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Basic Modeling Assumptions

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.
Surface energy is proportional to the area.
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Basic Modeling Assumptions

We consider two (macroscopically) immiscible incompressible, viscous
fluids like oil and water.

Classical Models: Interface is a two-dimensional surface.
Surface tension is proportional to the mean curvature.
Surface energy is proportional to the area.

But: Sharp Interface is an idealization (van der Waals).

Fluid mix in a thin interfacial region.
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Free Energy of a Two-Component Mixture

Ansatz: We assume the fluids to be (partly) miscible.

Let ¢cj: 2 — R be the concentration of the component j = 1,2,
c =11 — G, and let

Em,-x(c):Z/Q|vC(x)|2dx+e—1/Qf(c(x))dx

be the free energy of the mixture, where Q C RY,
d=1,2,3,¢>0and

Example:

f: R — [0,00) with f(c) =0« ¢ = +£1. fo)= 1 - @y
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Free Energy of a Two-Component Mixture

Ansatz: We assume the fluids to be (partly) miscible.

Let ¢cj: 2 — R be the concentration of the component j = 1,2,
c =11 — G, and let

Em,-x(c):Z/Q|vC(x)|2dx+e—1/Qf(c(x))dx

be the free energy of the mixture, where Q C RY,
d=1,2,3,¢>0and

Example:

f: R — [0,00) with f(c) =0« ¢ = +£1. fo)= 1 - @y

Moreover, we assume

|§12|/Qc(x)dx:c€(—1,1) if |0 < oc.
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@ A "typical” profile of a diffuse interface is

X
= tanh — eR
c(x) = tan e X , /

which minimizes Ep,j. in the case Q = R with constraint
c(x) —xmioo £1if £(c) = F(1 = c?)%
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@ A "typical” profile of a diffuse interface is

which minimizes Ep,j. in the case Q = R with constraint
c(x) —xmioo £1if £(c) = F(1 = c?)%

@ Modica-Mortola '77, Modica '87 proved

X
= tanh — eR
c(x) = tan e x € R,

Epmix = mix,e —7e—0 oP
in the sense of M-convergence (w.r.t. L), where
TTLO*E) ifv=2xg—1
p(v):{H (0°E) if v="2xe
+o0 else.

and o = o(f).

Helmut Abels (MPI Leipzig)

Two-Phase Flows

February 4, 2009 6 /22



Modeling of a Two-Phase Flow

Ansatz: Use the free energy

Emix(c) = ;Z/Q\VC(X)|2dx+s—1/Qf(c(x))dx

to describe the energy of the mixture.
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Modeling of a Two-Phase Flow

Ansatz: Use the free energy

Emix(c) = ;Z/Q\VC(X)|2dx+s—1/Qf(c(x))dx

to describe the energy of the mixture.
Diffusion: Take diffusion of mass particles into account

Oic+v-Ve=divJ (continuity equation)
J=mVyp (generalized Fick's law)
5Emix

W= = —eAc+e1f(c) (chemical potential)

dc
where v is the mean velocity of the mixture and m > 0.

Classical models: Pure transport of the interface (m=0).

Em

Remark: pu = Emix = copst. < J =0
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Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

Otv + v - Vv —div(r(c)Dv) + Vp = —ediv(Ve ® V) (1)
surface tension

divv =0 (2)

orc+v-Ve=mAp (3)

p=—eAc+e'(c) (4)

where Dv = %(Vv +VvT) and v(c) > 1 > 0.
Derivation: Hohenberg & Halperin '74, Gurtin et al. '96

Moreover, let Q € RY be a bounded domain with smooth boundary and

v[on =0 (5)
Oncloa = Onpiloa =0 (6)
(v, €)[e=0 = (vo, co) (7)

Helmut Abels (MPI Leipzig) Two-Phase Flows February 4, 2009 8 /22



Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

Orv + v - Vv —div(r(c)Dv) + Vp = —ediv(Ve @ V) (1)
surface tension

divv =0 (2)

otc+v-Ve=mAu (3)

p=—eAc+e'(c) (4)

where Dv = (Vv + VvT) and v(c) > 1y > 0.
Energy dissipation: Every smooth solutions satisfies

