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Basic Modeling Assumptions

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.
Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.
Surface energy is proportional to the area.
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Basic Modeling Assumptions

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.
Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.
Surface energy is proportional to the area.

But: Sharp Interface is an idealization (van der Waals).
Fluid mix in a thin interfacial region.
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Free Energy of a Two-Component Mixture

Ansatz: We assume the fluids to be (partly) miscible.
Let cj : Ω→ R be the concentration of the component j = 1, 2,
c = c1 − c2, and let

Emix(c) =
ε

2

∫
Ω
|∇c(x)|2 dx + ε−1

∫
Ω

f (c(x)) dx

be the free energy of the mixture, where Ω ⊆ Rd ,
d = 1, 2, 3, ε > 0 and

f : R→ [0,∞) with f (c) = 0⇔ c = ±1.

Example:
f (c) = 1

8
(1− c2)2

Moreover, we assume

1

|Ω|

∫
Ω

c(x) dx = c ∈ (−1, 1) if |Ω| <∞.
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Remarks

A “typical” profile of a diffuse interface is

c(x) = tanh
x

2ε
, x ∈ R,

which minimizes Emix in the case Ω = R with constraint
c(x)→x→±∞ ±1 if f (c) = 1

8 (1− c2)2.

Modica-Mortola ’77, Modica ’87 proved

Emix ≡ Emix ,ε →ε→0 σP

in the sense of Γ-convergence (w.r.t. L1), where

P(v) =

{
Hd−1(∂∗E ) if v = 2χE − 1

+∞ else.

and σ = σ(f ).
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Modeling of a Two-Phase Flow

Ansatz: Use the free energy

Emix(c) =
ε

2

∫
Ω
|∇c(x)|2 dx + ε−1

∫
Ω

f (c(x)) dx

to describe the energy of the mixture.

Diffusion: Take diffusion of mass particles into account

∂tc + v · ∇c = div J (continuity equation)

J = m∇µ (generalized Fick’s law)

µ :=
δEmix

δc
:= −ε∆c + ε−1f ′(c) (chemical potential)

where v is the mean velocity of the mixture and m > 0.

Classical models: Pure transport of the interface (m=0).

Remark: µ = δEmix
δc ≡ const.⇔ J ≡ 0
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Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

∂tv + v · ∇v − div(ν(c)Dv) +∇p = −ε div(∇c ⊗∇c)︸ ︷︷ ︸
surface tension

(1)

div v = 0 (2)

∂tc + v · ∇c = m∆µ (3)

µ = −ε∆c + ε−1f ′(c) (4)

where Dv = 1
2 (∇v +∇vT ) and ν(c) ≥ ν0 > 0.

Derivation: Hohenberg & Halperin ’74, Gurtin et al. ’96

Moreover, let Ω ⊂ Rd be a bounded domain with smooth boundary and

v |∂Ω = 0 (5)

∂nc |∂Ω = ∂nµ|∂Ω = 0 (6)

(v , c)|t=0 = (v0, c0) (7)
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where Dv = 1
2 (∇v +∇vT ) and ν(c) ≥ ν0 > 0.

Energy dissipation: Every smooth solutions satisfies

d

dt
E (c(t), v(t)) = −

∫
Ω
ν(c)|Dv |2 dx −

∫
Ω

m|∇µ|2 dx with

E (c(t), v(t)) = Emix(c(t)) +

∫
Ω

|v(t)|2

2
dx
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surface tension
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∂tc + v · ∇c = m∆µ (3)

µ = −ε∆c + ε−1f ′(c) (4)

where Dv = 1
2 (∇v +∇vT ) and ν(c) ≥ ν0 > 0.

Remark: (1) can be replaced by:

∂tv + v · ∇v − div(ν(c)Dv) +∇g = µ∇c

where g = p + ε−1f (c) + ε
2 |∇c |2. – Use (4) multiplied with ∇c , which

yields

−ε div(∇c ⊗∇c) = −ε∆c∇c − ε∇|∇c |2

2
Note: (1)-(4) is not too strongly coupled!
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Main Results for Matched Densities

Theorem (Existence, Regularity, Uniqueness, A. (ARMA ’08))

Let d = 2, 3. For every v0 ∈ L2
σ(Ω), c0 ∈ H1(Ω) with Emix(c0) <∞ there

is a weak solution (v , c , µ) of (1)-(4), which satisfies

(v ,∇c) ∈ L∞(0,∞; L2(Ω)), (∇v ,∇µ) ∈ L2(0,∞; L2(Ω)),

∇2c , f ′(c) ∈ L2
loc([0,∞); L6(Ω)).

For (v0, c0) sufficiently smooth:

1 If d = 2, then the weak solution is unique and regular.

2 If d = 3, there are some 0 < T0 < T1 <∞ such that the weak
solution is regular and (locally) unique on (0,T0) and [T1,∞).

