, vh)

‖vh‖V
sup
vh∈Sh

(PShRVf, vh)V − (T hwh, vh)V
‖vh‖V

= ‖PShRVf − T hwh‖V. (4.7.3)

Next note that minimizing the quadratic functional ‖PShRVf − T hwh‖2
V

over Uh is equivalent to minimizing

J(wh) :=
1

2
(T hwh, T hwh)V − (PShRVf, T hwh)V

over wh ∈ Uh. Since J is a quadratic functional and hence strictly convex
we need to find the critical points, i.e., the zeroes of its Frechét derivative.
To that end, note that for any ūh, wh ∈ Uh

(DJ)(ūh)(wh):= lim
t→0

1

t

(
J(ūh + twh)− J(ūh)

)
= lim

t→0

{
(T hūh, T hwh)V − (PShRVf, T hwh)V + t‖T hwh‖2

V
}

= (T hūh, T hwh)V − (PShRVf, T hwh)V. (4.7.4)

By Exercise (4.7.1), DJ(uh)(wh) = 0 for all wh ∈ Uh holds if and only if
uh solves (4.7.1). The assertion follows now from Remark 4.6.3. �
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Remark 4.7.1 (i) Note that, on the one hand

sup
v∈V

f(PShv)−B(wh, PShv)

‖v‖V
= sup

v∈V

(PShRVf − T hwh, v)V
‖v‖V

(4.7.5)

= ‖PShRVf − T hwh‖V. (4.7.6)

On the other hand,

sup
v∈V

f(PShv)−B(wh, PShv)

‖v‖V
= ‖Qhf − Bhwh‖V′ (4.7.7)

In view of (4.7.3) the solution uh of (4.7.1) is also given by

uh = argmin
wh∈Uh

‖Qhf − Bhwh‖V′. (4.7.8)

(ii) Thus the condition

0 = (T hūh, T hwh)V − (PShRVf, T hwh)V (4.7.9)

are just the normal equations for the least squares problem (4.7.8).

Exercise 4.7.1 (i) Show that (4.7.1) is equivalent to

(TShuh, TShwh)V = f(TShwh), wh ∈ Uh. (4.7.10)

(ii) What does this mean for the PG system matrix?

(iii) Formulate the least-squares problem which is equivalent to the optimal
PG-scheme (4.5.11)

B(uh, vh) = f(vh), vh ∈ T (Uh).

4.8 A Mixed Formulation

The above interpretation of the PG-scheme (PGh) as a minimum residual
(least-squares) problem provides the basis for yet a third reinterpretation
as a saddle-point problem which avoids the necessity of computing the
Petrov-Galerkin test-functions explicitly, thereby addressing obstruction
(II) at the end of Section 4.5. The main result reads as follows.
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Theorem 4.8.1 Assume that Sh ⊂ V is δ-proximal for Uh ⊂ U for some
δ ∈ (0, 1) (see (4.6.1)). Then uh ∈ Uh is the unique solution of the PG-
scheme (4.7.1) (see also (PGh)) if and only if uh solves the problem: find
(uh, rh) ∈ Uh × Sh such that for f ∈ V′

(rh, vh)V +B(uh, vh) = f(vh), vh ∈ Sh,
B(wh, rh) = 0, wh ∈ Uh.

(4.8.1)

Proof By Proposition 4.6.1, δ-proximality of Sh for Uh is equivalent
to the existence of a positive inf-sup constant cBh for the PG-scheme
(PGh). As shown above, (4.7.9) is equivalent to (PGh). The key idea is
to introduce an auxiliary unknown representing the projected Riesz-lifted
residual. Specifically, for uh ∈ Uh there exists a unique rh ∈ Sh such that

(rh, vh)V = (PSh(T uh −RVf), vh)V, vh ∈ Sh. (4.8.2)

This can be rewritten as

(rh, vh)V + (PShT uh, vh)V = (PShRVf, vh)V, vh ∈ Sh. (4.8.3)

Noting that for vh ∈ Sh

(PShT uh, vh)V = (T uh, PShvh)V = (T uh, vh)V
(4.6.1)

= B(uh, vh)

(PShRVf, vh)V = (RVf, PShvh)V = (RVf, vh)V = f(vh),

(4.8.11) is equivalent to the first line in (4.8.1). By (4.6.1) we have

B(wh, rh) = (T hwh, rh)V = (T hwh, PSh(RVf − T uh))V
= f(T hwh)−B(uh, T hwh).

Thus, the second line of (4.8.1) is equivalent to the validity of the PG-
conditions (PGh) whenever rh satisfies the first line of (4.8.1). This fin-
ishes the proof. �

Remark 4.8.1 The idea behind Theorem 4.8.1 is simple: one introduces
an auxiliary unknown rh as the projected lifted residual. The defining
relation is the first line in (4.8.1). The second line says that this lifted
projected residual vanishes under testing by Sh which are the normal
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equations (4.7.9) and hence the PG-relations (PGh). The term “mixed
formulation” stems from the introduction of the auxiliary variable as in
the mixed formulation of second order elliptic problems where the fluxes
are the auxiliary variables. 2

Remark 4.8.2 (1) The advantage of the reformulation of (PGh) as the
saddle-point problem (4.8.1) is that all involved spaces Uh ⊂ U,Sh ⊂ V
can be chosen directly, for instance, as finite element spaces. Thus, a
numerical treatment of (4.8.1) can be based on standard finite element
techniques for saddle-point problems. In particular, one does not have
to compute a basis for T h(Uh) which requires solving dimUh variational
problems of size dim Sh ≥ dimUh. Instead, one has traded these dimSh
solves against a single variational problem (4.8.2) for the projected lifted
residual.

(2) The disadvantage of the formulation (4.8.1) is that the finite-dimensional
problem is now larger, due to the additional unknown rh. 2

Exercise 4.8.1 Formulate a saddle-point problem which is equivalent to
the PG-scheme (4.5.11) with the optimal test-space T (Uh).

Stability of (4.8.1): The problem (4.8.1) is formally a different varia-
tional problem. We have shown that the solution uh of the PG-scheme is
a solution component of (4.8.1). It remains to show that (4.8.1) is also
stable. In principle, one can apply Brezzi’s theory for saddle-point prob-
lems to assert that (4.8.1) is indeed stable if B(·, ·) is inf-sup stable over
Uh × T h(Uh). In fact, it requires that the bilinear form in the upper left
corner of (4.8.1) and if B(·, ·) satisfies an inf-sup condition.

One can also argue directly as will be sketched next. Suppose Sh is δ-
proximal for Uh. Consider the bilinear form

A([rh, uh], [vh, wh]) := (rh, vh)V +B(uh, vh) +B(wh, rh), (4.8.4)

i.e., A is symmetric and, defining ‖[vh, wh]‖H :=
(
‖vh‖2

V + ‖wh‖2
U
)1/2

,

A(·, ·) : (H := Sh × Uh)×H→ R. (4.8.5)
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Continuity of A(·, ·): Notice first that A(·, ·) is continuous. In fact,

|A([rh, uh], [vh, wh])| ≤ ‖rh‖V‖vh‖V + CB
(
‖uh‖U‖vh‖V + ‖wh‖U‖rh‖V

)
≤
(
‖rh‖2

V + ‖uh‖2
U
)1/2{

(‖vh‖V + CB‖wh‖U)2 + C2
B‖vh‖2

V
}1/2

≤ ‖[rh, uh]‖H
{

(1 + CB + C2
B)‖vh‖2

V + (CB + C2
B)‖wh‖2

U
}1/2

≤ (1 + CB + C2
B)

1/2‖[rh, uh]‖H‖[vh, wh]‖H,

which says that A(·, ·) is continuous with a continuity constant depending
on CB.