%E(c(t),v(t)) _ —/Qz/(c)|Dv|2dx—/ mVul? dx with

Q
E(c(t).v(t) = Emslc(t)) + /Q 'V(zt)’dx
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Diffuse Interface Model in the Case of Matched Densities

If the densities of the fluids are the same, then one can derive:

Otv + v - Vv —div(v(c)Dv) + Vp = —ediv(Ve ® V) (1)
surfac;rtension

divv=0 (2)

Oic+v-Vec=mAp (3)

p=—cAc+e'(c) (4)

where Dv = (Vv + VvT) and v(c) > 1 > 0.
Remark: (1) can be replaced by:

Orv + v - Vv —div(v(c)Dv) + Vg = uVe

where g = p+e71f(c) + 5|Vc|?. - Use (4) multiplied with V¢, which
yields
[Vel?

—ediv(Ve® Vc) = —eAcVe — eV >

Note: (1)-(4) is not too strongly coupled!
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Main Results for Matched Densities

Theorem (Existence, Regularity, Uniqueness, A. (ARMA '08))

Let d = 2,3. For every vy € L2(Q), co € H}(Q) with Epix(co) < oo there
is a weak solution (v, c, ) of (1)-(4), which satisfies

(v,Vc) € L(0,00; L2(Q)), (Vv,Vu) e L3(0,00; L3(Q)),
V¢, f'(c) € L2 ([0, 0); L5(Q)).

loc

For (vo, co) sufficiently smooth:
© I/f d = 2, then the weak solution is unique and regular.

@ I/f d = 3, there are some 0 < Ty < T; < oo such that the weak
solution is regular and (locally) unique on (0, To) and [Ty, 00).

Remark: Here f(c) can be chosen as e.g.

Flc) = {9((1 —¢)log(l —c)+ (1 +c)log(l+c))c — Occ?, if c € [-1,1],
400 else.
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Structure of the Proof

First study the separate systems:

© Cahn-Hilliard equation with convection and singular potential
(based on Epix(c) = Eop(c) — g||c||% with Egp convex)

@ (Navier-)Stokes system with variable viscosity
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Structure of the Proof

First study the separate systems:
© Cahn-Hilliard equation with convection and singular potential
(based on Epix(c) = Eop(c) — g||c||§ with Egp convex)
@ (Navier-)Stokes system with variable viscosity
Existence of weak solutions:
Approximation and compactness argument
Higher Regularity: Use regularity results for separate systems
Uniqueness: Gronwall's inequality once (v, c) are sufficiently regular.

Crucial ingredient for higher regularity:
A priori estimate for ¢ € BUC([0, o0); W2(R)), g > d!
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Regularity of ¢

W?2-estimate of c¢: Multiplying
p(t) = —Ac(t) + f(c(t))

with '(c(t)) yields

/ Fc(t)?dx + / F/(c()) [Ve() dx < Cllu(t)]2.
Q Q S——

Zfec
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Regularity of ¢

W?2-estimate of c¢: Multiplying

p(t) = —Ac(t) + f(c(t))

with '(c(t)) yields

/ Fc(t)?dx + / F/(c()) [Ve() dx < Cllu(t)]2.
Q Q S——

c

= (@l + [V2e®l2 < & (lut)ll2 + [Ve(t)ll2).-

Helmut Abels (MPI Leipzig) Two-Phase Flows February 4, 2009 11 /22



Regularity of ¢

W?2-estimate of c¢: Multiplying
p(t) = —Ac(t) + f(c(t))
with '(c(t)) yields

/ Fc(t)?dx + /Q F/(c(t)) [Ve(t) dx < Cllu(r)]2.

c

= (el + IV2e(®)l2 < G (lu(t)]l2 + [Ve(t)]2).
Similarly one derives for 2 < r < oo
' (@)l + IV2e(®)]lr < G (Il + IV e(B)]2) -

= cc L7 ([0,00); W2(Q)) ifd=3.

