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Model Problem

Surface Conserved Quantity

Given: evolving curve {Γ(t)}t
and material velocity field v(t) : Γ(t)→ R2.

Consider a surface conserved quantity c(t) : Γ(t)→ R:

d

dt

“Z
G

c
”

= −
Z
∂G

qc · µ
h

+ . . .
i
∀G ⊂ Γ.

Strong equation with flux qc = −Dc∇Γc:

∂tc+ v · ∇c| {z }
∂•t c

+c∇Γ · v −Dc∆Γc = 0.
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Model Problem

Weak Problem

Assume that there is a smooth parametrisation

γ : [0, T )× (0, 2π)→ {Γ(t)}t∈[0,T ), (t, s)→ γ(t, s)

with

g(t, s) := |∂sγ(t, s)| ≥ Cg > 0

Weak formulation (in parameter space):

0 =

Z T

0

Z 2π

0

“
∂tc χg − c∂sχ τ · (v − ∂tγ) + cχ τ · ∂stγ + ∂sc ∂sχ

1

g

”
dsdt.

Here, τ := ∂sγ/g. and gds length element.
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Diffuse Interface Approach

Diffuse Interface Extension, Notion

Γε layer with thickness of order O(ε).

v suitably extended to vε.

Goal: Formulate an appropriate problem for a bulk quantity cε : Γε → R
such that the problem on {Γ(t)}t is obtained as ε→ 0.

Aachen February 2009



Diffuse Interface Approach

Profile Function

Idea: approximate surface delta ’function’ δΓ

by a smooth cross profile ρε : [0, T )× R2 → R:

1
ερε → δΓ as measure,

Γε = {ρε(t) > 0}.

To derive the equation for cε: G = Γ ∩R, Gε = Γε ∩R with test volume R ⊂ R2

d
dt

“ R
G
c
”

= −
R
∂G
qc · µ

↑ as ε→ 0 ↑
d
dt

“ R
Gε
ρεcε

”
= −

R
∂Gε

ρεqc,ε · νGε
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Diffuse Interface Approach

Equation on the Diffuse Interface

With the flux qc,ε = −Dc∇cε

0 =
d

dt

“Z
Gε

ρεcε
”

+

Z
∂Gε

ρεqc,ε · νGε =Z
Gε

“
∂t(ρεcε) +∇ · (vερεcε)−Dc∇ · (ρε∇cε)

”
+

Z
∂Gε

ρεcε(v∂Gε − vε) · νGε.

Proposal:
∂
•
t (ρεcε) + ρεcε∇ · vε −Dc∇ · (ρε∇cε) = 0.

In applications we expect that v∂Gε − vε is small but 6= 0 in general.

Since ρε vanishes on ∂Γε:
d

dt

“Z
Γε

ρεcε
”

= 0

Degeneration of ρε keeps the mass on the interfacial layer.
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Analysis

Assumptions

Assumptions:

• Extension of the parametrisation is possible, with z ∈ (−1, 1)

γε(t, s, z) = γ(t, s) + εz q(t, s, z, ε)| {z }
∼1

ν(t, s).

• There is a function ρ0 : (−1, 1)→ R such that

||ρε(t, s, z)− ρ0(z)||∞ → 0, C1ρ0 ≤ ρε ≤ C2ρ0, |∂tρε|, |∂ttρε| ≤ Cρ0

• The extension of the velocity field fulfils

|vε(t, s, z)− v(t, s)|, |∂tvε(t, s, z)− ∂tv(t, s)| ≤ Cε.
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Analysis

Weak Formulation

Weak formulation in parameter space:

0 =

Z T

0

Z 2π

0

Z 1

−1

ρ0

“
a
ε
0∂tcεχ+ (a

ε
1∂scε − b

ε
3∂zcε)(a

ε
1∂sχ− b

ε
3∂zχ)

+ b
ε
0cεχ+ b

ε
1cε∂sχ+ b

ε
2cε∂zχ+

1

ε2
a
ε
2∂zcε∂zχ

”
dzdsdt

The coefficients are bounded provided ε is small enough.

