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Problem Statement – Design of a Thermal Fin

We consider the problem of designing a thermal fin described in Problem Set 1. In PS1 we
looked at some thoeretical issues (weak formulation and optimization formulation, convergence of the
reduced basis approximation) and derived the necessary reduced basis quantities, i.e., expressions for
AN (µ), FN , and LN . This problem set is devoted to implementing the reduced basis approximation
and solving a simple design problem.

Part 1 - Reduced Basis Approximation

The point of departure for the reduced basis approximation is a high-dimensional finite element
“truth” discretization. In the offline stage we require the finite element solution to build the reduced
basis and we thus also need the FE matrices. In this problem set we skip the FE assembly step and
provide all of the necessary data for use in MATLAB (see Appendix 1).

We saw in class that the reduced basis solution uN (µ) ∈ RN satisfies the set of N × N linear
equations,

AN (µ)uN (µ) = FN ; (1)

and that the output is given by
TrootN (µ) = LTN uN (µ). (2)

We derived expressions for AN (µ) ∈ RN×N in terms of AN (µ) and Z, FN ∈ RN in terms of FN

and Z, and LN ∈ RN in terms of LN and Z; here Z is an N ×N matrix, the jth column of which
is uN (µj) (the nodal values of uN (µj)). Finally, it follows from affine parameter dependence that
AN (µ) can be expressed as

AN (µ) =

Q∑
q=1

Θq(µ)AqN . (3)

The goal is to implement an offline/ online version of the reduced-basis method following the
computational decomposition indicated below.

• Offline

1. Choose N .

2. Choose the sample SN .

3. Construct Z.
4. Construct AqN , q = 1, . . . , Q; FN ; and LN .
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• Online

1. Form AN (µ) from (3).

2. Solve AN (µ)uN (µ) = FN .

3. Evaluate the output TrootN (µ) from (2).

The idea is that the off-line stage is done only once, generating a small datafile with the AqN , q =
1, . . . , Q, FN , and LN ; the on-line stage then accesses this datafile to provide real-time response
to new µ queries. For the required off-line finite element calculations in this and the following
questions, you should first use the coarse triangulation Thcoarse .

α) Show that the operation count for the on-line stage of your code is independent ofN . In particular
show that the operation count (number of floating-point operations) for the on-line stage, for each
new µ of interest, can be expressed as

c1N
γ1 + c2N

γ2 + c3N
γ3 ,

for c1, c2, c3, γ1, γ2, and γ3 independent of n. Give values for the constants c1, c2, c3, γ1, γ2, and γ3.

β) We first consider a one parameter (P = 1) problem. To this end, we keep the Biot number fixed
at Bi = 0.1 and assume that the conductivities of all fins are equivalent, i.e., k1 = k2 = k3 = k4,
but are allowed to vary between 0.1 and 10 – we thus have µ ∈ D = [0.1, 10]. The sample set SN
for Nmax = 8 is given in the datafile RB_sample.sample1.

1. Generate the reduced basis “matrix” Z and all necessary reduced basis quantities. You have
two options: you can use the solution “snapshots” directly in Z or perform a Gram-Schmidt
orthonormalization to construct Z (Note that you require the X-inner product to perform
Gram-Schmidt; here, we use (·, ·)X = a(·, ·;µ), where µ = 1 – all conductivities are 1 and the
Biot number is 0.1). Calculate the condition number of AN (µ) for N = 8 and for µ = 1 and
µ = 10 with and without Gram-Schmidt orthonormalization. What do you observe?

Solve the reduced basis approximation (where you use the snapshots directly in Z) for µ1 = 0.1
and N = 8. What is uN (µ1)? How do you expect uN (µ2) to look like for µ2 = 10.0? What
about µ3 = 1.0975?

Solve the Gram-Schmidt orthonormalized reduced basis approximation for µ1 = 0.1 and µ2 =
10 for N = 8. What do you observe? Can you justify the result?

For the remaining questions you should use the Gram-Schmidt orthonormalized reduced basis
approximation.

2. Verify that, for µ = 1.5 (recall that Biot is still fixed at 0.1) and N = 8, the value of the
output is TrootN (µ) = 1.53107.