Inf-sup-stability: Next, we verify an inf-sup condition. We do this by an
educated guess for the test-function [vh, wh] given [rh, uh]. Specifically,
let

gh := (I − PT h(Uh))rh, vh := T huh + gh, (4.8.6)

and

wh := zh − uh, where zh ∈ Uh such that T h(zh) = PT h(Uh)rh. (4.8.7)

Then, since (T huh, gh)V = 0, for [vh, wh] as in (4.8.6), (4.8.7) we have

A([rh, uh], [vh, wh]) = (rh, T huh + gh)V +B(uh, T huh + gh) +B(zh − uh, rh)

= (rh, T huh + (I − PT h(Uh)
)rh)V + (T huh, T huh + gh)V

+ (T h(zh − uh), rh)V

= (rh, T hzh + (I − PT h(Uh)
)rh)V + (T huh, T huh)V

= (rh, PT h(Uh)
rh + (I − PT h(Uh)

)rh)V + ‖T huh‖2V
= ‖rh‖2V + ‖T huh‖2V. (4.8.8)

On the other hand,

‖vh‖2
V + ‖wh‖2

U ≤ ‖T huh‖2
V + ‖gh‖2

V + ‖zh − uh‖2
U

≤ ‖T huh‖2
V + ‖rh‖2

V + (‖zh‖V + ‖uh‖U)2

≤ (1 + c−2
Bh )
(
‖rh‖2

V + ‖T huh‖2
V
)
, (4.8.9)

where we have used

‖T hzh‖V
(4.6.17)

≥ cBh‖zh‖U ⇒ ‖zh‖U ≤ c−1
Bh‖T

hzh‖V
(4.8.7)

≤ c−1
Bh‖rh‖V,
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and ‖uh‖U ≤ c−1
Bh‖T

huh‖V. Hence, (4.8.8) and (4.8.9) provide

A([rh, uh], [vh, wh])

‖[vh, wh]‖V
≥ (1 + c−2

Bh )−1/2
(
‖rh‖2

V + ‖T huh‖2
V
)1/2

≥ cBh(1 + c−2
Bh )−1/2‖[rh, uh]‖H. (4.8.10)

Thus, when the PG-inf-sup constants stay bounded away from zero, uni-
formly in h, so do the inf-sup constants of the mixed formulation.

The Projected Lifted Residual: While (4.8.1) can be treated by stan-
dard techniques, it involves an additional unknown rh and thus increases
the discrete problem. However, the additional unknown rh provides im-
portant information which will be discussed next.

Recall that the solution component rh = rh(uh, f) of (4.8.1) is defined
by

(rh(uh, f), vh)V = (PSh(T uh −RVf), vh)V, vh ∈ Sh, (4.8.11)

which, by self-adjointness of PSh can be restated as

(rh(uh, f), v)V = (PSh(T uh −RVf), v)V, v ∈ V, (4.8.12)

i.e.,
rh(uh, f) = PSh(T uh −RVf) ∈ Sh ⊂ V, (4.8.13)

is the projected lifted residual of the PG-solution uh of (PGh), while
r(uh, f) defined by

(r, v)V = (T uh −RVf, v)V, v ∈ V, (4.8.14)

defines the corresponding lifted “full” residual. More generally, rh(wh, f), r(wh, f),
defined in the same way are the projected, respectively full lifted residual
for any wh ∈ Uh. On account of (4.5.3), one has ‖r(uh, f)‖V = ‖f−Buh‖V′
which, in view of (4.0.2) gives

C−1
B ‖r(uh, f)‖V ≤ ‖u− uh‖U ≤ c−1

B ‖r(uh, f)‖V. (4.8.15)

The full residual requires a maximization over all of V, respectively, the
solution of an infinite variational problem (4.5.5) and hence cannot be
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computed exactly.

Question: Can one use rh = rh(uh, f) defined by (4.8.12), as an error
indicator/bound for ‖u − uh‖U, where uh is the solution component of
(4.8.1) and hence of the PG-scheme with projected test-space TSh(Uh)?

Since by (4.8.12) and (4.8.14)

rh(wh, f) = PShr(wh, f), (4.8.16)

we always have

‖rh(wh, f)‖V ≤ ‖r(wh, f)‖V, wh ∈ Uh, (4.8.17)

so we can trivially replace ‖r(uh, f)‖V in the lower estimate in (4.8.15) by
the computed quantity ‖rh(uh, f)‖V.

Remark 4.8.3 If the space Sh ⊂ V is even δ-proximal for the extended
trial space

Ûh := Uh + B−1f, (4.8.18)

i.e.,

sup
v∈T (Ûh)

‖v − PShv‖V
‖v‖V

≤ δ holds for some δ ∈ [0, 1), (4.8.19)

one has

C−1
B ‖rh(uh, f)‖V ≤ ‖u− uh‖U ≤ cBh‖rh(uh, f)‖V, (4.8.20)

where
cBh ≥ cB(1− δ2)1/2.

Thus, if Sh is δ-proximal for the extended space Ûh = Uh + B−1f the
solution component rh of (4.8.1) provides a lower and upper a-posteriori
error for the PG-solution. This can be used to drive adaptive solution
strategies, as shown later in specific applications. 2

In fact, (4.8.19) implies that

‖rh(uh, f)‖V = ‖PShr(uh, f)‖V ≥ (1− δ2)1/2‖r(uh, f)‖V. (4.8.21)
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4.8.0.1 Uzawa Iteration

The saddle-point problem (4.8.1) is symmetric but indefinite. Therefore,
a straightforward application of the (preconditioned) conjugate gradient
method is not appropriate. One finds many investigations of iterative
solvers for large scale saddle-point problems which in principle apply here
as well.

We discuss here only the so called Uzawa iteration that avoids solving the
full saddle point problems by reducing it to two smaller elliptic problems
at each iteration stage.

Uzawa Iteration:

i) Choose an initial guess u0
h ∈ Uh, and a suitable damping parameter

ω > 0; suppose that we have a bound

‖uh − u0
h‖U ≤ η0. (4.8.22)

ii) Given ukh ∈ Uh, solve for rkh ∈ Sh

(rkh, vh)V = −B(ukh, vh) + f(vh), vh ∈ Sh; (4.8.23)

iii) solve for uk+1
h ∈ Uh:

(uk+1
h , wh)U = (ukh, wh)U + ωB(wh, r

k
h), wh ∈ Uh; (4.8.24)

iv) if

CBρ
kη0 >

1

8
‖rkh‖V, (4.8.25)

set k + 1→ k and go to (i), otherwise, stop.

Step (ii) and step (iii) consist of one V-, U-orthogonal projection into
Sh,Uh, respectively, i.e., standard Galerkin projections in these spaces.

Proposition 4.8.1 Assume that Sh satisfies (4.8.19). Then the above
iteration converges. Specifically, one has

‖ukh − uh‖U ≤ ρkη0, k ∈ N, (4.8.26)

82



and
‖rkh − rh(uh, f)‖V ≤ CBρ

kη0, k ∈ N. (4.8.27)

Moreover, the output ūh = uk̄h where k̄ is the terminating iteration index,
satisfies

c1‖rk̄h‖V ≤ ‖u− ūh‖U ≤ c2‖rk̄h‖V, (4.8.28)

where c1 ≥ 3
4CB

, c2 ≤ 1
8

(
9
cBh

+ 1
CB

)
. Likewise,

c̄1‖r(uh, f)‖V ≤ ‖u− ūh‖U ≤ c̄2‖r(uh, f)‖V, (4.8.29)

where c̄1 ≥ c1
3(1−δ2)1/2

9 and c̄2 ≤ 8c2
7 . 2

Proof Define the mapping T ∗,h : Sh → Uh by

(T ∗,hvh, wh)U = B(wh, vh), vh ∈ Sh, wh ∈ Uh. (4.8.30)

As earlier we see that

T ∗,h = PUh ◦ RU ◦ B∗,

where B∗ is the adjoint of B. In these terms we have

uk+1
h = ukh + ωT ∗,hrkh, rkh = T hukh − PShRVf,

so that

uk+1
h − uh = ukh − uh + ωT ∗,hrkh (4.8.31)