The bεj belong to lower order terms, e.g.

b1 = −
(q + z∂zq)ρε

ρ0

τ · (vε − ∂tγ)→ −τ · (v − ∂tγ) as ε→ 0.

The aεi bounded from below by positive constants, e.g.

a
ε
2 =

ρεgε

ρ0(q + z∂zq)
→ g as ε→ 0.
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Analysis

Existence and Uniqueness

0 =

Z T

0

Z 2π

0

Z 1

−1

ρ0

“
a
ε
0∂tcεχ+ (a

ε
1∂scε − b

ε
3∂zcε)(a

ε
1∂sχ− b

ε
3∂zχ)

+ b
ε
0cεχ+ b

ε
1cε∂sχ+ b

ε
2cε∂zχ+

1

ε2
a
ε
2∂zcε∂zχ

”
dzdsdt

Th.: There is a unique weak solution cε in L2(0, T ;X) ∩H1(0, T ;B) where

B =
n
f : (0, 2π)per × (−1, 1)→ R

˛̨̨ Z 2π

0

Z 1

−1

ρ0|f |2dzds <∞
o
,

X =
n
f ∈ B

˛̨̨ Z 2π

0

Z 1

−1

ρ0

`
|∂sf |2 + |∂zf |2

´
dzds <∞

o
.

Essential ingredient for the proof is that X ↪→ B is compact [ Antoci, 2003 ].
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Analysis

Estimates

Test with cε:

sup
t∈[0,T )

Z 2π

0

Z 1

−1

ρ0|cε(t)|2 +
‚‚∂scε‚‚2

L2(0,T ;B)
+

1

ε2

‚‚∂zcε‚‚2

L2(0,T ;B)
≤ C

Z 2π

0

Z 1

−1

ρ0|cε(0)|2,

Test with ∂tcε:

sup
t∈[0,T )

Z 2π

0

Z 1

−1

“
|∂scε(t)|2 +

1

ε2
|∂zcε(t)|2

”
+
‚‚∂tcε‚‚2

L2(0,T ;B)
≤ C.

For going to the limit follow the lines of

[ Hale, Raugel, 1992 ], [ Rodriguez, Viaño, 1998 ], [ Prizzi, Rinaldi, Rybakowski, 2002 ]
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Analysis

Convergence

Sharp interface:

0 =

Z T

0

Z 2π

0

`
∂tc χg − c∂sχ τ · (v − ∂tγ) + cχ τ · ∂stγ + ∂sc ∂sχ

1

g

´
dsdt.

Diffuse interface:

0 =

Z T

0

Z 2π

0

Z 1

−1

ρ0(z)
“
∂tcεχa

ε
0 + cε∂sχ b

ε
1 + cεχ b

ε
0 + cε∂zχ b

ε
2

+ (ã
ε
1∂scε − b

ε
3∂zcε)(ã

ε
1∂sχ− b

ε
3∂zχ) +

1

ε2
a
ε
2∂zcε∂zχ

”
dzdsdt.

Th.: As ε→ 0, the solutions cε converge to a function c in C0(0, T ;B) with

• ∂zc = 0, hence c = c(t, s),

• c ∈ L2(0, T ;H1
per(0, 2π)) ∩H1(0, T ;L2

per(0, 2π)),

• c solves the weak sharp interface problem.
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Numerical Approximation

Numerical Setup

Approximation in physical space Ω.

Timestep τ , triangulation Th, vertices {xi}i.
Linear FE:

Sh :=
n
η ∈ C0

(Ω)
˛̨̨
η
˛̨
e

linear on each e ∈ Th
o
.

Projection:

π
h

: C
0
(Ω)→ Sh, π

h
(η)(xi) = η(xi) ∀i.

