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Model Problem

Surface Conserved Quantity

Given: evolving curve {T'(%) }+
and material velocity field v(t) : I'(t) — R

Consider a surface conserved quantity c(t) : I'(t) — R:

%(/GC):_/anC.,,, [+...] vacr

Strong equation with flux g, = —D_.Vrc:

oc+v-Ve+eVr-v— D.Arc=0.

at'c
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Model Problem

Weak Problem

Assume that there is a smooth parametrisation
v :[0,T) x (0,27w) — {I'(%) }+co,1), (t,8) — (¢, s)

with
g(t,s) :=10sv(t,s)] > Cy >0

Weak formulation (in parameter space):

T 27 1
0= / / (8tc Xg — cOsx T+ (v — 0¢y) + ex T - Osty + Osc OsX —)dsdt.
0 0 g

Here, 7 := O0sv/g. and gds length element.
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Diffuse Interface Approach

Diffuse Interface Extension, Notion

I'. layer with thickness of order O(¢).

v suitably extended to v..

Goal: Formulate an appropriate problem for a bulk quantity ¢ : I'r — R
such that the problem on {I'(t)}; is obtained as € — O.
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Diffuse Interface Approach

Profile Function

Idea: approximate surface delta 'function’ dr P
by a smooth cross profile p. : [0, T) x R* — R:

1
Zpe — dr as measure,

. = {p:(t) > 0}.

50

T, (1)

To derive the equation for c.: G =T NR, G. = I'. N R with test volume R C R?

%(fac) = — Jocqe - 1
T

ase — 0 T

- ( f(;g pgcg) = - faGg Pedce " VGe
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Diffuse Interface Approach

Equation on the Diffuse Interface

With the flux g.. = —D.Ve.

d
O:_(/ psce)‘l‘/ Ped. . VG =
dt \ Ja. G ’

/ (at(pscs) + V- ('Uspscs> — Dcv ’ (psvcs)) + / PeCe(’UaGg — 'Us) VG-
Ge 0Ge

Proposal:
87 (pece) + pece V - v. — DV - (p:Vee) = 0.

In applications we expect that vgg. — v. is small but % O in general.

Since p. vanishes on OI';:
d
— c.) =0
3i( [ o)

Degeneration of p. keeps the mass on the interfacial layer.
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Analysis

Assumptions

Assumptions:

e Extension of the parametrisation is possible, with z € (—1,1)

Ye(t,8,2) = v(t, s) +ezg(t, s, z,e)v(t, s).

VO
~1

e There is a function py : (—1,1) — R such that
||p5(t, S, Z) - pO(Z)Hoo — 0, Cipo < pe < Capo, |8tps|a |8ttp€| < Cpog
e The extension of the velocity field fulfils

|’U5(t, S, Z) o ’U(t, S)|7 |8t'vs(t7 S, Z) o 8tv(t7 S)' S Ce.
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Analysis

Weak Formulation

Weak formulation in parameter space:

T p21 pl
0= / / / 00 (a,g(’?tch + (a]0sce — b30,cc)(a]0sx — b30:X)
o Jo ~1

1
+ bgch + bicgﬁsx + b;cgﬁzx + —2a;820882)() dzdsdt
€

The coefficients are bounded provided € is small enough.

The b’ belong to lower order terms, e.g.

(q + 20.9) pe
— T
Po

by = (Ve — O0y) — —T - (v — O¢y) as e — 0.

The a; bounded from below by positive constants, e.g.

e Pede
° po(q + 20.q)

a — g ase — 0.
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Analysis

Existence and Uniqueness

T 27 1
0 = / / / 00 (agﬁtch + (a0scc — b30.¢.)(a]0sx — b30.X)
o Jo 1

1
+ bgch + bicgasx + b;cé-azx + —Qag({?zcg@zx) dzdsdt
€

Th.: There is a unique weak solution c. in L*(0,T; X) N H*(0, T; B) where
27 1
B={r:02mx (-1 ~R| [ [ polffdzds < oo},
0 J-1

X = {f S B‘ /O27T /_11 po(|8sf|2 -+ |8zf|2)dzd8 < OO}

Essential ingredient for the proof is that X < B is compact | Antoci, 2003 |.