= ukh − uh + ωT ∗,h
(
T hukh − PShRVf). (4.8.32)

Now use Petrov-Galerkin orthogonality

B(u− uh, T h(wh)) = f(T h(wh))− f(T h(wh)) = 0, wh ∈ Uh. (4.8.33)

Therefore,

B(wh, PShRVf − T huh) = (T hwh, PShRVf − T huh)V
= (T (u− uh), PShT hwh)V
= B(u− uh, T hwh) = 0,
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so that (4.8.31) becomes

uk+1
h − uh = ukh − uh + ωT ∗,h

(
T h(ukh − uh)

)
= (I − ωT ∗,hT h)(ukh − uh). (4.8.34)

Since

‖T ∗,hT hwh‖U = sup
zh∈Uh

(T hwh, T hzh)V
‖zh‖zU

≥ cBh sup
zh∈Uh

(T hwh, T hzh)V
‖T hzh‖U

≥ c2
Bh‖wh‖U

and similarly
‖T ∗,hT hwh‖U ≤ C2

B‖wh‖U,
and since T ∗,hT hwh is positive definite, we conclude that

‖I − ωT ∗,hT hwh‖L(U,U) ≤ ρ = ρ(ω, cBh, CB) < 1, (4.8.35)

when ω is chosen properly, e.g. for

ω =
2

C2
B + c2

Bh
one obtains ρ =

C2
B − c2

Bh
C2
B + c2

Bh
.

Hence

‖ukh − uh‖U ≤ ρk‖u0
h − uh‖U

(4.8.22)

≤ ρkη0, k ∈ N, (4.8.36)

which is (4.8.26). Moreover, since

rkh = T hukh − PShRVf, rh = rh(uh, f) = T huh − PShRVf,

one obtains

‖rkh − rh‖V = ‖T h(ukh − uh)‖V ≤ CB‖ukh − uh‖U

≤ CBρ
k‖u0

h − uh‖U
(4.8.22)

≤ CBρ
kη0, k ∈ N, (4.8.37)

confirming (4.8.27). Hence, the iteration converges at a rate depend-
ing on the discrete condition bound CB/cBh. By (4.8.19), we know that
‖rh(uh, f)‖V ∼ ‖rh(uh, f)‖V > 0. Thus, the termination criterion is met
for some finite k̄ for which

‖uh − uk̄h‖U ≤ ρk̄η0 ≤
1

8CB
‖rk̄h‖V. (4.8.38)
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By (4.8.37), we have

|‖rh(uh, f)‖V − ‖rk̄h‖V| ≤ CBρ
k̄η0 ≤

1

8
‖rk̄h‖V

and thus
7

8
‖rk̄h‖V ≤ ‖rh(uh, f)‖V ≤

9

8
‖rk̄h‖V. (4.8.39)

Hence

‖rk̄h‖V ≤
8

7
‖rh(uh, f)‖V ≤

8

7
‖r(uh, f)‖V ≤

8CB
7
‖u− uh‖U

≤ 8CB
7

{
‖u− uk̄h‖U + ‖uh − uk̄h‖U

}
≤ 8CB

7

{
‖u− uk̄h‖U +

1

8CB
‖rk̄h‖V

}
≤ 8CB

7
‖u− uk̄h‖U +

1

7
‖rk̄h‖V.

Therefore,
3

4CB
‖rk̄h‖V ≤ ‖u− uk̄h‖U, (4.8.40)

which confirms the lower bound in (4.8.28). Likewise, by (4.8.20) and
(4.8.38),

‖u− uk̄h‖U ≤ ‖u− uh‖U + ‖uh − uk̄h‖U ≤ c−1
Bh‖rh(uh, f)‖V +

1

8CB
‖rk̄h‖V

≤
( 9

8cBh
+

1

8CB

)
‖rk̄h‖V,

showing the upper bound in (4.8.28).

Likewise, combining (4.8.39) and (4.8.21), yields

‖r(uh, f)‖V ≤ (1− δ2)−1/2‖rh(uh, f)‖V
(4.8.39)

≤ 9

3(1− δ2)1/2
‖rk̄h‖V, (4.8.41)

which together with the lower bound in (4.8.28) confirms the lower bound
in (4.8.29). Similarly,

‖rk̄h‖V ≤
8

7
‖rh(uh, f)‖V ≤

8

7
‖r(uh, f)‖V,

which completes the proof. �
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Since r(uh, f)‖V ∼ ‖u − uh‖U the output approximation performs up to
uniform constants as the PG-approximation, which in turn behaves like
the best approximation to the exact solution u from the trial space Uh.

4.8.0.2 Nested Iteration

Suppose that the following routines are available:

Res[uh,Uh,Sh]→ rh ∈ Sh such that for wh ∈ Uh

(rh, vh)V = B(uh, vh)− f(vh), vh ∈ Sh. (4.8.42)

Proj[ũh, zh,Uh,Sh]→ uh such that for ũh ∈ Uh, zh ∈ Sh,

(uh, wh)U = (ũh, wh)U +B(wh, zh), wh ∈ Uh. (4.8.43)

Exp[Uh,Sh] → (Ũh, S̃h) such that Uh ⊂ Ũh, Sh ⊂ S̃h ⊂ V such that for
some fixed δ < 1 the space S̃h is δ-proximal for Ũh and for some constant
ζ < 1 one has

‖rh(ũh, f)‖V ≤ ζ‖rh(uh, f)‖V, (4.8.44)

where rh(uh, f), rh(ũh, f) are the solution components in V of the saddle-
point problems (4.8.1) with respect to Uh,Sh, Ũh, S̃h, respectively.

The rationale of Exp is the following: for δ-proximal test-search-spaces
the computabel quantities rh(uh, f) are equivelant to the error of the PG
solution uh. As shown later, one can derive from those quantities not only
the current accuracy provided by a pair of trial and test-search spacees but
also indications about how to expand the space Uh to a larger space Ũh in
a way that the current residual is decreased by a fixed factor. So, several
subsequent expansions will decrease the errors by a corresponding fixed
factor. This is done in adaptive methods which in the current situation
can be based naturally on the computed projected lifted residuals.

Nested Iteration is a strategy to solve an infinite-dimensional problem

B(u, v) = f(v), v ∈ V, (4.8.45)
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approximately within a desired target accuracy. Roughly speaking, one
proceeds as follows:

• Solve a small-dimensional discretization (D0) exactly or very accu-
rately;

• use the approximate solution for the preceding smaller-dimensional
discretization (Dn−1) as an initial guess; in a suitably chosen ex-
tended trial space.

• the discrete problem (Dn) is solved approximately with an inner iter-
ation (e.g. the above Uzawa scheme) until one finds an approximate
solution within an updated target accuracy. This is repeated until
the final accuracy tolerance is met.

This strategy uses an outer iteration, where at each step the trial space is
enlarged. An inner iteration can be used to find an approximate solution
for the current (fixed) discrete problem. For such a strategy to work one
needs a-posteriori error bounds that allow one to decide when to terminate
the inner iteration and whether the final target accuracy is reached.

Exercise 4.8.2 (i) Employ the above routines to formulate a skeleton of
an algorithm

Solve[B, f, ε] → (Uε,Vε, uε) such that Uε ⊂ U, Vε ⊂ V are finite dimen-
sional trial- and test-search-spaces with the following properties:

i) Vε is δ-proximal for Uε;

ii) the corresponding PG solution uε satisfies

‖u− uε‖U ≤ ε,

where u is the exact solution of

B(u, v) = f(v), v ∈ V.

(ii) Estimate the computational work in terms of the number of calls of
the routines Res, Proj;

(iii) Let #Proj[·, ·, ·, ·] denote the number flops required for executing
Proj for the given parameters (and analogously for the other routines).
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Estimate the total number N = N(ε) = #Solve[B, f, ε] → (Uε,Vε, uε)
under the following assumptions:

• #Proj[ũh, zh,Uh,Sh] ≤ C(dimUh + dim Sh);

• #Res[uh,Uh,Sh] ≤ C(dimUh + dim Sh);

• for Exp[Uh,Sh]→ (Ũh, S̃h) one has dim Ũh ≤ CdimUh,

where C is an abslute constant. Assume that the constants CB, cB, δ are
known to you.