Discrete interfacial layer:

N n
h :=

˘
vertex i

˛̨
there is a connected vertex j with ρε(t

n
,xj) 6= 0

¯
,

Γ
n
h :=

˘
e ∈ Th

˛̨
vertices of e belong to N n

h

¯
.
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Numerical Approximation

Proposed Method

Weak formulation: find c such that for all χ

0 =

Z
Ω

∂t(ρc)χ− ρcv · ∇χ+Dcρ∇c · ∇χ.

Scheme: given cn−1
h =

P
i∈Nn−1

h
cn−1
i χi compute cnh =

P
i∈Nn

h
cni χi such that for all j ∈ N n

h

0 =

Z
Γn
h

1

τ

“
π
h
(ρ
n
c
n
hχj)−π

h
(ρ
n−1

c
n−1
h χj)

”
−πh(ρncnh)π

h
(v

n
)·∇χj+Dcπ

h
(ρ
n
)∇cnh ·∇χj

Q: solvable? mass conserved?

Other methods:

[ Schwartz, Adalsteinsson et. al., 2005 ], [ Rätz, Voigt, 2006, 2007 ]
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Numerical Approximation

Solvability

Scheme:

0 =

Z
Γn
h

1

τ

“
π
h
(ρ
n
c
n
hχj)−π

h
(ρ
n−1

c
n−1
h χj)

”
−πh(ρncnh)π

h
(v

n
)·∇χj+Dcπ

h
(ρ
n
)∇cnh ·∇χj

Th.: If τ ≤ 4Dc/‖v‖2
∞ the scheme has a unique solution cnh.

Proof:

Linear system, number of equations = number of unknown

⇒ uniqueness sufficient ; set cn−1
h = 0.

Test with cnh aiming to use nonnegativity of mass and stiffness matrix.

Control of advective term ; restriction on timestep.

Mass matrix degenerate, have only that cnh = 0 in interior vertices.

Stiffness matrix always with contribution⇒ ∇cnh = 0. �
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Numerical Approximation

Mass Conservation

Scheme: for all j ∈ N n
h

0 =

Z
Γn
h

1

τ

“
π
h
(ρ
n
c
n
hχj)−π

h
(ρ
n−1

c
n−1
h χj)

”
−πh(ρncnh)π

h
(v

n
)·∇χj+Dcπ

h
(ρ
n
)∇cnh ·∇χj

Assumption: If i ∈ Nn−1
h does not belong to Nn

h then ρn−1(xi) = 0.

Th.: With this assumption Z
Γn
h

π
h
(ρ
n
c
n
h) =

Z
Γn−1
h

π
h
(ρ
n−1

c
n−1
h ).

Proof: Summing up over j ∈ N n
h yieldsX

i∈Nn
h

(

Z
χi)ρ

n
(xi)c

n
i =

X
i∈Nn

h

(

Z
χi)ρ

n−1
(xi)c

n−1
i .

Thanks to both assumptions we can replace N n
h by N n−1

h on the right hand side. �
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Numerical Approximation

Stationary Surface

The function c = e−4tx1x2 is a solution to ∂tc−∆Γc = 0 on Γ = S1.

ρ stretched cos2 profile, argument is dist(x,Γ)/ε.

For ε fixed: quadratic in L∞(0, T, L2(Γ)), and linear in L2(0, T,H1(Γ)) as h→ 0.

Ratio ε/h fixed (≥ 3 grid points across the interface sufficient, here ≥ 8):

ε h e[L∞, L2] eoce[L∞,L2] e[L2, H1] eoce[L2,H1]√
2/10 2−4.5 0.00141612 — 0.01664609 —

1/10 2−5.0 0.00073612 1.887884 0.01054201 1.318067√
2/20 2−5.5 0.00036690 2.009086 0.00692233 1.213642

1/20 2−6.0 0.00017812 2.085131 0.00436128 1.333009√
2/40 2−6.5 0.00008500 2.134493 0.00291098 1.166492

Comparable to [ Schwartz, Adalsteinsson et. al., 2005 ].

