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Numerical Approximation of a two-fluid
two-pressure diphasic model

C. Chalons
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We are interested in the computation of two-phase flasg)g a two-fluid
approach.

Generally speakingwo-fluid models have several drawbacks :
@ they are generally non conservative
@ they may not be hyperbolic in a large class of conditions
@ they may not satify the maximum principle property on thedvoactiona

Today, we will focus on the first point only.



The governing equations are the following :

6@1 + U ﬁxal =0

Ora1p1 + Oxa1p1Uy = 0

Bi(arprtn) + Ox(@1p1U2 + a1pi(p1)) — pidxas = 0
Orazp2 + OxarapoUy = 0

Bi(azp2lz) + Ox(azp2Us + a2P2(p2)) + Pioxay = 0

Note first that this model ibarotropic and focuses ononvective défects only.

It is unconditionally hyperbolic (not strictly) with real eigenvalues given by

Ao = Uy,
A1 = Uy —Cy, A2 = Ug +Cy,
A3=Uy—Cy, Ag=Ur+C



The last four characteristic fields are GNL.

The first characteristic field is LD under the condition

U=Ww, p=p (or u=u, p=p)

To summarize, the model is
@ non conservative
@ hyperbolic
@ associated with a pure transport of the void fractign

The literature is large on this subject : see for instance the works by Gallouét,
Hérard and Seguin, Ransom and Hicks, Baer and Nunziato|d<il, Gavrilyuk
and Saurel, Saurel and Abgrall, ...



The Riemann problem is dfificult to solve for this model because of
@ the large number of waves
@ the non linear pressure terms
@ the non conservative products

Uk — Ck u- , Uy

/ Ui + C

up / UR

X

Fic.: General structure of a Riemann problem

Except of course ifya; = 0 since we get two classical barotropic Euler systems in
this case...
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Introducing the condensed form
Ou + Oxf(U) + c(u)dyu =0, t >0, XeR,
the general idea is to proposéaager but simplerelaxation model with source term
OV + 0x9(V) + d(V)dgv = AR(V), t >0, xeR.
This system is expected to be such that

lim v! = u.

A—c0

Here, simpler means that the Riemann problem of the coneegtirt is easier to
solve.



A RELAXATION APPROACH (JOINT wiTH A. AVBROSO, T. GALIE AND F. CoqUEL)

As a consequence, the numerical strategy for solving thitilegum system
Ou + Oxf(U) + c(u)dyu =0, t >0, XER,

is based on aplitting strategyon the relaxation model :

@ First step : solve by a Godunov scheme the convective part
OV + xg(v) + d(v)av = 0
@ Second step solve in the regima — oo
OV = AR(V)
that is, impose on each cell the relation

R(V) =0
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How to designe the relaxation model
OV + 0xg(V) + d(V)dgv = AR(V), t >0, xeR.
such that

@ lim.Vvi=u
@ the model is larger but simpler to solve

Recall thathe Riemann problem is dificult to solvefor this model because of
@ the large number of waves
@ the non linear pressure terms
@ the non conservative products

Here, our relaxation process will concern the last two oantly.

AL ILLUSTRATIONS
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We first focus on the non linear pressure terms.

We propose the following relaxation system :

Orag + Updyary =0

Ora1p1 + Oxa1p1Uy = 0

Bi(1p1Us) + Ox(@1p1l + aqIly) — 110501 = O

Oraop2 + Oxazp2Up = 0

Oiar2palz) + Ox(@2p2U3 + azlly) + I10xan = 0

6ta1p11'[1 + 6x01p1H1U1 + alaiaxul - af(ul = U )Gxal = /iaqpl(pl - Hl),
Biazp2I1, + Oxaropolloly + 28205 Up — 85(Up — Uy)dxaz = dazpa(p2 — I12),

avecay > pkC, k=1,2. (the so-called Whitham conditions).

This isunconditionally hyperbolic (not strictly) with real eigenvalues given by

/16 = Uy,
/lg_ =U — 471, Arz =U + 473,
/7.r3 = Uy — a7y, /151 = U + Q7>.

All the fields are LD.

1026
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We then focus on the non conservative products.

We propose the followingnodifiedrelaxation system :

oy + U0y = 0

Ora1p1 + Oxa1p1Uy = 0

d(1p1tr) + x(@1p1l + aallh) = Tl dxa16x-uyt

Or2p2 + Oxazp2Uy = 0

Ou(@2p2Uz) + dx(2p2t5 + @2llp) = ~T11dx@10x-uyt

Ba1o1I1y + OxaprITiUy + @1@305Uy — 83(Uy — Uy)dxay = daapa(pr — M),
6@2,021'[2 + 6><C¥2p2H2U2 + Ckza%axUZ - ag(uz - U|)6XC¥2 = /lazpz(pz - Hz),

avecay > pkC, k=1,2. (the so-called Whitham conditions).

The Riemann problem is now explicitly solved.

1126
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How do we guessl, dxa; ?

We chose to be exact on contact discontinuity solutionshfereuilibrium system

t
(¢451N 1R
Ui uir
UaL Uor
X
t, (Midxa1)s t, (ILoxa1):
’ ’
7 7’
7 ’
7/
II ,,
’ ’
’ 7
iy 1R X gL 1R X
ua Uir Ui Uir
Uo Uzr UoL Uzr

We need to chose one of the two estimaixswe ?

