Diffuse Interface Models for Two-Phase Flows of Compressible and Incompressible Fluids

Helmut Abels

Max Planck Institute for Mathematics in the Sciences Leipzig

February 4, 2009

2 Diffuse Interface Model for Compressible Fluids

3 Diffuse Interface Model for Incompressible Fluids – General Densities

Diffuse Interface Model for Incompressible Fluids – Matched Densities

2 Diffuse Interface Model for Compressible Fluids

3 Diffuse Interface Model for Incompressible Fluids – General Densities

Open Questions

Basic Modeling Assumptions

We consider two (macroscopically) immiscible incompressible, viscous fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.

Surface tension is proportional to the mean curvature.

Surface energy is proportional to the area.

Basic Modeling Assumptions

We consider two (macroscopically) immiscible incompressible, viscous fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.

Surface tension is proportional to the mean curvature.

Surface energy is proportional to the area.

But: Sharp Interface is an idealization (van der Waals). Fluid mix in a thin interfacial region.

Helmut Abels (MPI Leipzig)

Two-Phase Flows

Free Energy of a Two-Component Mixture

Ansatz: We assume the fluids to be (partly) miscible. Let $c_j : \Omega \to \mathbb{R}$ be the concentration of the component j = 1, 2, $c = c_1 - c_2$, and let

$$E_{mix}(c) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla c(x)|^2 \, dx + \varepsilon^{-1} \int_{\Omega} f(c(x)) \, dx$$

be the free energy of the mixture, where $\Omega \subseteq \mathbb{R}^d$, $d = 1, 2, 3, \ \varepsilon > 0$ and

 $f : \mathbb{R} \to [0,\infty)$ with $f(c) = 0 \Leftrightarrow c = \pm 1$.

Example: $f(c) = \frac{1}{8}(1 - c^2)^2$

Free Energy of a Two-Component Mixture

Ansatz: We assume the fluids to be (partly) miscible. Let $c_j: \Omega \to \mathbb{R}$ be the concentration of the component j = 1, 2, $c = c_1 - c_2$, and let

$$E_{mix}(c) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla c(x)|^2 \, dx + \varepsilon^{-1} \int_{\Omega} f(c(x)) \, dx$$

be the free energy of the mixture, where $\Omega \subseteq \mathbb{R}^d$, $d = 1, 2, 3, \ \varepsilon > 0$ and

$$f : \mathbb{R} \to [0,\infty)$$
 with $f(c) = 0 \Leftrightarrow c = \pm 1$.

Moreover, we assume

$$\frac{1}{|\Omega|}\int_{\Omega}c(x)\,dx=\overline{c}\in(-1,1)\qquad\text{if }|\Omega|<\infty.$$

Example: $f(c) = \frac{1}{8}(1 - c^2)^2$

Remarks

• A "typical" profile of a diffuse interface is

$$c(x) = anh rac{x}{2arepsilon}, \qquad x \in \mathbb{R},$$

which minimizes E_{mix} in the case $\Omega = \mathbb{R}$ with constraint $c(x) \rightarrow_{x \rightarrow \pm \infty} \pm 1$ if $f(c) = \frac{1}{8}(1 - c^2)^2$.

Remarks

• A "typical" profile of a diffuse interface is

$$c(x) = anh rac{x}{2arepsilon}, \qquad x \in \mathbb{R},$$

which minimizes E_{mix} in the case $\Omega = \mathbb{R}$ with constraint $c(x) \rightarrow_{x \rightarrow \pm \infty} \pm 1$ if $f(c) = \frac{1}{8}(1 - c^2)^2$.

Modica-Mortola '77, Modica '87 proved

$$E_{mix} \equiv E_{mix,\varepsilon} \rightarrow_{\varepsilon \rightarrow 0} \sigma P$$

in the sense of Γ -convergence (w.r.t. L^1), where

$$P(v) = egin{cases} \mathcal{H}^{d-1}(\partial^* E) & ext{if } v = 2\chi_E - 1 \ +\infty & ext{else.} \end{cases}$$

and $\sigma = \sigma(f)$.