4.8.1 Optimal Norms

The tightness of residual error bounds and the quantitative performance
of the above iterative schemes depend in an essential way on the quo-
tient CB/cB (the bound on κU,V′(B). We discuss next a principal way of
improving the condition by modifying the norms.

Suppose that Assumption 4.0.3 applies to

B(u, v) = f(v), v ∈ V, (4.8.46)

But

κU,V(B)� 1 (the bounds CB, cB satisfy CB
cB
� 1). (4.8.47)

Example 4.8.1 Convection-diffusion equation (see Section 3.1.1): let c ∈
L∞(Ω), b : Ω→ Rd such that

c− 1

2
div b ≥ 0, in Ω, ε > 0, div b ∈ L∞(Ω). (4.8.48)

A possible weak formulation of the boundary value problem

−ε∆u+ b · ∇u+ cu = f in Ω, u|∂Ω = 0, (4.8.49)

is based on
U = V = H1

0(Ω), (4.8.50)

and the bilinear form

B(u, v) =

∫
Ω

ε∇u · ∇v + b · ∇u+ cuvdx. (4.8.51)
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Exercise 4.8.3 (i) Under the above assumptions the problem

B(u, f) = f(v), v ∈ H1
0(Ω) (4.8.52)

is well posed.
(ii) One has

κH1
0 (Ω),H−1(Ω) ≤

‖b‖L∞(Ω)d

ε
, (4.8.53)

see the discussion in [CDW12].

The above example addresses the following situation:

• In principle, the space H0
1(Ω) as a set is appropriate for trial- and

test-space because the leading part of the PDE is the Laplacian and
hence symmetric.

• However, when the strength of the diffusion ε gets small compared
with the convection, the quantitative structure of the equation starts
changing its type, namely approaching a pure convection - and hence
hyperbolic - problem, causing the well-known serious numerical prob-
lems. This suggests, improving the condition by endowing H1

0(Ω)
with different (problem adapted) norms for the trial- and test-side,
respectively. This principle is discussed next on an abstract level but
will later be applied to examples.

A renormation principle: Assume that (4.8.46) is well-posed but ill-
conditioned, i.e., (4.8.47) holds. One remedy is to fix either the trial- or
the test-norm and adjust the other one.

Fixing the trial norm ‖ · ‖U: Define the modified test-norm

‖v‖Vopt
:= ‖B∗v‖U′ = ‖RUB∗v‖U, v ∈ V, (4.8.54)

where B∗ is the adjoint of B, defined by (B∗v)(u) = (Bu)(v), u ∈ U, v ∈ V.
We denote by Vopt the Hilbert space which agrees with V as a set but is
endowed with the norm ‖ · ‖Vopt

.

This makes sense because B ∈ L(U,V′) says that B∗ ∈ L(V,U′) so that the
right hand side of (4.8.54) is well-defined. It is indeed a norm because B∗
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is an isomorphism and ‖v‖Vopt
= 0 implies v = 0. Moreover, interchanging

the roles of B and B∗, by the Banach-Nečas Theorem 3.2.2, ‖B∗v‖U′ ≤
CB‖v‖V and cB‖v‖V ≤ ‖B∗v‖U′, so that both norms ‖ · ‖V and ‖ · ‖Vopt

are
indeed equivalent.

Let us denote by c̄B, C̄B the inf-sup- and continuity constants when con-
sidering

B(·, ·) : U× Vopt → R.
Continuity:

|B(w, v)| = |(B∗v)(w)| ≤ ‖B∗v‖U′‖w‖U = ‖w‖U‖v‖Vopt
, (4.8.55)

which means
C̄B = 1. (4.8.56)

inf-sup constant:

sup
w∈U

B(w, v)

‖w‖U
= ‖B∗v‖U′ = ‖v‖Vopt

⇒ inf
v∈Vopt

sup
w∈U

B(w, v)

‖v‖Vopt
‖w‖U

= 1, (4.8.57)

i.e.,
c̄B = 1. (4.8.58)

Hence, the variational problem becomes perfectly conditioned.

Exercise 4.8.4 (i) Show that B ∈ L(U,V′opt) is an isometry, i.e.,

‖B‖L(U,V′opt)
= 1 = ‖B−1‖L(V′opt,U).

(see also [DHSW12]).
(ii) Represent the Riesz-map RVopt

in terms of B.

Although it seems to be most natural to adjust the test-norm and keep the
trial norm, i.e., measure accuracy in the original metric, this is not always
the case. In particular, for singularly perturbed problems like (4.8.49) with
arbitrarily small ε, the original metric may be inapproprtiate. In fact, the
convection-diffusion equation may cause very thin boundary layers and
the plain H1-error would then be completely determined by the boundary
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layer. In fact, it would not decrease until the boundary layer is resolved
(see [CDW12]). Therefore, a problem-dependent norm which penalizes
the singular behavior in the layer region less strongly, may be more ap-
propriate.

Fixing the test norm ‖·‖V: one can modify the trial-norm as follows:

‖w‖Uopt
:= ‖RVBw‖V = ‖T w‖V = ‖Bw‖V′. (4.8.59)

Since the trial-to-test map T from (4.5.5) is an isomorphism, ‖ · ‖Uopt
is a

well-defined norm.

Remark 4.8.4 Roughly speaking the isomorphisms T ∗ and T , defining
the modified norms (4.8.54), (4.8.59), absorb the bad condition of the
original formulation. 2

Exercise 4.8.5 Considering B(·, ·) : Uopt × V → R, show that one has
again

inf
w∈Uopt

sup
v∈V

B(w, v)

‖w‖Uopt
‖v‖V

= 1 = sup
w∈Uopt

sup
v∈V

B(w, v)

‖w‖Uopt
‖v‖V

, (4.8.60)

i.e., we have again that
C̄B = c̄B = 1 (4.8.61)

and B ∈ L(Uopt,V′) is an isometry.

Remark 4.8.5 (i) As earlier in connection with the trial-to-test map
T the above renormation strategy is primarily a guiding principle that
should help finding appropriate topologies for the trial- and test space,
in the sense that the corresponding variational formulation gives rise to a
well-conditioned operator. However, such norms could be very difficult or
expensive to realize numerically because they involve in general nontrivial
mappings like T or T ∗.

(ii) The above modification of the test-norm (4.8.54), however becomes
feasible if the Riesz-map RU is trivial (the identity) which means U = U′,
i.e., U = L2(Ω). This arises indeed in at least two scenarios:
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(a) considering so called ultra-weak formulations, seeking the solution in
a low-regularity space such as L2(Ω); this may be of interest even for
Poisson’s equation when the right hand side involves Dirac-distributions
and hence do not belong to H−1(Ω) when d > 1;

(b) writing a higher order PDE as a system of first order PDEs where just
a single integration by parts frees the unknown from any derivative. This
is of interest when the solution may have layers or even discontinuities
along curves/lower-dimensional manifolds (shear layers) as in the case of
transport problems.

In both cases the choice of norms can be viewed as being guided by the
above extreme cases of optimal pairs of norms. 2

4.9 Localizing the Test-Search-Space - the
Discontinuous Petrov Galerkin Method

To avoid the solution of dimUh global elliptic problems for the compu-
tation of the Petrov-Galerkin test-functions we have used in the previous
section the mixed formulation (4.8.1). In this section we discuss an alter-
nate strategy for reducing the cost of computing good test-functions.

Central Idea: use a mesh-dependent (infinite-dimensional) variational
formulation; this offers the possibility of employing so called broken test-
search-spaces which. This, in turn, will be seen to lead to test-functions
which are localized to the cells in the underlying mesh.