Remark: Here f (c) can be chosen as e.g.

f (c) =

{
θ((1− c) log(1− c) + (1 + c) log(1 + c))c − θcc2, if c ∈ [−1, 1],

+∞ else.
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Structure of the Proof

First study the separate systems:

1 Cahn-Hilliard equation with convection and singular potential
(based on Emix(c) = E0(c)− θ

2‖c‖
2
2 with E0 convex)

2 (Navier-)Stokes system with variable viscosity

Existence of weak solutions:
Approximation and compactness argument

Higher Regularity: Use regularity results for separate systems

Uniqueness: Gronwall’s inequality once (v , c) are sufficiently regular.

Crucial ingredient for higher regularity:
A priori estimate for c ∈ BUC ([0,∞); W 1

q (Ω)), q > d!
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Regularity of c

W 2
r -estimate of c : Multiplying

µ(t) = −∆c(t) + f ′(c(t))

with f ′(c(t)) yields∫
Ω

f ′(c(t))2 dx +

∫
Ω

f ′′(c(t))︸ ︷︷ ︸
≥−θc

|∇c(t)|2 dx ≤ C‖µ(t)‖2
2.

⇒ ‖f ′(c(t))‖2 + ‖∇2c(t)‖2 ≤ Cr (‖µ(t)‖2 + ‖∇c(t)‖2) .

Similarly one derives for 2 ≤ r <∞

‖f ′(c(t))‖r + ‖∇2c(t)‖r ≤ Cr (‖µ(t)‖r + ‖∇c(t)‖2) .

⇒ c ∈ L2
loc([0,∞); W 2

6 (Ω)) if d = 3.

Modifications: Higher regularity in time in Besov spaces.
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A Compressible Model by Lowengrub and Truskinovsky ’98

We consider

ρ∂tv + ρv · ∇v − div S +∇p(ρ, c) = − div

(
∇c ⊗∇c − |∇c |2

2
I
)

(5)

∂tρ+ div(ρv) = 0 (6)

ρ∂tc + ρv · ∇c = m∆µ (7)

ρµ = ρ
∂f

∂c
(ρ, c)−∆c (8)

where

p(ρ, c) = ρ2∂f

∂ρ
(ρ, c), S = ν(c)Dv + η(c) div v

The free energy of the system is

Efree(ρ, c) =

∫
Ω
ρf (ρ, c) dx +

1

2

∫
Ω
|∇c |2 dx

Note: There is no factor ρ in front of |∇c |2!
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Choice of the Free Energy Density

We choose

f (ρ, c) = fe(ρ) + fmix(ρ, c),

fmix(ρ, c) = H(c) log(ρ) + G (c),

where H ∈ C 1
b (R), |G ′(c)| ≤ C (1 + |c |) and

c1ρ
γ − c1 ≤ fe(ρ) ≤ C (1 + ργ)

where γ > 3
2 .

This leads to

p(ρ, c) = ρ2∂f (ρ, c)

∂ρ
= pe(ρ) + ρH(c),

Remark: The choice is motivated by

ρfmix(ρ, c) = α1ρ
1− c

2
ln

(
ρ

1− c

2

)
+ α2ρ

1 + c

2
ln

(
ρ

1 + c

2

)
− βρc2

= ρ log ρH(c) + ρG (c)
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Main Results for Compressible Fluids

Theorem (Existence of Weak Solutions, A. & Feireisl (Indiana ’08))

Let Ω ⊂ R3 be bounded with ∂Ω ∈ C 2, 0 < T <∞. For every
ρ0 ∈ Lγ(Ω), v0 such that ρ0|v |2 ∈ L1(Ω), c0 ∈ H1(Ω) there is a weak
solution (ρ, v , c , µ) of (5)-(8), which satisfies

ρ ∈ L∞(0,T ; Lγ(Ω)) ∩ Lγ+ε(Ω× (0,T )),

∇c ∈ L∞(0,T ; L2(Ω)),

(∇v ,∇µ) ∈ L2(0,T ; L2(Ω))

for some ε > 0.
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Sketch of the Proof (I)

1.) First one solves a system with artificial pressure:

ρ∂tv + ρv · ∇v − div S +∇(p(ρ, c) + δρΓ) = − div

(
∇c ⊗∇c − |∇c |2

2
I
)

∂tρ+ div(ρv) = 0

ρ∂tc + ρv · ∇c = m∆µ

ρµ = ρ
∂f

∂c
(ρ, c)−∆c

where δ > 0 and Γ > 3 (e.g. by an implicit time discretization).