Aachen February 2009



Analysis

Estimates

Test with c.:

2m 2m
owp [ [ pulecOP 4 0l iy + 10l 2y < € [ [ oolec()F

t€[0,T)
Test with Osc.:

2w 1 0 1 5
sup/O /_1(|asc€<t>| + 51000 + 10rez 20,1 < -

te[0,T)

For going to the limit follow the lines of
[ Hale, Raugel, 1992 ], [ Rodriguez, Viafio, 1998 |, [ Prizzi, Rinaldi, Rybakowski, 2002 ]
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Analysis

Convergence

Sharp interface:

T 27 1
0= / / (8tc Xg — cOsXx T (v —0¢y) +ex T Osty + OscOsX — )dsdt.
o Jo g

Diffuse interface:

T 27 1
0= / / / po(z) (&cexaﬁ + c.05x by + cox by + c-0.x b
0 0 —1

1
+ (a70scc — b30.cc)(a;0sx — b30:x) + —Qa‘;(’ﬂzcg@zx) dzdsdt.
5

Th.: Ase — 0, the solutions c. converge to a function ¢ in C°(0, T; B) with

e 0.c =0, hence c = c(t, s),
e cc L*0,T; H;GT(O, 2m)) N HY0,T; L? (0,27)),

per

® c solves the weak sharp interface problem.
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Numerical Approximation

Numerical Setup

Approximation in physical space (2.
Timestep 7, triangulation 7y, vertices {x; };.
Linear FE:
Sh = {77 € CO(Q) | 77|e linear on each e € Th}

Projection:

" C'(Q) = Sh, 7)) (@) = n(x;) Vi

Discrete interfacial layer:

N = {vertex 1 ‘ there is a connected vertex j with p.(t", x;) # O},

Iy = {e ST ’ vertices of e belong to ./\/';:}
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Numerical Approximation

Proposed Method

Weak formulation: find c such that for all x

0= / Ot(pc)x — pcv - Vx + D.pVe - V.
Q

n

Scheme: given ch_1 = Zie]\/n_l c"'xi compute ¢} = Zz‘e/\f;} ci'x; such that for all 7 € N}
h

1 n n n— n— n n n n n
0= ;(”h(p cixi) =" (" e Ixg) ) = (o e (0") - Vx4 Der (0") Vg - VX,
Tn
h

Q: solvable? mass conserved?

Other methods:
[ Schwartz, Adalsteinsson et. al., 2005 ], [ Ratz, Voigt, 2006, 2007 |
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Numerical Approximation

Solvability

Scheme:

1 h, n n h, n—1 n— h, n n h n h, n n
0= - (77 (p"chx;)—7" (" 'cp 1Xj>>—7T (p"c)m" (v")-Vx,;+D.r" (p")Vey - Vx;
F’I’L
h

Th.: If T < 4D./||v||, the scheme has a unique solution c}'.

Proof:

Linear system, number of equations = number of unknown

= uniqueness sufficient ~» set cz_l = 0.

Test with ¢ aiming to use nonnegativity of mass and stiffness matrix.

Control of advective term ~» restriction on timestep.

Mass matrix degenerate, have only that ¢; = 0 in interior vertices.

Stiffness matrix always with contribution = V¢, = 0. O
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Numerical Approximation

Mass Conservation

Scheme: for all j € N}!

1 mn— mn— n n n n n
0= F(”h(p chxg) =" (p" e 1Xj>)—77h(0 " (0™ - Vx;+ Do (p")Ver-Vx;
Fn

h

Assumption: If i € N;'~" does not belong to N’ then p"~'(z;) = 0.

h, n—=1 n—1
/ 7" (p" ch)—/lw(p c, ).
I ry

h h

Th.: With this assumption

Proof: Summing up over 5 € N} yields

EW( [ o @el = ENn( [ xos el

Thanks to both assumptions we can replace N}" by ./\/7:_1 on the right hand side.

Aachen
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Numerical Approximation

Stationary Surface

4t

The function ¢ = e *x125 is a solution to &;¢ — Arc = 0on " = St

p stretched cos® profile, argument is dist(zx, ") /.

For e fixed: quadratic in L°°(0, T, L*(T")), and linear in L*(0, T, H'(I")) as h — 0.