Modeling of a Two-Phase Flow

Ansatz: Use the free energy

$$E_{mix}(c) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla c(x)|^2 \, dx + \varepsilon^{-1} \int_{\Omega} f(c(x)) \, dx$$

to describe the energy of the mixture.

Ansatz: Use the free energy

$$E_{mix}(c) = \frac{\varepsilon}{2} \int_{\Omega} |\nabla c(x)|^2 \, dx + \varepsilon^{-1} \int_{\Omega} f(c(x)) \, dx$$

to describe the energy of the mixture. Diffusion: Take diffusion of mass particles into account

$$\begin{array}{ll} \partial_t c + v \cdot \nabla c = \operatorname{div} J & (\text{continuity equation}) \\ J = m \nabla \mu & (\text{generalized Fick's law}) \\ \mu := \frac{\delta E_{mix}}{\delta c} := -\varepsilon \Delta c + \varepsilon^{-1} f'(c) & (\text{chemical potential}) \end{array}$$

where v is the mean velocity of the mixture and m > 0. Classical models: Pure transport of the interface (m=0). Remark: $\mu = \frac{\delta E_{mix}}{\delta c} \equiv const. \Leftrightarrow J \equiv 0$

Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

$$\partial_t v + v \cdot \nabla v - \operatorname{div}(\nu(c)Dv) + \nabla p = \underbrace{-\varepsilon \operatorname{div}(\nabla c \otimes \nabla c)}_{\text{surface tension}}$$
(1)

 $\operatorname{div} v = 0 \tag{2}$

$$\partial_t c + \mathbf{v} \cdot \nabla c = m \Delta \mu \tag{3}$$

$$\mu = -\varepsilon \Delta c + \varepsilon^{-1} f'(c) \tag{4}$$

where $Dv = \frac{1}{2}(\nabla v + \nabla v^T)$ and $\nu(c) \ge \nu_0 > 0$. Derivation: Hohenberg & Halperin '74, Gurtin et al. '96

Moreover, let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary and

$$v|_{\partial\Omega} = 0$$
 (5)

$$\partial_n c|_{\partial\Omega} = \partial_n \mu|_{\partial\Omega} = 0 \tag{6}$$

$$(v,c)|_{t=0} = (v_0,c_0)$$
 (7)

Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

$$\partial_t v + v \cdot \nabla v - \operatorname{div}(\nu(c)Dv) + \nabla p = \underbrace{-\varepsilon \operatorname{div}(\nabla c \otimes \nabla c)}_{\text{surfacturing}}$$
(1)

surface tension

$$\operatorname{div} v = 0 \tag{2}$$

$$\partial_t c + \mathbf{v} \cdot \nabla c = m \Delta \mu \tag{3}$$

$$\mu = -\varepsilon \Delta c + \varepsilon^{-1} f'(c) \tag{4}$$

where $Dv = \frac{1}{2}(\nabla v + \nabla v^T)$ and $\nu(c) \ge \nu_0 > 0$. Energy dissipation: Every smooth solutions satisfies

$$\frac{d}{dt}E(c(t),v(t)) = -\int_{\Omega}\nu(c)|Dv|^2 dx - \int_{\Omega}m|\nabla\mu|^2 dx \quad \text{with}$$
$$E(c(t),v(t)) = E_{mix}(c(t)) + \int_{\Omega}\frac{|v(t)|^2}{2} dx$$

Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

$$\partial_t v + v \cdot \nabla v - \operatorname{div}(\nu(c)Dv) + \nabla p = \underbrace{-\varepsilon \operatorname{div}(\nabla c \otimes \nabla c)}_{\text{surface tension}}$$
(1)

$$\operatorname{div} v = 0 \tag{2}$$

$$\partial_t c + \mathbf{v} \cdot \nabla c = m \Delta \mu \tag{3}$$

$$\mu = -\varepsilon \Delta c + \varepsilon^{-1} f'(c) \tag{4}$$

where $Dv = \frac{1}{2}(\nabla v + \nabla v^T)$ and $\nu(c) \ge \nu_0 > 0$. Remark: (1) can be replaced by:

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \operatorname{div}(\mathbf{v}(\mathbf{c})\mathbf{D}\mathbf{v}) + \nabla \mathbf{g} = \mu \nabla \mathbf{c}$$

where $g = p + \varepsilon^{-1} f(c) + \frac{\varepsilon}{2} |\nabla c|^2$. – Use (4) multiplied with ∇c , which yields

$$-arepsilon\operatorname{\mathsf{div}}(
abla c\otimes
abla c)=-arepsilon\Delta c
abla c-arepsilon
abla rac{|
abla c|^2}{2}$$

Note: (1)-(4) is not too strongly coupled!

