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Applications

Partial differential equations on surfaces occur in many applications.

• Transport and diffusion of surfactants on fluid interfaces
• Diffusion within phase boundaries DIGM
• Conservation and diffusion on bio-membranes
• Formation of nanoporosity via surface spinodal decomposition
• Imaging

• Texture synthesis via reaction diffusion equations
• Flow vizualization via anisotropic diffusion
• Segmentation



Surface Derivatives

Tangential gradient on the surface Γ with normal ν:

∇Γf = ∇f −∇f · ν ν

The tangential gradient only depends on the values of f on the surface.

Laplace-Beltrami-Operator on Γ:

∆Γf = ∇Γ · ∇Γf .

Integration by parts on a surface:∫
Γ
∇Γf = −

∫
Γ

fHν +
∫
∂Γ

fµ

with mean curvature H of Γ and conormal vector µ on ∂Γ.



Conservation

d
dt

∫
M(t)

u = −
∫
∂M(t)

q · µ

Γ (t)

M(t) µ

ν

u is a scalar quantity on Γ(t), e. g. a density.
q is a flux on the surface, a tangent vector to Γ(t). Integration by parts on Γ
gives ∫

∂M(t)
q · µ =

∫
M(t)
∇Γ · q +

∫
M(t)

q · νH =
∫

M(t)
∇Γ · q



Leibniz rule

Let the surface Γ(t) move with velocity v = v(x, t), x ∈ Γ(t). Then one has:

d
dt

∫
Γ

f =
∫

Γ
ḟ + f ∇Γ · v

where a dot denotes the material derivative

ḟ =
∂f
∂t

+ v · ∇f .

Application:
d
dt

∫
M(t)

u =
∫

M(t)
u̇ + u∇Γ · v



Conservation equation

Conservation holds if and only if∫
M(t)

u̇ + u∇Γ · v = −
∫

M(t)
∇Γ · q

and since M(t) is an arbitrary portion of Γ(t), one obtains the partial
differential equation

u̇ + u∇Γ · v +∇Γ · q = 0 on Γ

Here v is the velocity of Γ.



Diffusion equation

The constitutive law
q = −D0∇Γu

leads to an initital value problem for a parabolic PDE on an evolving surface.

For given data Γ(t), t ∈ [0,T] und u0 : Γ0 → R determine a solution
u(·, t) : Γ(t)→ R of

u̇ + u∇Γ · v− D0∆Γu = 0, on Γ(t),

u(·, 0) = u0 on Γ0

If the surface Γ has a boundary, then one additionally has to impose suitable
boundary conditions.



Finite element space

• For each t we have a finite element space

Sh(t) =
{
φ ∈ C0(Γh(t)) : φ|e is linear affine for each e ∈ Th(t)

}
• Transport Property of Basis Functions

On Γh(t), for each j = 1, . . . ,N,

φ̇j = 0

and for each φ =
∑N

j=1 γj(t)φj ∈ Sh(t)

φ̇ =
N∑

j=1

γ̇j(t)φj.



Evolving Surface Finite Element Method: ESFEM

Our ESFEM is based on the evolving finite element spaces introduced in this
section and the variational form of the diffusion equation:-
Find U(·, t) ∈ Sh(t) such that

d
dt

∫
Γh(t)

Uφ+
∫

Γh(t)
∇ΓhU · ∇Γhφ =

∫
Γh(t)

Uφ̇ ∀φ ∈ Sh(t).

Setting

U(·, t) =
N∑

j=1

αj(t)φj(·, t)

and using the transport property of the basis functions we find that

d
dt

(M(t)α) + S(t)α = 0.



M(t) is the evolving mass matrix

M(t)jk =
∫

Γh(t)
φjφk,

N (t) is a mass matrix weighted by the surface divergence of the velocity,

N (t)jk =
∫

Γh(t)
φjφk∇Γh(t) · vh

and S(t) is the evolving stiffness matrix

S(t)jk =
∫

Γh(t)
D−l

0 ∇Γhφj∇Γhφk.