Rk.: Can also take tangential motion into account.
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Numerical Approximation

Interfacial Profile on Moving Surface

Influence of motion in normal direction:
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Numerical Approximation

Boundary condition

Continuous problem: no boundary condition since ρ = 0 on ∂Γ(ε, t).

Discrete in 1D, i boundary vertex, ρni = ρni+1 = 0, ρni−1 > 0:

0 = −
hρn−1

i

∆t
c
n−1
i −

vni−1,iρ
n
i−1

2
c
n
i−1 +

ρni−1,i

h
(c
n
i − c

n
i−1)

; no homogeneous Neumann boundary condition.
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Numerical Approximation

Streamline Diffusion

Overcome by adding a streamline diffusion to scheme:Z
Γn
h

g
n
h ω

n
h · ∇c

n
h ω

n
h · ∇χ

• ω := (v · ν)ν with unit normal ν on Γ,

• gh nonnegative function of order h present close to the interface boundary.

Leads to an additional term of the form

gh(ω
n
i,i−1)

2

h
(c
n
i − c

n
i−1)

Solvability and mass conservation are not affected.

Aachen February 2009



Numerical Approximation

Moving Surface

Transport of unit circle with constant velocity field v(x, t) = (2, 0)T .

Same profile for c as in stationary case solves ∂tc+ v · ∇c−∆Γc = 0.

Errors quantitatively comparable (with/without motion or with/without streamline diffusion).

Exemplary e[H1
tang]: converging linearly for h→ 0, for fixed ε as well as when keeping ε/h fixed.

h \ ε
√

2/10 1/10
√

2/20 1/20

2−4.0 0.032217

2−4.5 0.022567 0.022738

2−5.0 0.016381 0.016446 0.016531

2−5.5 0.011504 0.011408 0.011426 0.011428

2−6.0 0.008672 0.008432 0.008398 0.008395

2−6.5 0.006424 0.006003 0.005910 0.005895
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Numerical Approximation

Application Example

Two-phase flow modelled by

1. Navier-Stokes system with interfacial contribution to stress tensor

for two fluids of same mass density and viscosity,

2. advective degenerate Cahn-Hilliard equation with double-obstacle potential

for fluid-fluid interface.

[ Kay, Styles, Welford, 2007 ]

Initially: drop of fluid 1 in fluid 2, then external fluid exposed to shear flow.

Take an additional conserved surface quantity into account, initially homogeneously distributed.
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Application Example

Fluid drop in another fluid exposed to shear flow

with conserved surface quantity (later on surfactant),

solved with a double obstacle Cahn-Hilliard-Navier-Stokes system.

[ Lowengrub, Truskinowsky, 1998 ], [ Boyer, 2002 ], [ Kay, Welford, 2007 ]

t = 0.01 t = 0.20 t = 0.50.



Application Example

Fluid drop in another fluid exposed to shear flow

with conserved surface quantity (later on surfactant),

solved with a double obstacle Cahn-Hilliard-Navier-Stokes system.
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ALBERTA-FEM

An Adaptive Hierarchical Finite Element Toolbox

by ALfred Schmidt and KuniBERT Siebert.

Core parts of FE programs:

assembly and solution of the discretised problems.

Goals: provide data structures which allow an easy and efficient implementation of the problem-

dependent parts, in particular with respect to

• mesh modification (adaptive methods),

• solving linear and nonlinear systems of equations.

www.alberta-fem.de



Conclusion

Conclusion

We considered three different approaches to solve pdes on moving surfaces:

1. ESFEM on moving polyhedral surfaces,

2. implicit surfaces as level sets ; degenerate equations to be solved in a narrow band

3. diffuse interface approach ; bulk equations to be solved in a narrow band.

Applications:

• biomechanics, dynamics of lipid bilayer vesicles,

• fluid dynamics, rheology properties of emulsions in dependence of surfactant presence,

• materials science, enhanced species diffusion along (moving) grain boundaries.