Helmut Abels (MPI Leipzig)

Main Results for Matched Densities

Theorem (Existence, Regularity, Uniqueness, A. (ARMA '08))

Let d = 2, 3. For every $v_0 \in L^2_{\sigma}(\Omega)$, $c_0 \in H^1(\Omega)$ with $E_{mix}(c_0) < \infty$ there is a weak solution (v, c, μ) of (1)-(4), which satisfies

 $(v, \nabla c) \in L^{\infty}(0, \infty; L^{2}(\Omega)), \quad (\nabla v, \nabla \mu) \in L^{2}(0, \infty; L^{2}(\Omega)),$ $\nabla^{2}c, f'(c) \in L^{2}_{loc}([0, \infty); L^{6}(\Omega)).$

For (v_0, c_0) sufficiently smooth:

1 If d = 2, then the weak solution is unique and regular.

② If d = 3, there are some $0 < T_0 < T_1 < \infty$ such that the weak solution is regular and (locally) unique on $(0, T_0)$ and $[T_1, \infty)$.

Remark: Here f(c) can be chosen as e.g.

$$f(c) = egin{cases} heta((1-c)\log(1-c)+(1+c)\log(1+c))c - heta_c c^2, & ext{if } c \in [-1,1], \ +\infty & ext{else.} \end{cases}$$

Structure of the Proof

First study the separate systems:

- Cahn-Hilliard equation with convection and singular potential (based on $E_{mix}(c) = E_0(c) \frac{\theta}{2} ||c||_2^2$ with E_0 convex)
- (Navier-)Stokes system with variable viscosity

First study the separate systems:

- Cahn-Hilliard equation with convection and singular potential (based on $E_{mix}(c) = E_0(c) \frac{\theta}{2} ||c||_2^2$ with E_0 convex)
- (Navier-)Stokes system with variable viscosity

Existence of weak solutions:

Approximation and compactness argument

Higher Regularity: Use regularity results for separate systems

Uniqueness: Gronwall's inequality once (v, c) are sufficiently regular.

Crucial ingredient for higher regularity:

A priori estimate for $c \in BUC([0,\infty); W^1_q(\Omega)), q > d!$

Regularity of *c*

 W_r^2 -estimate of c: Multiplying

$$\mu(t) = -\Delta c(t) + f'(c(t))$$

with f'(c(t)) yields

$$\int_{\Omega} f'(c(t))^2 dx + \int_{\Omega} \underbrace{f''(c(t))}_{\geq -\theta_c} |\nabla c(t)|^2 dx \leq C \|\mu(t)\|_2^2.$$

Regularity of *c*

 W_r^2 -estimate of c: Multiplying

$$\mu(t) = -\Delta c(t) + f'(c(t))$$

with f'(c(t)) yields

$$\begin{split} &\int_{\Omega} f'(c(t))^2 \, dx \ + \ \int_{\Omega} \underbrace{f''(c(t))}_{\geq -\theta_c} |\nabla c(t)|^2 \, dx \leq C \|\mu(t)\|_2^2. \\ &\Rightarrow \|f'(c(t))\|_2 \ + \ \|\nabla^2 c(t)\|_2 \leq C_r \left(\|\mu(t)\|_2 + \|\nabla c(t)\|_2\right). \end{split}$$

Regularity of *c*

 W_r^2 -estimate of c: Multiplying

$$\mu(t) = -\Delta c(t) + f'(c(t))$$

with f'(c(t)) yields

$$\begin{split} \int_{\Omega} f'(c(t))^2 \, dx &+ \int_{\Omega} \underbrace{f''(c(t))}_{\geq -\theta_c} |\nabla c(t)|^2 \, dx \leq C \|\mu(t)\|_2^2. \\ \Rightarrow \|f'(c(t))\|_2 &+ \|\nabla^2 c(t)\|_2 \leq C_r \left(\|\mu(t)\|_2 + \|\nabla c(t)\|_2\right). \end{split}$$