Dealloying by selective dissolution

• Dealloying of a binary alloy by the selective removal of one component
via electrochemical dissolution in an electrolyte such that there is surface
phase separation of the other component.

• A protypical example is that of the etching of silver in an Ag-Au alloy
whose surface is immersed in an electrolyte.

• The dissolution of silver atoms occurs at the surface whilst the surface
gold atoms agglomerate in clusters and expose the next layer of silver
atoms for dissolution.

• The result is the growth of porosity into the bulk.



J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki Evolution
of nanoporosity in dealloying Nature 410(2001)



Mathematical model

Find a periodic evolving surface Γ(t), t ∈ (0,T) and a surface periodic
function c :

⋃
t∈[0,T] Γ(t)→ R, such that the surface moves in normal

direction with the velocity

Vel = v0(c) (1− δH) ν,

c satisfies

ċ = −∇Γ ·
(
b(c)∇Γ

(
γ∆Γc−Ψ′c

))
− c∇Γ · Vel + c0Vel · ν,

and the initial values

c(·, 0) = ci(·) and Γ(0) = Γ0

are prescribed.



• Computations based on E.S.F.E.M.
• Discretization of curvature flow uses approach of Dziuk
• Discretization of Cahn-Hilliard uses approach of Elliott, Copetti,Blowey
• Computations by Carsten Eilks
• Analysis of Cahn-Hilliard on evolving surfaces Eilks in preparation.



Remeshed surface, closeup before and after remeshing



Computational Experiment:- Early stages of etching

Simulation on a large square, t=0.04 , t=0.1 and t=0.2; vmax = 1.6



Computational Experiment:- Early stages of etching

Simulation on a large square, cross-sections along the diagonal for t = 0.04 to
t = 0.24





Computational Experiment 2:- Etching in a circular pit

Crosssections for etching into circular pit.
vmax = 1.0 ,t = 0.25,t = 0.5 and t = 0.75



Computational Experiment 3:- Etching in a non symmetrical pit

Constant bulk concentration
t = 0.25 and t = 0.75 for vmax = 1.0 t = 1.5 for vmax = 0.5



Computational Experiment 4:- Fluctuations in the bulk and etching

into single pit

Etching for a single pit, random bulk concentration, t = 1.2 and t = 2.0 for
vmax = 0.4



Computational Experiment 4:- Fluctuations in the bulk and etching

into single pit, increasing dissolution rate

Etching for a single pit, random bulk concentration, t = 0.3 and t = 0.5 for
vmax = 1.6



ESFEM: Assorted Issues

• Remeshing
• Adaptivity
• Topological Change
• PDES in the Bulk coupled with PDEs on Surface



ESFEM Summary

• Formulation of Conservation on Evolving Surface
• Variational formulation of Advection-Diffusion
• Evolving Surface Finite Element Method (E.S.F.E.M.)
• Transport Property of Basis Functions



Level set tangential gradients

• Extension of ν to all of Ω by the normal vector field

ν(x) =
∇Φ(x)
|∇Φ(x)|

, x in Ω.

• We define the projection

PΦ := I − ν ⊗ ν , (PΦ)ij = δij − νiνj, i, j = 1, ...n + 1.

• Thus P(x) is the projection onto the tangent space of the surface

Γr := {y ∈ Rn+1|Φ(y) = r}, r = Φ(x),

so that
PΦν = 0.



Level set tangential gradients

• Eulerian surface gradient

∇Φη := PΦ∇η

•
∇Φη = ∇η −∇η · ν ν

where∇η denotes the usual gradient on Rn+1.
•

∇Φη · ν = 0

• For any level surface Γr,

∇Γrη := ∇Φη|Γr

only depends on the values of η restricted to Γr and is the tangential
(surface) gradient on Γr.