1226
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This way, we did construct a Relaxation system such that

@ the Riemann solution isxplicitly known
@ the Riemann solution isxactfor isolated contact discontinuities

@ the corresponding numerical methodstable and conservatifer the mass of
each fluid and for the total momentum

1326
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Here, the key poinis to remind that the model consiststino classical Euler systems
for both phases whefia; = 0.

8tdl + U axal =0

Ora1p1 + Oxaip1Uy = 0

Br(arp1ty) + Ox(arp1ls + a1pi(pr)) — Pioxar = 0
Oraop2 + OxaropoUp = 0

Br(a2p2p) + Ox(azpas + a2Pa(p2)) + Pioxar = 0

Our objective is then to design a numerical scheme which
@ is based on our « favorite » scheme for the usual Euler equsatio
@ provides in additiorsharp contact discontinuities
@ obeys stability properties

Our strategy is based onGhost-Fluid approach coupled with @limm random
sampling strategy.

XATION APPROACH (JOINT wiTH A. AMBROSO, T. GaLIE AND F. COQUEL) A « SHARP INTERFACE » APPROACH WITH RANDOM SAMPLING (STILL IN PROGRESS) NUMERICAL ILLUSTRATIONS
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Let us assumwithout restrictiorthata; is a step function :

a4
a1-
a1 = A1+ a1 = -
| I I I I |
r T T T T 1

16/26
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According to the Ghost-Fluid approgahe first split the actual mesh in two
ai-constant meshes

a1 = a1+ a1 = -
Mesh+ s.t. a; = a1, [ | | i i !
Us Uz Ucs | U Up o Upe
U
Mesh+ s.t. a3 =g, ‘ ‘ ‘ —t—t+—
Uj_3 Uj_2 Uj—1 U; Uji1 Uj+2
Mesh— s.t. a3 = a1- Pt 1 1 1
U-3 U-2 U- Uj U+1 U2

We define the reconstructed states suchuhandd; are joined by an admissible
contact discontinuity

17/26



A RELAXATION APPROACH (JOINT witi A, AVBROSO, T. GALIE AND F. CoQUEL) A « SHARP INTERFACE » APPROACH WITH RANDOM SAMPLING (STILL IN PROGRESS) NUMERICAL ILLUSTRATIONS

Using a Glimm schemave then solve numerical§ia; + Upj1/20xa1 = 0

Uzj-1/2
a1 = A1+ a1 = -

Mesh+ } f f f f %
Uss Uz U | U U U

Being given an equidistributed random sequence, € (0, 1), it amounts to set :

H At
n+l _ { ay If ey <Upjapg
L =

a ] t
3 . if @y > Upjapfy

Note thate; remains sharp
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With our « favorite » scheme, we numerically solve two clealsEuler equations

a1 = Q14
Mesh+ f } } —+— — {
Uj-3 Uj—2 Uj—1 U; Uj1 Uj+2
a1 = -
Mesh— — — — } } {
U-3 U-2 U= uj U1 U2

and we choose on each cgbetween the two meshes according to the vadu%‘(l.

We immediately get the positivity properties of our « fatest scheme.
Note that the global scheme is not strictly conservative.

For a similar approach in the context of van der Waals fluids, ve refer to a work
by C. Rohde and C. Merkle which inspired this work (note the presence of a
level-set function instead of a random sampling)
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MOVING CONTACT DISCONTINUITY
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Fic.: a1 andup
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SHOCK TUBE PROBLEM (1D)

Rusanov 500 porns
Relaxatan 200 painis
‘Sharp inieriace 200 poits

Rusanov 200 pornts
Relaxatan 200 painis
Sharp inieriace 200 poits

Srarp nterface 200 b

FiG.: a1, Uz andpz

NUMERICAL ILLUSTRATIONS
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SHOCK TUBE PROBLEM (2D) - 1a
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SHOCK TUBE PROBLEM (2D) - 18

Rusanov 200208 ports
1 Inertace 200200 paints

Rusanov 200 pornts
Relaxatan 200 painis
Sharp inieriace 200 poits

o o
0 s 10 1 20 > 20 0 2 0 & s 1 12 1 1. 1w 2
145 145
Rusanou 200@00borts  + Trusanov 500 porns'
Sharp Inietace 200200 points X Relacaton 200 points
14 —.——.—.—% 14 Sharp inetace 200 poits |+
13 k3 13
%
13 % 13
%
125 % 125
%
12 12
115 x 115
*
11 ¥ 11
108 £ 108
H
) | — )
05 05
o s 0 15 2 3 E) o 2 4 © ®

Fig.: up andp2
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RANSOM FAUCET TEST CASE

Analytical

10000 cells

Sharp nterface 1000 poj

B
u
B
.
M
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FiG.: up
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This work was motivated by doint Research Group LIJLL-CEA Saclag
multiphase flows and coupling of multiscale models, to whighfollowing persons
take part :

LJLL : C. Chalons, F. Coquel, E. Godlewski, F. Lagoutiere, N. 8ed-A. Raviart,
CEA Saclay. A. Ambroso (now Areva), B. Boutin, T. Galié (now in a service
company),

+ some-time participation from EDFJ.-M. Hérard, O. Hurisse.

Advertising :
NTMC’09 (New Trends in Model Coupling)

workshop on coupling problems of multiscale phenomenadteabf increasing
interest in Applied Mathematics...
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