Ratio € /h fixed (> 3 grid points across the interface sufficient, here > 8):

€ h e[L>°, L] €0C, (100 12) e[L”, H'] €0C, (12 pl)
Vv2/10 | 27%° || 0.00141612 | — 0.01664609 | —

1/10 27>0 11 0.00073612 | 1.887884 0.01054201 | 1.318067
V2/20 | 272 || 0.00036690 | 2.009086 0.00692233 | 1.213642
1/20 29 10.00017812 | 2.085131 0.00436128 | 1.333009
Vv2/40 | 27°%° || 0.00008500 | 2.134493 0.00291098 | 1.166492

Comparable to [ Schwartz, Adalsteinsson et. al., 2005 |.

Rk.: Can also take tangential motion into account.
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Numerical Approximation

Interfacial Profile on Moving Surface

Influence of motion in normal direction:

0.35 I T T T T
without correction
— — — with streamline diffusion

0.25

0.2

015

0.05

0.9 1 1.1 1.2 1.3
radius
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Numerical Approximation

Boundary condition

Continuous problem: no boundary condition since p = 0 on 9I'(e, t).

Discrete in 1D, i boundary vertex, p;’ = p;".; = 0, p;" | > 0:

0 — _hp?_lcn—l B "’?—1,z‘9?—1cn n Pi 1
At 2 ! h

(C? — C?—l)

~> no homogeneous Neumann boundary condition.
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Numerical Approximation

Streamline Diffusion

Overcome by adding a streamline diffusion to scheme:
/nngZ - Ve, wy - Vx
r
h

e w := (v - v)v with unit normal v on T,

® g, nonnegative function of order h present close to the interface boundary.

Leads to an additional term of the form

9h(""2i—1)2
h

(C? — C?—l)

Solvability and mass conservation are not affected.
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Numerical Approximat

ion

Moving Surface

Transport of unit circle with constant velocity field v(x, t) = (2,0)7.

Same profile for ¢ as in stationary case solves O;c + v - Vc — Arc = 0.

Errors quantitatively comparable (with /without motion or with /without streamline diffusion).

Exemplary e[H

Aachen

1
tang

]: converging linearly for h — 0, for fixed € as well as when keeping & /h fixed.

h\e | vV2/10 | 1/10 Vv2/20 | 1/20
2-*Y 1 0.032217

2-%> 11 0.022567 | 0.022738

2->Y 1 0.016381 | 0.016446 | 0.016531

27> | 0.011504 | 0.011408 | 0.011426 | 0.011428
209 1 0.008672 | 0.008432 | 0.008398 | 0.008395
279> 11 0.006424 | 0.006003 | 0.005910 | 0.005895
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Numerical Approximation

Application Example

Two-phase flow modelled by

1. Navier-Stokes system with interfacial contribution to stress tensor
for two fluids of same mass density and viscosity,

2. advective degenerate Cahn-Hilliard equation with double-obstacle potential
for fluid-fluid interface.

[ Kay, Styles, Welford, 2007 ]

Initially: drop of fluid 1 in fluid 2, then external fluid exposed to shear flow.

Take an additional conserved surface quantity into account, initially homogeneously distributed.
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Application Example

Fluid drop in another fluid exposed to shear flow
with conserved surface quantity (later on surfactant),
solved with a double obstacle Cahn-Hilliard-Navier-Stokes system.

[ Lowengrub, Truskinowsky, 1998 |, [ Boyer, 2002 ], [ Kay, Welford, 2007 |

t = 0.01 t =0.20 t = 0.50.



Application Example

Fluid drop in another fluid exposed to shear flow
with conserved surface quantity (later on surfactant),
solved with a double obstacle Cahn-Hilliard-Navier-Stokes system.
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ALBERTA-FEM

An Adaptive Hierarchical Finite Element Toolbox
by ALfred Schmidt and KuniBERT Siebert.

Core parts of FE programs:
assembly and solution of the discretised problems.

Goals: provide data structures which allow an easy and efficient implementation of the problem-
dependent parts, in particular with respect to

e mesh modification (adaptive methods),

e solving linear and nonlinear systems of equations.

www.alberta-fem.de



Conclusion

Conclusion

We considered three different approaches to solve pdes on moving surfaces:

1. ESFEM on moving polyhedral surfaces,

2. implicit surfaces as level sets ~» degenerate equations to be solved in a narrow band

3. diffuse interface approach ~» bulk equations to be solved in a narrow band.

Applications:

e biomechanics, dynamics of lipid bilayer vesicles,

e fluid dynamics, rheology properties of emulsions in dependence of surfactant presence,

e materials science, enhanced species diffusion along (moving) grain boundaries.