3. We next introduce a regular test sample, Ξtest ⊂ D, of size ntest = 100 (in MATLAB you
can simply use linspace(0.1, 10, 100) to generate Ξtest). Plot the convergence of the
maximum relative error in the energy norm maxµ∈Ξtest |||u(µ)− uN (µ)|||µ/|||u(µ)|||µ and the
maximum relative output error maxµ∈Ξtest |Troot(µ) − Troot N(µ)|/Troot(µ) as a function of N
(use the MATLAB command semilogy for plotting).

4. Compare the average CPU time over the test sample required to solve the reduced basis online
stage with direct solution of the FE approximation as a function of N .
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5. What value of N do you require to achieve a relative accuracy in the output of 1%. What
savings in terms of CPU time does this correspond to?

6. Solve problems β) 3. to 5. using the medium and fine FE triangulation. Is the dependence
on N as you would anticipate?

γ) We now consider another one parameter (P = 1) problem. This time, we assume that the
conductivities are fixed at {k1, k2, k3, k4} = {0.4, 0.6, 0.8, 1.2}, and that only the Biot number,
Bi, is allowed to vary from 0.01 to 1. The sample set SN for Nmax = 11 is given in the datafile
RB_sample.sample2. Generate an orthonormal Z from the sample set using the medium triangula-
tion.

1. Verify that, for µ
0

= {0.4, 0.6, 0.8, 1.2, 0.15}, i.e. Bi = 0.15, the value of the output is
TrootN (µ

0
) = 1.51561.

2. We next introduce a regular test sample, Ξtest ⊂ D, of size ntest = 100 (in MATLAB you
can simply use linspace(0.01, 1, 100) to generate Ξtest). Plot the convergence of the
maximum relative error in the energy norm maxµ∈Ξtest |||u(µ)− uN (µ)|||µ/|||u(µ)|||µ and the
maximum relative output error maxµ∈Ξtest |Troot(µ) − Troot N(µ)|/Troot(µ) as a function of N
(use the MATLAB command semilogy for plotting).

3. The Biot number is directly related to the cooling method; higher cooling rates (higher Bi)
imply lower (better) Troot but also higher (worse) initial and operational costs. We can thus
define (say) a total cost function as

C(Bi) = Bi + Troot(Bi), (4)

minimization of which yields an optimal solution. Apply your (online) reduced-basis approx-
imation for TrootN (that is, replace Troot(Bi) in (4) with TrootN (Bi)) to find the optimal Bi.
Any (simple) optimization procedure suffices for the minimization.

δ) Finally, we consider a two parameter (P = 2) problem where the conductivities are assumed
to be equivalent, i.e., k1 = k2 = k3 = k4, but are allowed to vary between 0.1 and 10; and the
Biot number, Bi, is allowed to vary from 0.01 to 1. The sample set SN for Nmax = 46 is given in
the datafile RB_sample.sample3. Generate an orthonormal Z from the sample set using the coarse
triangulation.

1. We next introduce a regular grid, Ξtest ⊂ D, of size ntest = 400 (a regular 20 × 20 grid).
Plot the convergence of the maximum relative error in the energy norm maxµ∈Ξtest |||u(µ) −
uN (µ)|||µ/|||u(µ)|||µ and the maximum relative output error maxµ∈Ξtest |Troot(µ)−Troot N(µ)|/Troot(µ)
as a function of N (use the MATLAB command semilogy for plotting).

Appendix 1 - Finite Element Method Implementation

For the implementation of the reduced basis method, the finite element matrices for three possible
triangulations of the fin problem are provided. To obtain the required matlab data, download the file
PS2_matlab.zip from the course web site und unzip it. There are three .mat files: FE_matrix.mat
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contains the FE matrices, FE_grid.mat contains the triangulation data, and RB_sample.mat con-
tains the samples you should use initially (later on you will generate samples yourselves using a
greedy procedure). To load the FE matrices in the MATLAB workspace:
» load FE_matrix
This creates one variable named FE_matrix with three fields coarse, medium, and fine. Each of
these fields contains a cell array Ahq of size 6× 1 and the load vector Fh. Each cell of Ahq contains
the parameter-independent FE matrix AN q, q = 1, . . . , 6; here q = 1, . . . , 4 corresponds to the
“submatrices” of fins 1,. . . ,4, with conductivities ki, i = 1, . . . , 4, respectively; q = 5 corresponds
to the “submatrix” of the central post with conductivity k0 = 1; and q = 6 corresponds to the
“submatrix” of the line integral over the “surface" of the fin (without Γroot).