Similarly one derives for $2 \le r < \infty$

$$\begin{split} \|f'(c(t))\|_r + \|\nabla^2 c(t)\|_r &\leq C_r \left(\|\mu(t)\|_r + \|\nabla c(t)\|_2\right). \\ \Rightarrow c \in L^2_{loc}([0,\infty); W^2_6(\Omega)) \quad \text{if } d = 3. \end{split}$$

Modifications: Higher regularity in time in Besov spaces.

Helmut Abels (MPI Leipzig)

Diffuse Interface Model for Incompressible Fluids – Matched Densities

2 Diffuse Interface Model for Compressible Fluids

3 Diffuse Interface Model for Incompressible Fluids – General Densities

Open Questions

A Compressible Model by Lowengrub and Truskinovsky '98

We consider

$$\rho \partial_t \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} - \operatorname{div} \mathbb{S} + \nabla p(\rho, \mathbf{c}) = -\operatorname{div} \left(\nabla \mathbf{c} \otimes \nabla \mathbf{c} - \frac{|\nabla \mathbf{c}|^2}{2} \mathbb{I} \right) \quad (5)$$

$$\partial_t \rho + \operatorname{div}(\rho v) = 0$$
 (6)

$$\rho \partial_t c + \rho \mathbf{v} \cdot \nabla c = m \Delta \mu \tag{7}$$

$$\rho\mu = \rho \frac{\partial f}{\partial c}(\rho, c) - \Delta c \tag{8}$$

where

$$p(\rho, c) = \rho^2 \frac{\partial f}{\partial \rho}(\rho, c), \qquad \mathbb{S} = \nu(c) Dv + \eta(c) \operatorname{div} v$$

A Compressible Model by Lowengrub and Truskinovsky '98

We consider

$$\rho \partial_t v + \rho v \cdot \nabla v - \operatorname{div} \mathbb{S} + \nabla p(\rho, c) = -\operatorname{div} \left(\nabla c \otimes \nabla c - \frac{|\nabla c|^2}{2} \mathbb{I} \right)$$
(5)

$$\partial_t \rho + \operatorname{div}(\rho v) = 0$$
 (6)

$$\rho \partial_t c + \rho \mathbf{v} \cdot \nabla c = m \Delta \mu \tag{7}$$

$$\rho\mu = \rho \frac{\partial f}{\partial c}(\rho, c) - \Delta c \tag{8}$$

where

$$p(\rho, c) = \rho^2 \frac{\partial f}{\partial \rho}(\rho, c), \qquad \mathbb{S} = \nu(c) Dv + \eta(c) \operatorname{div} v$$

The free energy of the system is

$$E_{free}(
ho,c) = \int_{\Omega}
ho f(
ho,c) \, dx + rac{1}{2} \int_{\Omega} |
abla c|^2 \, dx$$

Note: There is no factor ρ in front of $|\nabla c|^2$!

Choice of the Free Energy Density

We choose

$$\begin{array}{ll} f(\rho,c) &=& f_{\rm e}(\rho)+f_{\rm mix}(\rho,c),\\ f_{\rm mix}(\rho,c) &=& H(c)\log(\rho)+G(c),\\ \end{array}$$

where $H\in C_b^1(\mathbb{R}), \ |G'(c)|\leq C(1+|c|)$ and
 $c_1\rho^\gamma-c_1\leq f_{\rm e}(\rho)\leq C(1+\rho^\gamma) \end{array}$

where $\gamma > \frac{3}{2}$.