Modifications: Higher regularity in time in Besov spaces.
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Overview

@ Diffuse Interface Model for Compressible Fluids
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A Compressible Model by Lowengrub and Truskinovsky '98

We consider

2
pOv + pv - Vv —divS + Vp(p, c) = —div <Vc ® Ve — |V2C| H)

Otp + div(pv) =0
potc + pv-Ve=mAp
;
pH = pgc(p, c)—Ac

where

of .
p(p,c) = ngp(p,C), S = v(c)Dv +n(c)div v
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A Compressible Model by Lowengrub and Truskinovsky '98

We consider

pOv + pv - Vv —divS + Vp(p, c) = —div <VC®VC— >

Otp + div(pv) =0
potc + pv-Ve=mAp
;
pH = pgc(p, c)—Ac

where
5 Of

p(p,c) = p 8—p(p, c), S =v(c)Dv +n(c)divv
The free energy of the system is

1
Eree(prc) = [ pflp.c) e+ 5 [ Vel dx
Q Q

Note: There is no factor p in front of |Vc|?!

[Vel?
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Choice of the Free Energy Density

We choose
f(p.c) = fe(p) + fmix(p; ),
fmix(p, €)= H(c)log(p) + G(c),
where H € CL(R), |G'(c)| < C(1+]c|) and
ap’ —a < fp) < C(1+p")
where v > %
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Choice of the Free Energy Density

We choose

flp.c) = felp) + fmix(p, ©),
fmix(p, €)= H(c)log(p) + G(c),
where H € CL(R), |G'(c)| < C(1+]c|) and
ap’ —a < fp) < C(1+p")
where v > % This leads to

p(p,c) = pzafgp[; ) — pe(p) + pH(c),
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Choice of the Free Energy Density

We choose
flp.c) = felp) + fmix(p, ©),
fmix(p, €)= H(c)log(p) + G(c),
where H € CL(R), |G'(c)| < C(1+]c|) and
ap’ —a < fp) < C(1+p")
where v > % This leads to

of(p, c
p(p,c) = p? 59 ) pe(p) + pH(c),
I
Remark: The choice is motivated by

1-c¢ l1-c¢ 1+c¢ 1+c¢
phaix(p,c) = a1p——1In (p 5 >+oc2p o In <p >—ﬁpc2

2
= plogpH(c)+ pG(c)
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Main Results for Compressible Fluids

Theorem (Existence of Weak Solutions, A. & Feireisl (Indiana '08))

Let Q C R3 be bounded with 9Q € C?, 0 < T < co. For every
po € L7(Q), vo such that po|v|?> € L1(Q), co € HL(Q) there is a weak
solution (p, v, ¢, ) of (5)-(8), which satisfies
p € L0, T; L7(Q)) N L"(Q x (0, T)),
Ve e L0, T; [3(Q)),
(Vv,Vu) € L2(0, T; [*(Q))

for some € > 0.
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Sketch of the Proof (I)

1.) First one solves a system with artificial pressure:

2
pOev 4 pv - Vv — divS 4+ V(p(p, c) + 6p") = — div <VC wVe- |V2C| H)

Otp +div(pv) =0
potc + pv-Ve=mAp

of
pr=py(pc) = Ac

where § > 0 and ' > 3 (e.g. by an implicit time discretization).
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Sketch of the Proof (I)

1.) First one solves a system with artificial pressure:

2
pOev 4 pv - Vv — divS 4+ V(p(p, c) + 6p") = — div <VC wVe- |V2C| H)

Otp +div(pv) =0
potc + pv-Ve=mAp
f
pp = pgc(p, c) — Ac

where § > 0 and ' > 3 (e.g. by an implicit time discretization).
2.) Next one shows an improved integrability of p, i.e,

||P||Loo(o,T;m+e) <C uniformly in § > 0.

by testing with B[p® — ﬁp’f] and using

of
7(p7 C)VC

2
—div (VC@ Ve — |V2C| ) = —AcVc=puVc — 3
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Sketch of the Proof (I1)

3.) Compactness of Ve = V¢s: Using

f
P55 = Pagc(/)a, cs) — Acs

and ¢; —s_.0 con {p >0} a.e., one shows

T T
/ /]VC5|2dxdt HM,/ /|v¢y2 dx dt
0 Q 0 Q
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Sketch of the Proof (I1)