2.) Next one shows an improved integrability of ρ, i.e,

‖ρ‖L∞(0,T ;Lγ+ε) ≤ C uniformly in δ > 0.

by testing with B[ρε − 1
|Ω|ρ

ε] and using

− div

(
∇c ⊗∇c − |∇c |2

2

)
= −∆c∇c = ρµ∇c − ∂f

∂c
(ρ, c)∇c
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Sketch of the Proof (II)

3.) Compactness of ∇c ≡ ∇cδ: Using

ρδµδ = ρδ
∂f

∂c
(ρδ, cδ)−∆cδ

and cδ →δ→0 c on {ρ > 0} a.e., one shows∫ T

0

∫
Ω
|∇cδ|2 dx dt →δ→0

∫ T

0

∫
Ω
|∇c |2 dx dt

4.) Convergence of ρδ a.e.:
Based on weak continuity of the effective viscous flux:

b(ρ)p − (
4

3
ν(c) + η(c))b(ρ) div u = b(ρ) · p − (

4

3
ν(c) + η(c))b(ρ) · div u,

where f = w − limδ→0 fδ and renormalized solutions for the transport
equation, cf. Feireisl ’03.
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Quasi-Incompressible Model (Lowengrub & Truskinovsky)

Generalization for ρ = ρ(c) 6≡ const.:

ρ∂tv + ρv · ∇v − div(ν(c)Dv) +∇p = − div

(
∇c ⊗∇c − |∇c |2

2
I
)

(9)

∂tρ+ div(ρv) = 0 (10)

ρ∂tc + ρv · ∇c = m∆µ (11)

ρµ = −ρ−1 ∂ρ

∂c
p + ρf ′(c)−∆c (12)

Difficulties:

div v 6= 0
g possesses low regularity.
Singular free energies cannot be used.
How to define ρ(c) for c 6∈ [−1, 1]? (E.g. 1

ρ(c) = 1−c
ρ1

+ c
ρ2

)

A. ’07/’08: Existence of weak solutions for modified free energy/system

Emix(c) =
1

q

∫
Ω
|∇c|q dx +

∫
Ω
ρf (c(x)) dx with q > d!

such that c(t, x) ∈ [−1− ε, 1 + ε] if f is “steep enough” outside of [−1, 1].
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∇c ⊗∇c − |∇c |2

2
I
)

(9)

∂tρ+ div(ρv) = 0 (10)

ρ∂tc + ρv · ∇c = m∆µ (11)

ρµ = −ρ−1 ∂ρ

∂c
p + ρf ′(c)−∆c (12)

Difficulties:

div v 6= 0
g possesses low regularity.
Singular free energies cannot be used.
How to define ρ(c) for c 6∈ [−1, 1]? (E.g. 1

ρ(c) = 1−c
ρ1

+ c
ρ2

)

A. ’07/’08: Existence of weak solutions for modified free energy/system

Emix(c) =
1

q

∫
Ω
|∇c|q dx +

∫
Ω
ρf (c(x)) dx with q > d!

such that c(t, x) ∈ [−1− ε, 1 + ε] if f is “steep enough” outside of [−1, 1].Helmut Abels (MPI Leipzig) Two-Phase Flows February 4, 2009 19 / 22



Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to

∂tv + v · ∇v − ρ−1 div(ν(c)Dv) +∇g = µ∇c

ρµ = −∂ρ
∂c

g −∆c + ρf ′(c)

Key point: Use that
g0 = g1 − ∂tG (v),

where

∆G (v(t)) = div v(t), ∂nG (v(t))|∂Ω = n · v(t)|∂Ω.

Then v(t) = Pσv(t) +∇G (v(t)) and

∂tPσv + v · ∇v − ρ−1 div(ν(c)Dv) +∇g1 = µ0∇c .

⇒ ∆g1 = − div div

(
v ⊗ v − |v |

2

2
I

)
︸ ︷︷ ︸
∈L2(0,∞;Lr )

+...

and therefore g1 ∈ L2(0,∞; Lr (Ω)), r ∈ (1, d
d−1 ), due to Navier-BCs.
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Overview

1 Diffuse Interface Model for Incompressible Fluids – Matched Densities

2 Diffuse Interface Model for Compressible Fluids

3 Diffuse Interface Model for Incompressible Fluids – General Densities

4 Open Questions
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Open Questions

More detailed analysis of the asymptotics as t →∞.
What are the stable stationary solutions?
Do similar effects occur as for the Cahn-Hilliard system?

Incompressible fluids with different densities:
Short-time existence of strong solutions. – Numerical properties?
Alternative models? – Low Mach-number limit of the compressible
model?

Sharp Interface Limes Question: What is the limit system as ε→ 0?
If m = m(ε)→ε→0 0: Do solution converge to the classical model for
a two-phase flow?
Problem: Existence of weak solution for the limit system is open.
If m = m(ε)→ε→0 m0 > 0: Do solutions converge to a
Navier-Stokes/Mullins-Sekerka-System?
So far: Convergence as ε→ 0 to varifold solutions similarly to
X. Chen’95.
Existence of weak solution is known in this case, cf. A. & Röger ’08.
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