Choice of the Free Energy Density

We choose

$$\begin{array}{ll} f(\rho,c) &=& f_{\rm e}(\rho)+f_{\rm mix}(\rho,c),\\ f_{\rm mix}(\rho,c) &=& H(c)\log(\rho)+G(c),\\ \end{array}$$

where $H\in C_b^1(\mathbb{R}), \ |G'(c)|\leq C(1+|c|)$ and
 $c_1\rho^\gamma-c_1\leq f_{\rm e}(\rho)\leq C(1+\rho^\gamma) \end{array}$

where $\gamma > \frac{3}{2}$. This leads to

$$p(\rho, c) = \rho^2 \frac{\partial f(\rho, c)}{\partial \rho} = p_{\rm e}(\rho) + \rho H(c),$$

Choice of the Free Energy Density

We choose

$$egin{aligned} f(
ho,c) &=& f_{\mathrm{e}}(
ho)+f_{\mathrm{mix}}(
ho,c), \ f_{\mathrm{mix}}(
ho,c) &=& H(c)\log(
ho)+G(c), \end{aligned}$$
 where $H\in C_b^1(\mathbb{R}), \ |G'(c)|\leq C(1+|c|)$ and $c_1
ho^\gamma-c_1\leq f_{\mathrm{e}}(
ho)\leq C(1+
ho^\gamma) \end{aligned}$

where $\gamma > \frac{3}{2}$. This leads to

$$p(\rho, c) = \rho^2 \frac{\partial f(\rho, c)}{\partial \rho} = p_{\rm e}(\rho) + \rho H(c),$$

Remark: The choice is motivated by

$$\rho f_{\min}(\rho, c) = \alpha_1 \rho \frac{1-c}{2} \ln\left(\rho \frac{1-c}{2}\right) + \alpha_2 \rho \frac{1+c}{2} \ln\left(\rho \frac{1+c}{2}\right) - \beta \rho c^2$$
$$= \rho \log \rho H(c) + \rho G(c)$$

Theorem (Existence of Weak Solutions, A. & Feireisl (Indiana '08))

Let $\Omega \subset \mathbb{R}^3$ be bounded with $\partial \Omega \in C^2$, $0 < T < \infty$. For every $\rho_0 \in L^{\gamma}(\Omega)$, v_0 such that $\rho_0 |v|^2 \in L^1(\Omega)$, $c_0 \in H^1(\Omega)$ there is a weak solution (ρ, v, c, μ) of (5)-(8), which satisfies

$$egin{aligned} &
ho\in L^\infty(0,\,\mathcal{T};\,L^\gamma(\Omega))\cap L^{\gamma+arepsilon}(\Omega imes(0,\,\mathcal{T})),\ &
abla c\in L^\infty(0,\,\mathcal{T};\,L^2(\Omega)),\ &
abla (
abla v,
abla \mu)\in L^2(0,\,\mathcal{T};\,L^2(\Omega)) \end{aligned}$$

for some $\varepsilon > 0$.

Sketch of the Proof (I)

1.) First one solves a system with artificial pressure:

$$\rho \partial_t \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} - \operatorname{div} \mathbb{S} + \nabla (\rho(\rho, c) + \delta \rho^{\Gamma}) = -\operatorname{div} \left(\nabla c \otimes \nabla c - \frac{|\nabla c|^2}{2} \mathbb{I} \right)$$
$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = 0$$
$$\rho \partial_t c + \rho \mathbf{v} \cdot \nabla c = m \Delta \mu$$
$$\rho \mu = \rho \frac{\partial f}{\partial c}(\rho, c) - \Delta c$$

where $\delta > 0$ and $\Gamma > 3$ (e.g. by an implicit time discretization).

Sketch of the Proof (I)

1.) First one solves a system with artificial pressure:

$$\rho \partial_t \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} - \operatorname{div} \mathbb{S} + \nabla (p(\rho, c) + \delta \rho^{\Gamma}) = -\operatorname{div} \left(\nabla c \otimes \nabla c - \frac{|\nabla c|^2}{2} \mathbb{I} \right)$$
$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = 0$$
$$\rho \partial_t c + \rho \mathbf{v} \cdot \nabla c = m \Delta \mu$$
$$\rho \mu = \rho \frac{\partial f}{\partial c}(\rho, c) - \Delta c$$

where $\delta > 0$ and $\Gamma > 3$ (e.g. by an implicit time discretization). 2.) Next one shows an improved integrability of ρ , i.e,

$$\|\rho\|_{L^{\infty}(0,T;L^{\gamma+\varepsilon})} \leq C$$
 uniformly in $\delta > 0$.

