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Problem Statement

Our problem of interest is the thermal fin discussed in the previous problem sets, but now we consider
the time-dependent case. We assume that the thermal fin is initially at zero (non-dimensionalized)
temperature and a heat flux is then applied to the root. The output of interest is the average
temperature of the fin.

We directly consider the truth approximation. To this end, we divide the time interval, I =
(0, tf ], into K subintervals of equal length ∆t =

tf
K , and define tk = k∆t, 0 ≤ k ≤ K. We

shall consider Euler-Backward for the time integration. We also recall the truth finite element
approximation space X ⊂ Xe.

Our truth problem statement is then: given a parameter µ ∈ D, we evaluate the output

sk(µ) = `(uk(µ)), 1 ≤ k ≤ K, (1)

where the field variable uk(µ) ∈ X, 1 ≤ k ≤ K, satisfies

m

(
uk(µ)− uk−1(µ)

∆t
, v

)
+ a(uk(µ), v;µ) = f(v) g(tk), ∀v ∈ X, (2)

with initial condition u(t0;µ) = u0 = 0. Here, the bilinear form a is defined as in Problem Set 1, the
linear form f is given by f(v) =

∫
Γroot

v dS, the linear form ` is given by `(v) =
∫

Ω v, the bilinear
form m is given by

m(w, v) =

∫
Ω
v w, ∀w, v ∈ X, (3)

and g(tk) denotes the “control input” at time t = tk. Note that m and `, f are parameter-
independent.

We consider the following special case: We assume that the conductivities of all fins are equiva-
lent and fixed at ki = 1, i = 1, . . . , 4, and that the Biot number is allowed to vary between 0.01 and
1. We thus have µ ≡ Bi ∈ D = [0.01, 1]. We consider the time interval I = (0, 10] with a discrete
timestep ∆t = 0.1 and thus K = 100.

To begin, you should download and unpack the zip file PS5_matlab.zip. You will find the file
FE_matrix_mass.mat which contains a struct, FE_matrix_mass, with the mass matrices for the fine,
medium, and coarse triangulations used before. To generate the output vector L you can simply
postmultiply the corresponding mass matrix with a vector containing all 1s. From the previous
problem sets you already have the required finite element forcing vector F and the finite element
stiffness matrix A (and the Aq). In the sequel, you should use the medium triangulation.
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Part 1 - Reduced Basis Approximation

We first generate a reduced basis approximation by choosing a basis from scratch. To this end, we
use g(tk) = δ1k, 1 ≤ k ≤ 100 (unit impulse input) and set

XN = span{u1(0.01), u5(0.01), u10(0.01), u20(0.01), u30(0.01), u5(0.1), u10(0.1), u20(0.1), u5(1), u10(1)},
(4)

i.e., our reduced basis space XN is spanned by the solution uk(µ) at several parameter-time pairs.
We then orthonormalize XN using Gram-Schmidt.

Q1. Write an offline-online code in matlab for the reduced basis approximation (use LU decompo-
sition for the truth and reduced basis time integration).

(a) Plot the outputs sk(µ), skN (µ), and the error sk(µ)− skN (µ) as a function of time for g(tk) =
1− cos(tk) and µ = 0.05.

(b) Plot |||uk(µ)|||, |||ukN (µ)|||, and the error |||uk(µ)− ukN (µ)||| as a function of time for g(tk) =
1− cos(tk) and µ = 0.05 (see slide 50 of MOR_L7_SS2019.pdf for the definition of the energy
norm).

Part 2 - A Posterior Error Estimation

The problem statement fits in the framework introduced in the lecture.

Q2. Similar to the elliptic case, we can compute the energy norm bound directly from the residual
(N -dependent cost) or we can use the offline-online decomposition.

(a) Derive and implement an offline-online version for the calculation of the energy norm a poste-
riori error bound for the primal variable by extending your code from the elliptic case. Note:
we will concentrate on the energy norm bound for the primal variable here, so you do not need
to consider the dual problem (reduced basis approximation or a posteriori error estimation).
Also, we will use the simple output bound and we thus do not require the residual correction
term.

(b) Compare the direct calculation of the error bound with your offline-online decomposition for 10
random parameter values in D. You can perform a comparison over time (better) or compare
the values at the final time.

Part 3 - Sampling Procedure

Our reduced basis space from Part 1 is less than optimal. Given your offline-online decomposition
for the reduced basis approximation from Part 1 and associated a posteriori error estimation from
Part 2 we can now pick a much more optimal basis.
Q3. Apply the POD-Greedy algorithm (slide 101) with Ξtrain = Gln

[0.01,1;100], ε
tol,min = 1E − 6 and

µ∗0 = 0.01. Here, we also use the impulse input g(tk) = δ1k, 1 ≤ k ≤ 100.

(a) What is the value of Nmax to achieve the desired accuracy?

(b) Plot ∆max
N = ∆K

N (µ∗)/|||uKN (µ∗)||| as a function of N .
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(c) Plot the outputs sk(µ), skN (µ), the error sk(µ)− skN (µ), and the simple error bound ∆s
N (tk;µ)

as a function of time for N = 10 and N = Nmax for g(tk) = 1− cos(tk) and µ = 0.05.

(d) Plot |||uk(µ)|||, |||ukN (µ)|||, the error |||uk(µ) − ukN (µ)|||, and the error bound ∆N (tk;µ) as a
function of time for N = 10 and N = Nmax for g(tk) = 1− cos(tk) and µ = 0.05.

(e) Calculate the average effectivity ηu (see slide 61 for the definition in the time-dependent case)
for Ξtest = Gln

[0.01,1;15] and g(tk) = 1− cos(tk) as a function of N .

(f ) Compare the average online time to calculate sN (tk;µ) and ∆s
N (tk;µ) for Ξtest = Gln

[0.01,1;15]

with the time for direct calculation of s(tk;µ) (Choose N based on (c) such that the error in
the output bound is approximately 1%).
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