3.) Compactness of Ve = V¢s: Using

f
PsHs = Pcsgc(/)a, cs) — Acs

and ¢; —s_.0 con {p >0} a.e., one shows

T T
/ /]VC5|2dxdt HM,/ /|va2 dx dt
0 Q 0 Q

4.) Convergence of ps a.e..
Based on weak continuity of the effective viscous flux:

B(p)p — (54) + n(c)b() dvu = B(7) - P~ (30(€) + n(c))B(7) - v

where f = w — lims_.o f; and renormalized solutions for the transport
equation, cf. Feireis| '03.
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Overview

© Diffuse Interface Model for Incompressible Fluids — General Densities
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Quasi-Incompressible Model (Lowengrub & Truskinovsky)

Generalization for p = p(c) # const.:

2

pOtv + pv - Vv —div(v(c)Dv) + Vp = —div (Vc ® Ve — \V2c| ]I) (9)
Op + div(pv) =0 (10)
poic + pv-Ve=mApu (11)

op
p = —p 18 p+ pf'(c) — Ac (12)

Difficulties:
o divv #0

@ g possesses low regularity.
@ Singular free energies cannot be used.
e How to define p(c) for c ¢ [-1,1]? (E.g. p(% =1c4 )
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Quasi-Incompressible Model (Lowengrub & Truskinovsky)

Generalization for p = p(c) # const.:

2

pOtv + pv - Vv —div(v(c)Dv) + Vp = —div (Vc ® Ve — \V2c| ]I) (9)
Op + div(pv) =0 (10)
poic + pv-Ve=mApu (11)

op
p = —p 18 p+ pf'(c) — Ac (12)

Difficulties:
o divv #0

@ g possesses low regularity.

@ Singular free energies cannot be used.

@ How to define p(c) for ¢ ¢ [-1,1]? (E.g. ﬁ = 1;1"' + é)
A.'07/'08: Existence of weak solutions for modified free energy/system

1
Emix(c) = / |VC|qu+/pf(c(X)) dx  with g > d!
q.Ja Q
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Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to
v+ v - Vv — ptdiv(v(c)Dv) + Vg = uVe

pp = —gig — Ac + pf'(c)
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Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to

v+ v - Vv — ptdiv(v(c)Dv) + Vg = uVe

pH = —ggg — Ac+ pf'(c)
Key point: Use that
8 = g1 — 9:G(v),
where

AG(V(t’)) = div V(t), 8nG(V(t))‘8Q =n- V(t’)’ag.

Helmut Abels (MPI Leipzig) Two-Phase Flows February 4, 2009 20 / 22



Decomposition of the Pressure and Velocity

Reformulation: (9),(12) are equivalent to
v+ v - Vv — ptdiv(v(c)Dv) + Vg = uVe

pp = —ggg — Ac + pf'(c)

Key point: Use that
g0 = g1 — 0:G(v),
where
AG(V(t’)) = div V(t), anG(V(t‘))|3Q =n- V(t’)’ag.
Then v(t) = Pyv(t) + VG(v(t)) and
OtP,v + v - Vv — p~tdiv(v(c)Dv) 4+ Vg1 = poVe.

2
= Agy = —divdiv <v® v — |V2|I> +...

€12(0,00;L")

and therefore g1 € L2(0, 00; L"(Q)), r € (1, ﬁ), due to Navier-BCs.

~/
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Overview

@ Open Questions
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Open Questions

@ More detailed analysis of the asymptotics as t — 0.
What are the stable stationary solutions?
Do similar effects occur as for the Cahn-Hilliard system?

@ Incompressible fluids with different densities:
Short-time existence of strong solutions. — Numerical properties?
Alternative models? — Low Mach-number limit of the compressible
model?

@ Sharp Interface Limes Question: What is the limit system as ¢ — 07
If m= m(e) —._00: Do solution converge to the classical model for
a two-phase flow?
Problem: Existence of weak solution for the limit system is open.
If m= m(e) —._0 mp > 0: Do solutions converge to a
Navier-Stokes/Mullins-Sekerka-System?
So far: Convergence as € — 0 to varifold solutions similarly to
X. Chen'95.
Existence of weak solution is known in this case, cf. A. & Roger '08.
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