by testing with $B[
ho^{arepsilon}-rac{1}{|\Omega|}
ho^{arepsilon}]$ and using

$$-\operatorname{div}\left(\nabla c \otimes \nabla c - \frac{|\nabla c|^2}{2}\right) = -\Delta c \nabla c = \rho \mu \nabla c - \frac{\partial f}{\partial c}(\rho, c) \nabla c$$

Helmut Abels (MPI Leipzig)

Sketch of the Proof (II)

3.) Compactness of $\nabla c \equiv \nabla c_{\delta}$: Using

$$ho_{\delta}\mu_{\delta}=
ho_{\delta}rac{\partial f}{\partial c}(
ho_{\delta},c_{\delta})-\Delta c_{\delta}$$

and $c_{\delta} \rightarrow_{\delta \rightarrow 0} c$ on $\{ \rho > 0 \}$ a.e., one shows

$$\int_0^T \int_\Omega |\nabla c_\delta|^2 \, dx \, dt \to_{\delta \to 0} \int_0^T \int_\Omega |\nabla c|^2 \, dx \, dt$$

Sketch of the Proof (II)

3.) Compactness of $\nabla c \equiv \nabla c_{\delta}$: Using

$$\rho_{\delta}\mu_{\delta} = \rho_{\delta} \frac{\partial f}{\partial c}(\rho_{\delta}, c_{\delta}) - \Delta c_{\delta}$$

and $c_{\delta} \rightarrow_{\delta \rightarrow 0} c$ on $\{ \rho > 0 \}$ a.e., one shows

$$\int_0^T \int_\Omega |\nabla c_\delta|^2 \, dx \, dt \to_{\delta \to 0} \int_0^T \int_\Omega |\nabla c|^2 \, dx \, dt$$

4.) Convergence of ρ_{δ} a.e.:

Based on weak continuity of the effective viscous flux:

$$\overline{b(\rho)p} - (\frac{4}{3}\nu(c) + \eta(c))\overline{b(\rho)\operatorname{div} u} = \overline{b(\rho)} \cdot \overline{p} - (\frac{4}{3}\nu(c) + \eta(c))\overline{b(\rho)} \cdot \overline{\operatorname{div} u},$$

where $\overline{f} = w - \lim_{\delta \to 0} f_{\delta}$ and renormalized solutions for the transport equation, cf. Feireisl '03.

Helmut Abels (MPI Leipzig)

Diffuse Interface Model for Incompressible Fluids – Matched Densities

2 Diffuse Interface Model for Compressible Fluids

3 Diffuse Interface Model for Incompressible Fluids – General Densities

Open Questions

Quasi-Incompressible Model (Lowengrub & Truskinovsky)

Generalization for $\rho = \rho(c) \not\equiv const.$:

$$\rho \partial_t v + \rho v \cdot \nabla v - \operatorname{div}(\nu(c)Dv) + \nabla p = -\operatorname{div}\left(\nabla c \otimes \nabla c - \frac{|\nabla c|^2}{2}\mathbb{I}\right)$$
(9)

$$\partial_t \rho + \operatorname{div}(\rho v) = 0 \tag{10}$$

$$\rho \partial_t c + \rho \mathbf{v} \cdot \nabla c = \mathbf{m} \Delta \mu \tag{11}$$

$$\rho\mu = -\rho^{-1}\frac{\partial\rho}{\partial c}\mathbf{p} + \rho f'(c) - \Delta c \tag{12}$$

Difficulties:

- div $v \neq 0$
- g possesses low regularity.
- Singular free energies cannot be used.
- How to define $\rho(c)$ for $c \notin [-1,1]$? (E.g. $\frac{1}{\rho(c)} = \frac{1-c}{\rho_1} + \frac{c}{\rho_2}$)

Quasi-Incompressible Model (Lowengrub & Truskinovsky)