The basic idea goes back already to [BM84]. It has been further devel-
oped for a wide range of PDE classes by Demkowicz and Gopalakrishnan,
see e.g. [DG11].
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4.9.1 A Guiding Example

One typically rewrites the original PDE as a first order system. As a
motivating example concerning Remark 4.8.5, (a), (b), consider

− div (ε∇u) + b · ∇u+ cu

= −div (ε∇u) + div (ub) + (c− (div b)u = f, u|∂Ω = 0, (4.9.1)

where we assume for simplicity that ε is a positive constant when scalar-
valued or a constant symmetric positive definite matrix. Introducing the
“weighted flux” ε1/2∇u as a new unknown, (4.9.1) is equivalent to the
system

σ = ε1/2∇u, −div (ε1/2σ − ub) + (c− (div b)u = f, (4.9.2)

with unknowns [u, σ] (u scalar-valued, σ vector-valued). A natural varia-
tional formulation reads

B([u, σ], [v, τ ]) =

∫
Ω

(σ − ε1/2∇u) · τ + (div (ub− ε1/2σ)v

+ (c− div b)uvdx. (4.9.3)

Remark 4.9.1 The above way of splitting the diffusion coefficient (which
is also well-defined, when ε is a positve definite symmetric matrix) is not
mandatory. We could have defined σ = ε∇u. The above way better
preserves symmetry. More importantly it is more appropriate for studying
the vicuous limit ε→ 0, as seen later. 2

Choosing as trial- and test-space

U1 := H1
0(Ω)×H(div; Ω), V1 := L2(Ω)× (L2(Ω))d, (4.9.4)

where

H(div; Ω) := {τ ∈ (L2(Ω))d : div τ ∈ L2(Ω)},
‖τ‖2

H(div;Ω) := ‖τ‖2
(L2(Ω))d + ‖div τ‖2

L2(Ω).

Cauchy-Schwarz’ inequality readily confirms that

B(·, ·) : U1 × V1 → R, (4.9.5)
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is continuous, i.e., the induced operator

(B1[u, σ])([v, τ ]) = B([u, σ], [v, τ ]), [u, σ] ∈ U1, (4.9.6)

satisfies
B1 ∈ L(U1,V′1). (4.9.7)

Remark 4.9.2 Since the test-space V1 is just a product of L2-spaces it
agrees with its dual and the Riesz-map RV1

becomes trivial. Thus, the
optimal trial-norm ‖ · ‖Uopt

is feasible. 2

An alternate variational formulation is obtained as follows. Applying
integration by parts, (4.9.3) takes the form

B([u, σ], [v, τ ]) =

∫
Ω

σ · τ + udiv (ε1/2τ)− (ub− ε1/2σ) · ∇v

+ (c− div b)uvdx

+

∫
∂Ω

n · (bu− ε1/2σ)vds−
∫
∂Ω

n · ε1/2τuds. (4.9.8)

Choosing as trial- and test-space

U2 := L2(Ω)× (L2(Ω))d, V2 := H1
0(Ω)×H(div; Ω), (4.9.9)

by the same reasoning

B(·, ·) : U2 × V2 → R, (4.9.10)

is also continuous. Thus, the induced operator

(B2[u, σ])([v, τ ]) = B([u, σ], [v, τ ]), [u, σ] ∈ U2, (4.9.11)

satisfies
B2 ∈ L(U2,V′2). (4.9.12)

Remark 4.9.3 Now the trial space U2 is a product of L2-spaces so that
the optimal test-norm (4.8.54) is now practically feasible. In this formu-
lation essentially no regularity is required of the solution [u, σ]. This is
sometimes referred to as ultra-weak formulation. 2
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B1 and B2 both represent the same PDE. They differ only through their
respective domains and ranges. A few more remarks on the trace integrals
in (4.9.8) are in order.

Remark 4.9.4 If we assume that u, v ∈ H1
0(Ω) the trace integrals in the

last line of (4.9.8) would vanish. However, in this last formulation no
regularity is imposed on u, σ. They just need to be square integrable.
But then the trace of u does not exist. However, if (non-homogeneous)
boundary conditions are imposed u which belong to H1/2(∂Ω), i.e., u = g
on ∂Ω, then

∫
∂Ω n ·ε

1/2τgds is defined as a functional acting on the normal
traces n ·τ which are known to belong to H−1/2(∂Ω) = (H1/2(∂Ω))′. Thus

g 7→
∫
∂Ω

n · ε1/2τgds

is a bounded linear functional on V2 and thus belongs to V′2. Recall
that boundary conditions which are incorporated in the variational for-
mulation through a bounded linear functional are called natural boundary
conditions. Thus, in this formulation Dirichlet boundary conditions are
natural ones (in contrast to the standard second order formulation). The
issue of traces plays an important role in what follows. 2

Remark 4.9.5 Thus, considering (4.9.1) with (possibly) inhomogeneous
boundary conditions u|∂Ω = g ∈ H1/2(∂Ω) (in the sense of traces), the
variational formulation (4.9.8) becomes∫

Ω

σ · τ + udiv (ε1/2τ)− (ub− ε1/2σ) · ∇v + (c− div b)uvdx

=

∫
∂Ω

n · ε1/2τgds−
∫
∂Ω

n · (bg − ε1/2σ)vds+ f(v),

=

∫
∂Ω

n · ε1/2τgds+ f(v), [v, τ ] ∈ H1
0(Ω)×H(div; Ω). (4.9.13)

Exact and formal adjoints: To understand the essential mechanisms
behind the formulations (4.9.3) and (4.9.8) it is helpful to have a closer
look at the notion of the adjoint of an operator. The operator B1 from
(4.9.7) is given by

B1([u, σ]) =

(
div (ub− ε1/2σ) + (c− div b)

σ − ε1/2∇u

)
. (4.9.14)
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Remark 4.9.6 The adjoint B∗1 of B1, defined by

(B∗1[v, τ ])([u, σ]) = B([u, σ], [v, τ ]), [v, τ ] ∈ V1, [u, σ] ∈ U1, (4.9.15)

belongs to

L(V1,U′1) = L(L2(Ω)× (L2(Ω))d, H−1(Ω)×H(div; Ω)′).

While the domain of the exact adjoint B∗1 is V1 = L2(Ω)× (L2(Ω))d, when
restricted to smooth functions with vanishing boundary traces, it is, in
view of (4.9.8) given by

B′1([v, τ ]) =

(
div (ε1/2τ)− b · ∇v + (c− div b)v

τ + ε1/2∇v

)
. (4.9.16)

We call B′1 the formal adjoint of B1 and record

B′1([u, σ]) = B∗1([u, σ]), [u, σ] ∈ C∞0 (Ω)× (C∞0 (Ω))d. (4.9.17)

In fact, they agree by density on H1
0(Ω)×H(div; Ω). 2

Remark 4.9.7 In the above terms we have

(B′1)∗ = B2. (4.9.18)

4.9.2 The Discontinuous Petrov-Galerkin Concept (DPG)

For convenience, abbreviate for any subdomain D ⊆ Ω

(w, v)D =

∫
D

wvdx, 〈w, v〉∂D =

∫
∂D

wvds

where the second boundary integral is interpreted as a functional acting
on one of the arguments whenever the other argument belongs to the
corresponding dual trace space. Only when w, v ∈ L2(∂D) the right
intgral representation is in strict terms justified.

The above discussion can then be summarized as follows:
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(I) write the original PDE as a first order system whose weak formulation
is

B(u, v) = (Bu, v)Ω = f(v), v ∈ V.

(II) Rewrite

(Bu, v)Ω = (u,B′v)Ω = f(v) + g(v), v ∈ V,

where V is chosen in a way that B′v ∈ L2(Ω) and g, f ∈ V′, where
g represents the boundary conditions which have now become natural
ones.