To load the reduced basis samples SN in the MATLAB workspace:
» load RB_sample
This creates one varialbe named RB_sample with fields sample1, sample2, and sample3, correspond-
ing to the two P = 1 and the P = 2 cases described in the problem statement.

Note that you require the triangulation only for plotting the FE solution (see below). The following
detailed information about the triangulation is just included to give you an impression concerning
the data required if you would like to set up the FE matrices from scratch. To load the triangulation
data in the MATLAB workspace:
» load FE_grid
This creates one variable FE_grid with three fields coarse, medium, and fine. Each of these fields
is a different triangulation Th for the fin problem. More specifically

• coarse defines Thcoarse , with 1333 nodes, and 2095 elements.

• medium defines Thmedium
, with 4760 nodes, and 8380 elements, and

• fine defines Thfine
, with 17889 nodes, and 33520 elements.

Each of these variables is of type struct, with four different fields.
» coarse
coarse =

nodes: 1333
coor: [1333x2 double]
elements: 2095
theta: 1x7 cell

Description of the fields: (assume that we are using the coarse triangulation)

• nodes: The number of nodes in the triangulation.

• coor: Two-dimensional matrix with size (nodes×2), where each row i has the x and y coor-
dinates for node i. For example, the location of node 49 can be determined by two coordi-
nates. The coordinate in the x-direction would be coarse.coor(49,1) and in the y-direction
coarse.coor(49,2).

• elements: The number of elements in the triangulation.

• theta: The adjacency matrix θ(k, α) which defines the local-to-global mapping required in
the elemental assembly procedure. Since we have regions with different physical properties,
for each region a seperate adjacency matrix is provided. The regions considered are
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– Region 1: Domain Ω1, θ1(k, α) =coarse.theta{1},
– Region 2: Domain Ω2, θ2(k, α) =coarse.theta{2},
– Region 3: Domain Ω3, θ3(k, α) =coarse.theta{3},
– Region 4: Domain Ω4, θ4(k, α) =coarse.theta{4},
– Region 5: Domain Ω0, θ5(k, α) =coarse.theta{5}.

For each of these regions i, the index k varies in the range k ∈ {1, . . . , ni}, where ni are the
number of elements in region i. For example element 12 in region 3 is has the global nodes
ν1=coarse.theta{3}(12,1), ν2=coarse.theta{3}(12,2), and ν3=coarse.theta{3}(12,3).
In addition, for the treatment of the boundary conditions, the boundary is divided into two
sections. The first is Γ\Γroot, where Robin boundary conditions are applied; the second is Γroot,
where the incoming heat flux is applied. For each segment in these sections, the associated
global nodes are provided.

– Section 1: Γ\Γroot, κ1(m,α) =coarse.theta{6},
– Section 2: Γroot, κ2(m,α) =coarse.theta{7}.

For each of the sections i, the index m varies in the range m ∈ {1, . . . , si}, where the si are the
number of segments in section i. As an example, to find the nodes ν1, and ν2 for segment 5 in
the first section, we would use ν1 =coarse.theta{6}(5,1), and ν2 =coarse.theta{6}(5,2).

To plot the temperature distribution, plotsolution.m can be used. If z ≡ uh is the vector with
the computed temperature values for each of the nodes, then a contour plot of the temperature
distribution can be obtained by
» plotsolution(FE_grid.coarse, z)
The first argument is the mesh used in the calculation of z, and the second is the solution vector z.

For the storage of the finite element matrices, use MATLAB’s sparse matrix data structure.
Also, for the solution of the resulting linear systems, use the default solution methods provided in
MATLAB, i.e.. use
» u = A \ F
to solve for the FEM solution u.
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