Generalization for $\rho = \rho(c) \not\equiv const.$:

$$\rho \partial_t \mathbf{v} + \rho \mathbf{v} \cdot \nabla \mathbf{v} - \operatorname{div}(\nu(c)D\mathbf{v}) + \nabla p = -\operatorname{div}\left(\nabla c \otimes \nabla c - \frac{|\nabla c|^2}{2}\mathbb{I}\right)$$
(9)

$$\partial_t \rho + \operatorname{div}(\rho v) = 0 \tag{10}$$

$$\rho \partial_t c + \rho \mathbf{v} \cdot \nabla c = \mathbf{m} \Delta \mu \tag{11}$$

$$\rho\mu = -\rho^{-1} \frac{\partial \rho}{\partial c} \mathbf{p} + \rho f'(c) - \Delta c$$
(12)

Difficulties:

- div $v \neq 0$
- g possesses low regularity.
- Singular free energies cannot be used.
- How to define $\rho(c)$ for $c \notin [-1,1]$? (E.g. $\frac{1}{\rho(c)} = \frac{1-c}{\rho_1} + \frac{c}{\rho_2}$)

A. '07/'08: Existence of weak solutions for modified free energy/system

$$E_{mix}(c) = rac{1}{q} \int_{\Omega} |\nabla c|^q dx + \int_{\Omega} \rho f(c(x)) dx \quad \text{with } q > d!$$

Helmut Abels (MPI Leipzig)

Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \rho^{-1} \operatorname{div}(\nu(c)D\mathbf{v}) + \nabla g = \mu \nabla c$$

 $\rho \mu = -\frac{\partial \rho}{\partial c}g - \Delta c + \rho f'(c)$

Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \rho^{-1} \operatorname{div}(\nu(c)D\mathbf{v}) + \nabla g = \mu \nabla c$$

 $\rho \mu = -\frac{\partial \rho}{\partial c}g - \Delta c + \rho f'(c)$

Key point: Use that

$$g_0=g_1-\partial_t G(v),$$

where

$$\Delta G(v(t)) = \operatorname{div} v(t), \qquad \partial_n G(v(t))|_{\partial\Omega} = n \cdot v(t)|_{\partial\Omega}.$$

Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \rho^{-1} \operatorname{div}(\nu(c)D\mathbf{v}) + \nabla g = \mu \nabla c$$

 $\rho \mu = -\frac{\partial \rho}{\partial c}g - \Delta c + \rho f'(c)$

Key point: Use that

$$g_0=g_1-\partial_t G(v),$$

where

$$\Delta G(v(t)) = \operatorname{div} v(t), \qquad \partial_n G(v(t))|_{\partial\Omega} = n \cdot v(t)|_{\partial\Omega}.$$

Then $v(t) = P_\sigma v(t) + \nabla G(v(t))$ and
 $\partial_t P_\sigma v + v \cdot \nabla v - \rho^{-1} \operatorname{div}(v(c)Dv) + \nabla g_1 = \mu_0 \nabla c.$
 $\Rightarrow \Delta g_1 = -\operatorname{div} \operatorname{div} \underbrace{\left(v \otimes v - \frac{|v|^2}{2}I\right)}_{\in L^2(0,\infty;L^r)} + \dots$

and therefore $g_1 \in L^2(0,\infty;L^r(\Omega))$, $r \in (1, \frac{d}{d-1})$, due to Navier-BCs.

Diffuse Interface Model for Incompressible Fluids – Matched Densities

2 Diffuse Interface Model for Compressible Fluids

3 Diffuse Interface Model for Incompressible Fluids – General Densities

Open Questions

- More detailed analysis of the asymptotics as t → ∞.
 What are the stable stationary solutions?
 Do similar effects occur as for the Cahn-Hilliard system?
- Incompressible fluids with different densities: Short-time existence of strong solutions. – Numerical properties? Alternative models? – Low Mach-number limit of the compressible model?
- Sharp Interface Limes Question: What is the limit system as ε → 0?
 If m = m(ε) →_{ε→0} 0: Do solution converge to the classical model for a two-phase flow?

Problem: Existence of weak solution for the limit system is open. If $m = m(\varepsilon) \rightarrow_{\varepsilon \rightarrow 0} m_0 > 0$: Do solutions converge to a Navier-Stokes/Mullins-Sekerka-System?

So far: Convergence as $\varepsilon \to 0$ to varifold solutions similarly to X. Chen'95.

Existence of weak solution is known in this case, cf. A. & Röger '08.