The DPG concept works by applying step (II) cellwise on a given partition
P of Ω, using that

(w, v)Ω =
∑
K∈P

(w, v)K ,

and that differential operators localize. This provides formally for smooth
functions u, v

(Bu, v)Ω =
∑
K∈P

(Bu, v)K

=
∑
K∈P

(u,B′v)K + {(Bu, v)K − (u,B′v)K}

=
∑
K∈P

(u,B′v)K + J∂K(u, v). (4.9.19)

The term J∂K(u, v) indicates that it “lives” on the cell boundary ∂K.
In fact, it represents the trace-integral contributions when performing
integration by parts on K to go from (Bu, v)K to (u,B′v)K where B′ is
the local formal adjoint.

97



We exemplify this for the previous example (4.9.3).

(B[u, σ], [v, τ ])K =

∫
K

(σ − ε1/2∇u) · τ + (div (ub− ε1/2σ)v

+ (c− div b)uvdx

=

∫
K

σ · τ + udiv (ε1/2τ)− (ub− ε1/2σ) · ∇v

+ (c− div b)uvdx

+

∫
∂K

n · (bu− ε1/2σ)vds−
∫
∂K

n · ε1/2τuds,

(4.9.20)

i.e., in this case we have

(B[u, σ], [v, τ ])K = ([u, σ],B′[v, τ ])K

+

∫
∂K

n · (bu− ε1/2σ)vds−
∫
∂K

n · ε1/2τuds.

(4.9.21)

which means

J∂K([u, σ], [v, τ ]) =

∫
∂K

n · (bu− ε1/2σ)vds−
∫
∂K

n · ε1/2τuds.

Remark 4.9.8 (a) Remark 4.9.4 already indicates a fundamental diffi-
culty encountered with this procedure. As long as [u, σ], [v, τ ] are smooth
all terms in (4.9.21) are well defined. But then one would like to ex-
tend these expression to spaces imposing possible weak regularity con-
ditions on the unknown [u, σ], namely that they need only belong to
L2(K) × (L2(K))d for each K ∈ P . Since we have to deal with such
traces for each cell K we cannot argue with boundary conditions.

(b) One could avoid this difficulty by formulating a resulting variational
problem only for finite-dimensional trial- and test-spaces comprised of
piecewise polynomials (which is done for standard DG-methods). But
one would then give up on the rule:

• identify first a well-conditioned variational formulation of the given
problem, which in particular means to identify the right (infinite-
dimensional) trial- and test-spaces;

98



• then formulate finite-dimensional inf-sup stable formulations based
on the norms for the infinite-dimensional case. 2

(c) The way out chosen in the DPG concept is: since the unknowns
may in general be sought in a function space for which traces on the cell
boundaries are not defined, one introduces new unknowns û living on the
skeleton

∂P :=
⋃
K∈P

∂K. (4.9.22)

Therefore, (4.9.19) suggests the following: find [u, û] ∈ UP such that

BP([u, û], v) =
∑
K∈P

(u,B′v)K + J∂K(û, v) = f(v), v ∈ VP . (4.9.23)

Here u could have several components such as in the above example with
the correspondence u ↔ [u, σ], i.e., one has to introduce also new trace
unknowns σ̂ for the component σ.

The trial-space UP is a product-space with bulk-factors just being (prod-
ucts of) L2(Ω). It remains to choose a suitable space for the skeleton-
component. The choice of the test-space VP is again dictated by ensuring
continuity of BP([u, û], v).

By (4.8.54) the ideal test-space would be comprised of all those v for
which

‖v‖Vopt
:= ‖B∗v‖U′P = sup

[u,û]∈UP

BP([u, û], v)

‖[u, û]‖UP
(4.9.24)

is finite. Although UP has L2(Ω) as a factor the skeleton component
still renders the Riesz-map RUP non-trivial. The typical DPG realization
therefore does not use Vopt but settles on a norm that is in some sense
“close” but defines a very simply structured test-space, namely a so-called
“broken” space

VP :=
∏

K∈P H(B;K),

H(B;K) := {v ∈ L2(K) : ‖v‖2
L2(K) + ‖B′v‖2

L2(K) <∞},
(4.9.25)
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which is a product of local spaces, endowed with the norm

‖v‖2
VP =

∑
K∈P

‖v‖2
H(B;K). (4.9.26)

It is not clear beforehand whether this choice renders (4.9.23) well-posed
or even well-conditioned. Clearly, for localizable B

|BP([u, û], v)| ≤
∑
K∈P

‖u‖L2(K)‖v‖H(B;K) +
∣∣∣∑
K∈P

J∂K(û, v)
∣∣∣

≤
(∑
K∈P

‖u‖2
L2(K)

)1/2(∑
K∈P

‖v‖2
H(B;K)

)1/2

+
∣∣∣∑
K∈P

J∂K(û, v)
∣∣∣

= ‖u‖L2(Ω)‖v‖VP +
∣∣∣∑
K∈P

J∂K(û, v)
∣∣∣. (4.9.27)

Thus, continuity now hinges on the proper choice of the skeleton space
U∂P that eventually allows one to conclude that the trace part is controled
by ‖û‖U∂P‖v‖VP : ∣∣∣∑

K∈P

J∂K(û, v)
∣∣∣ . ‖û‖U∂P‖v‖VP , (4.9.28)

which together with (4.9.27) gives

|BP([u, û], v)| .
(
‖u‖L2(Ω) + ‖û‖U∂P

)
‖v‖VP

∼ ‖[u, û]‖UP‖v‖P , [u, û] ∈ UP , v ∈ VP . (4.9.29)

Let us suppose for the moment that we have established (4.9.29) and also
the validity of an inf-sup condition. The key point that motivates the
above ansatz is the fact that the trial-test-map now localizes.

Proposition 4.9.1 Adhering to the above setting consider the local map-
pings TK : UP → VK := H(B;K), defined by

(TK [w, ŵ], v)H(B;K) = BK([w, ŵ], v), v ∈ H(B;K), K ∈ P , (4.9.30)
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where

BK([w, ŵ], v) := (w,B′v)K + J∂K(ŵ, v), K ∈ P , (4.9.31)

and (·, ·)H(B;K) is the inner product inducing the norm ‖ · ‖H(B;K). Then,
the global trial-to-test map T : UP → VP is given by

(T [w, ŵ], v)VP =
∑
K∈P

(TK [w, ŵ], vK)H(B′;K). (4.9.32)

Proof Every element of VP is of the form v = (vK)K∈P , vK ∈ H(B;K),
K ∈ P and

(v, z)VP =
∑
K∈P

(vK , zK)H(B;K),

from which the assertion easily follows. �

Remark 4.9.9 (a) The trial-to-test map is assembled by solving for each
cell K ∈ P a local variational problem (4.9.30).

(b) A finite-dimensional problem is obtained by choosing a finite-dimensional
trial space Uh

P ⊂ UP .

(c) The optimal test-space for Uh
P is then given by

T (Uh
P) = {T ([uh, ûh]) : [uh, ûh] ∈ Uh

P}. (4.9.33)

(d) Each local problem (4.9.30) is still an infinite-dimensional problem.
A practicable version can be obtained by choosing for each K a finite-
dimensional test-search-space SK ⊂ H(B;K), large enough so that

∏
K∈P SK

is δ-proximal for Uh
P .

(e) The projected trial-to-test-map T h : Uh
P →

∏
K∈P SK can again be

assembled from the local components

(T hK [wh, ŵh], vK)H(B;K) = BK([wh, ŵh], vK), vK ∈ SK , K ∈ P .
(4.9.34)

i.e.,
T hK = PSK ◦ TK , K ∈ P .
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(e) The practical DPG-scheme is then of the form: find [uh, ûh] ∈ Uh
P such

that
BP([uh, ûh], vh) = f(vh), vh ∈ T h(Uh

P). (4.9.35)

(f) Suppose that the bulk- and skeleton component of Uh
P are comprised

of piecewise polynomials of some fixed degree, and that dimSK = Mh,
K ∈ P . Then the total computational cost of (4.9.35) scales at least as

#(P)Mh ∼MhdimUh
P ,

i.e., it remains proportional to the size of the trial-space. However, it is
not clear whether Mh can be kept uniformly bounded in P .

(g) One can transform (4.9.35) into an equivalent mixed formulation
(4.8.1) avoiding the computation of the test-functions. The system (4.8.23)
is now block-diagonal and thus easy to solve. 2

In summary, this leads to the following

DPG-strategy:

i) The DPG-method is based on a family of mesh-dependent infinite-
dimensional variational formulations based on a hierarchy of parti-
tions P = {P};

ii) for each of the underlying partitions P one selects a pair of infinite-
dimensional trial- and test-spaces UP , VP ;

iii) the spaces VP should be “broken” spaces of the form (4.9.25);

iv) one then needs to establish that the corresponsing mesh-dependent
formulations are uniformly well-posed (or better well-conditioned)
with respect to P .

v) for given finite-dimensional trial spaces Uh
P ⊂ UP find finite-dimensional

test-search spaces SK , K ∈ P , so that the inf-sup constants of the
corresponding finite-dimensional Petrov-Galerkin schemes remain bounded
away from zero.
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Ideal Scenario: show that uniform inf-sup stability is achieved through
local test-serch spaces SK of uniformly bounded finite dimension

dimSK ≤M, ∀K ∈ P , ∀P ∈ P. (4.9.36)

The numerical cost would then scale like dimUh
P , P ∈ P.

While DPG methods have been applied to a wide spectrum of problems
a rigorous justification in the sense of the ideal scenario is so far only
available for elliptic problems and Maxwell’s equation [GQ14, CDG16],
and for transport equations [BDS].
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5 Transport Equations

5.1 Why Transport Equations

Recall from Section 3.1.6 the pure transport equation

b · ∇u+ cu = f in Ω, u = 0 on Γ−, (5.1.1)

where b is a possibly variable vector field representing convection and c

is (als a possibly x-dependent) reaction coefficient. For the problem to
be well-posed boundary conditions can only be prescribed on the inflow-
boundary Γ− where

Γ± := {x ∈ ∂Ω : sgn (n(x) · b(x)) = ±}.

There may be a non-trivial remaining boundary portion

Γ0 := ∂Ω \ (Γ− ∪ Γ+),

which is called the characteristic boundary on which b · n = 0, i.e., it is
parallel to the flow direction b.

Remark 5.1.1 The time-dependent analog ∂tu+ b · ∇u+ cu = f can be
treated in exactly the same manner by replacing x by x̂ := (x, t) and b by
(bT , 1)t with a corresponding inflow-boundary of the space-time cylinder
Ω̂ := Ω× [0, T ). 2

The interest in such simple transport equations has several sources:

• (5.1.1) arises as the singular limit for ε→ 0 for our guiding example
in the previous section.

• There exist so far no variational formulations for transport equations
with tight error-residual bounds.
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• This latter fact is particularly interesting in other problem classes
where linear transport equations appear as core constituent. This is
the case for a variety of kinetic models of Boltzmann-type. One such
example is (the simplified) neutron transport equation

y · ∇u(x, y) + σ(x, y)u(x, y)−
∫
Y
K(x, y, y′)u(x, y′)dy′ = f(x) in Ω,

(5.1.2)
supplemented by inflow-boundary conditions u|Γ−(y) = g. where for
instance Y is the (d− 1)-sphere. This describes the neutron density
in the domain Ω which results from particle transport in direction
y, absorbtion of particals, modeled by part of σ, and scattering,
modeled by a global kernel K(x, y, y′). These problems are challeng-
ing since the solution is not only a function of space (and possible
time) but also of the transport directions y ranging over the whole
sphere. Moreover, a discretization will have densely populated ma-
trices because of the the global kernel. To avoid the inversion of
such matrices one can formulate an (infinite-dimensional) iteration
where at each stage the integral operator is only applied to a current
approximation and only pure transport problems need to be solved
within a certain accuracy tolerance (nested iteration). This requires
a-posteriori bounds.

• Last but not least, the techniques are completely different from the
usual elliptic settings.

5.2 A Well-Posed Variational Formulation

As in the case of a convection-diffusion equation we have two possible vari-
ational formulations, namley multiplying the equation by test-functions
and either keep it as it is which gives

B(u, v) :=

∫
Ω

(b · ∇u+ cu)vdx, (5.2.1)
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or to apply integration by parts to obtain in analogy to (4.9.8)

B(u, v) :=

∫
Ω

u(−div(bv)) + cuvdx+

∫
∂Ω

b · nuvds

=

∫
Ω

−u(b · ∇v) + (c− div b)uvdx

+

∫
∂Ω

b · nuvds, (5.2.2)

Remark 5.2.1 When setting ε to zero in (4.9.8) one obtains exactly
(5.2.2). In fact, the only component with the test-function τ which is
left is the quation

∫
Ω σ ·τdx = 0 for all τ ∈ (L2(Ω))d which means σ = 0.2

To identify good trial- and test-spaces for (5.2.1) or (5.2.2) we are guided
by making the bilinear form B continuous. It obviously matters whether
directional derivatives of the test-functions are in L2. This suggests con-
sidering the spaces

H(b; Ω) := {v ∈ L2(Ω) : ‖v‖2
H(b;Ω) := ‖v‖2

L2(Ω) + ‖b · ∇v‖2
L2(Ω) <∞},

(5.2.3)
and

H0,Γ±(b; Ω) := clos‖·‖H(b;Ω)

(
{v ∈ C1(Ω) : v|Γ± = 0}

)
. (5.2.4)

Obviously, one has for (5.2.1)

|B(u, v)| ≤
(
1 + ‖c‖2

L∞(Ω)

)1/2‖u‖H(b;Ω)‖v‖L2(Ω). (5.2.5)

Hence, the operator (B1u)(v) = B(u, v) induced when B is considered as
a bilinear form on

U1 = H0,Γ−(b; Ω), V1 = L2(Ω), (5.2.6)

is obviously bounded, B1 ∈ L(U1,V′1) and leads to the variational formu-
lation: find u ∈ U1 = H0,Γ−(b; Ω) such that

B(u, v) = f(v), v ∈ L2(Ω) = V1. (5.2.7)
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Likewise for (5.2.2)

|B(u, v)| ≤ ‖u‖L2(Ω)‖ − b∇v + (c− div b)v‖L2(Ω)

= ‖u‖L2(Ω)‖B∗v‖L2(Ω)

≤ ‖u‖L2(Ω)

(
1 + (‖c‖L∞(Ω) + ‖div b‖L∞(Ω))

2
)1/2‖v‖H(b;Ω), (5.2.8)

see (4.8.54).

In the case (5.2.2) one has, of course, still the same problem with the
trace of u ∈ L2(Ω) on ∂Ω. We know that we can only prescribe boundary
conditions on the inflow-boundarey Γ−. Splitting the boundary integral
in (5.2.2) as ∫

∂Ω

b · nuvds =

∫
Γ−

b · nuvds+

∫
Γ+

b · nuvds,

we could replace u on Γ− in the first summand by the given boundary
conditions. The second summand vanishes if we choose as test-functions
only elements that vanish on the outflow boundary Γ+. This suggests
taking

U2 = L2(Ω), V2 = H0,Γ+
(b; Ω). (5.2.9)

The corresponding variational formulation of (5.1.1) then becomes: find
u ∈ U2 = L2(Ω) such that

B(u, v) = −
∫

Γ−

n · bgvds+ f(v), v ∈ V2 = H0,Γ+
(b; Ω). (5.2.10)

Dirichlet boundary conditions become part of the variational formulation
as functional on the right hand side. For well-posedness

g(v) := −
∫

Γ−

n · bgvds =

∫
Γ−

|n · b|gvds

has to belong to V′2. This indeed the case, due to a trace theorem that
roughly says (see [DHSW12] and the literature cited there):

Trace Theorem: If an element v ∈ H(b; Ω) has a a trace in the weighted
L2-space

L2,|n·b|(Γ±) = {z ∈ L1,loc(Γ±) :

∫
Γ±

|b · n|z2ds = ‖z‖2
L2,|n·b|(Γ±) <∞},

(5.2.11)
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then it also has a trace in L2,|n·b|(Γ∓) and ‖z‖L2,|n·b|(Γ±) . ‖z‖H(b;Ω).

Hence B2 induced by

B(u, v) :=

∫
Ω

−u(b·∇v)+(c−div b)uvdx =

∫
Ω

(cv−div (vb))udx (5.2.12)

over U2 × V2 belongs to L(U2,V′2).

Inf-sup stability depends somewhat on the coefficients b, c. Here is the
typical argument for conforming:

i) Show that B and B′ are injective on dense subsets of their respec-
tive ranges. For instance, when b(x) is a regular C1-field (e.g. b =
constant would do), this can be easily shown by the method of char-
acteristics which provides an explicit representation. Another case is
that c ≥ c0 > 0 in Ω, see the discussion in [DHSW12, BDS].

ii) Let U = L2(Ω) and V := clos‖B∗·‖U′
(
{v ∈ C1(Ω) : v|Γ+

= 0}
)

and
‖B∗v‖U′ = ‖B∗v‖L2(Ω) is a norm on V.

iii) Verify the Poincarè-type estimate

‖v‖L2(Ω) . ‖b · ∇v‖L2(Ω), v ∈ H0,Γ±(b; Ω). (5.2.13)

iv) From (5.2.13) one easily derives that

‖B∗v‖L2(U) = ‖ − b · ∇v + (c− div b)v‖L2(Ω) ∼ ‖v‖H(b;Ω) (5.2.14)

are equivalent norms, i.e., V = H0,Γ+
(b; Ω).

v) For the optimal test-norm ‖B∗v‖L2(Ω) one has an inf-sup constant
equal to one (see (4.8.60)). By (5.2.8), the continuity constant equals
one as well. Thus, the problem is well-posed and because of (iv), it
is still well-posed also when V is endowed with the norm ‖ · ‖H(b;Ω).

vi) The argument for (5.2.7) is similar, use e.g. (4.9.18).

In summary, (5.2.10) is a well-posed conforming weak formulation of
(5.1.1).
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5.3 An Infinite-dimensional DPG Formulation

The DPG-formulation builds on the well-posed conforming formulations
(5.2.7), (5.2.10), which we will now assume to be the case (i.e., b, c are
such that the previous conclusions apply). The details of the following
results can be found in [BDS]

Given a partition P of Ω, as in (4.9.20) we do (5.2.12) elementwise and
then replace the traces of u by new unknowns û living only on the skele-
ton

∂P =
⋃
K∈P

(∂K− ∪ ∂K+).

This yields the DPG bilinear form

BP([u, û], v) =

∫
Ω

(cv − b · ∇Pv − vdiv b)udx+

∫
∂P

[[vb]]ûds, (5.3.1)

where ∇P is the piecewise gradient, i.e.,∫
Ω

b · ∇Pvdx =
∑
K∈P

b · ∇vdx,

and where for x ∈ K ∩K ′ (interface f neighboring closed cells K,K ′)

[[vb]](x) := (vb|K · nK + vb|K ′ · nK ′)(x)

are jump terms.

Choice of trial- and test space: As in (4.9.26) as a test-space we take the
“broken analog” to (5.2.14), i.e.,

‖v‖VP = ‖v‖H(b;P) :=
(∑
K∈P

‖vK‖2
H(b;K)

)1/2

. (5.3.2)

Clearly, the bulk-unknown u should belong to L2(Ω). As indicated earlier,
it is important to choose the right norm for the skeleton component û to
ensure continuity of BP . To this end, consider the space

H0,Γ−(b; ∂P) := {w|∂P : w ∈ H0,Γ−(b; Ω)}, (5.3.3)
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i.e., the skeleton functions is viewed as restrictions of the elements in
the conforming infinite-dimensional trial space U1 = H0,Γ−(b; Ω) while
the DPG-formulation for the bulk-unknown u is inspired by the weak
formulation (5.2.10). In this sense the DPG-formulation draws on both
types of conforming formulations. The space H0,Γ−(b; ∂P) is endowed with
the factor-norm

‖û‖H0,Γ−(b;∂P) := inf {‖w‖H(b;Ω) : w|∂P = û, w ∈ H0,Γ−(b; Ω)}. (5.3.4)

Thus, we arrive at

UP = L2(Ω)×H0,Γ−(b; ∂P), VP = H(b;P), (5.3.5)

and

BP : UP → VP defined by (BP [u, û])(v) = BP([u, û], v) (5.3.6)

is clearly bounded.

Well-posedness:

Theorem 5.3.1 ([BDS, Theorem 3.1]) Assume that c ∈ L∞(Ω), div b ∈
L∞(Ω) and that for these coefficients (5.2.7) and (5.2.10) are well-posed.
Then BP defined by (??) is an isomorphism, i.e.,

‖BP‖L(UP ,V′P) ≤ CBP , ‖B−1
P ‖L(V′P ,UP) ≤ c−1

BP , (5.3.7)

where CBP depends on c, b while cBP depends in addition on ‖(B∗2)−1‖L(U′2,V2)

and ‖B−1
1 ‖L(V′1,U1). 2

The theorem says that the infinite-dimensional DPG formulations are
inf-.sup stable uniformly in a given hierarchy of shape-regular partitions
P ∈ P.

An important ingredient in the proof is to show that (see [BDS, Lemma
3.4])

[[vb]] ∈ (H0,Γ−(b; ∂P))′,

‖[[vb]]‖(H0,Γ−(b;∂P))′ ∼ inf
z∈H0,Γ+(b;Ω)

‖v − z‖H(b;P), (5.3.8)

where the equivalence constants depend only on c, b and ‖B−1
1 ‖L(V′1,U1).
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5.4 A Fully Discrete DPG Scheme

A practical DPG-scheme is obtained by choosing suitable finite dimen-
sional trial spaces Um

P ⊂ UP and appropriate test-search spaces SmP ⊂ VP .
Specifically, take

Um
P :=

∏
K∈P

Pm(K)×H0,Γ−(b; Ω) ∩
∏
K∈P

Pm(K). (5.4.1)

For the test-search space consider a refinement Pr of P of fixed depth
r ∈ N, i.e., each cell in P is subdivided r times according to the refinement
rule in P. Then take

SmP :=
∏
K ′∈Pr

Pm+1(K
′) ⊂ VPr . (5.4.2)

The test-space for the corresponding Petrov-Galerkin scheme is then given
by

TSmP (Um
P ) =

∏
K ′∈Pr

TK,SmP (Um
P ), (5.4.3)

i.e., the test-functions for any local basis elements in Um
P are obtained by

projection from a local test-search space of uniformly bounded dimension
depending on the subgrid-depth r and the polynomial degree m of the
trial functions. Thus the overall problem size scales like dimUm

P .

Theorem 5.4.1 ([BDS, Theorem 4.8]) Assume that c ∈ W 1(L∞(Ω)),
b ∈ W 1(L∞(Ω; div), |b|−1 ∈ L∞(Ω). Let P be a hierarchy of shape-regular
partitions. Then for a fixed by sufficiently large subgrid-depth r the DPG
scheme: find [um, ûm] ∈ Um

P such that

BPr([um, ûm], vm) = f(vm), vm ∈ TSmP (Um
P ),

is uniformly inf-sup-stable. 2

Roadmap for the proof:

- When b is a constant field and c is constant, one can determine the
exact optimal test-functions explicitly when using a somewhat modified
but equivalent inner product on H(b;K).
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- One then proceeds to show that these test-functions can be approxi-
mated in the δ-proximal sense well enough by piecewise polynomials of
degree one higher that the trial degree on a refined subgrid.

- To treat variable convection fields, one uses an elaborate perturbation
argument, replacing b cell-wise by a constrant field. The difficulty then is
that on the infinite-dimensional level a piecewise constant b does not give
rise to a well-posed problem. The fact that the relevant function spaces
depend on b makes things rather delicate.
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