Level set
• PDE formulation Bertalmio, Cheng, Osher and Sapiro
• Eulerian formulation for solving partial differential equations along a

moving interface Jian-Ju Xu and Hong-Kai Zhao
• Transport and diffusion of material quantities on propagating interfaces

via level set methods D. Adalsteinsson and J. A. Sethian
• Fourth order equations finite differences Greer, Bertozzi and Sapiro
• Interfacial flows with surfactant Xu, Li, Lowengrub, Zhao
• Elliptic finite element method Burger
• Second and fourth order parabolic equations on static surfaces Dziuk and

Elliott
• Analysis of elliptic equations Deckelenick, Dziuk and Elliott
• Parabolic equations on evolving surfaces Dziuk and Elliott



Phase field/Diffuse Interface approach
• Diffusion induced grain boundary motion Cahn, Fife, Penrose, Ch. E,

Deckelnick, Styles
• Generalised diffuse interface approach Ratz, Voigt

UNFEM (unfitted finite element method) for Surface PDES
Use n + 1 dimensional triangulations and compute integrals on n dimensional
surfaces Olshanskii, Reusken



Conservation and diffusion on evolving level sets

• Let v : ΩT → Rn+1 be a prescribed velocity field which has the
decomposition

v = Vν + vS , V = v · ν

• By a dot we denote the material derivative of a scalar function
η = η(x, t) defined on ΩT :

η̇ =
∂η

∂t
+ v · ∇η.



Implicit surface Leibniz Formula

Let φ be a level set function and η be an arbitrary function defined on
ΩT = Ω× (0,T) such that the following quantities exist.

d
dt

∫
Ω
η|∇φ| =

∫
Ω
{η̇ + η∇φ · v}|∇φ| −

∫
∂Ω
ηv · ν∂Ω|∇φ|.

Here the level sets of φ move with the given velocity Vν, x ∈ Ω, t > 0.



Eulerian variational diffusion on evolving surfaces

• Find a solution u = u(x, t) such that u(·, 0) = u0 for given initial data u0
and

d
dt

∫
Ω

uη|∇φ|+
∫

Ω
D0∇φu · ∇φη|∇φ| =

∫
Ω

uη̇ |∇φ|

for all η ∈ H1
φ(Ω).

• The co-area formula leads to the classical form of the PDE

u̇ + u∇φ · v−∇φ · (D0∇φu) = 0

on Ω× (0,T) and the natural boundary condition.

(D0∇φu + uv) · ν∂Ω = 0

on ∂Ω× (0,T).



Elliptic Equation

−∆Φu + u = f , x ∈ Ω

∂Ω = {Φ = Φm} ∪ {Φ = ΦM}

Regularity

• f ∈ L2
Φ(Ω) implies u ∈ H1

Φ(Ω)
• fν ∈ L2

Φ(Ω) implies uν ∈ H1
Φ(Ω)



Linear diffusion

Setting w = u and D = I we find the heat equation on surfaces

ut = ∆Φu

and the variational equation becomes

d
dt

∫
Ω

uη|∇Φ|+
∫

Ω
∇Φu · ∇Φη|∇Φ| = 0.



Simple examples

•
ut = uxx + f (x, y) , (x, y) ∈ (0, 1)2 , t > 0

•
ut =

1
r2 uθθ + f (r, θ) , 0.5 < r < 1 , t > 0



Steady solution

ut −∆Φu = 0

with no flux boundary conditions has the steady solution

u∞|Γr =
1
|Γr|

∫
Γr

u0

so that
u∞ = g(Φ).



Heat equation on a circle

• Ω = {x ∈ R2| 0.5 < |x| < 1.0}
• Φ(x) = |x| − 0.75 so that the boundary ∂Ω comprises level lines of Φ.
• u(x, t) = exp (−t/|x|2)x2/|x|
• is an exact solution of

ut −∆Γu = 0

on Γ(t) = Γ0 = {x ∈ R2| |x| = 0.5}
• with initial data u0(x) = x2/|x|.



Mesh



Heat equation on a circle

h L∞(L2
Φ(Ω)) eoc L2(H1

Φ(Ω)) eoc L2(H1(Ω)) eoc L∞(L∞(Ω)) eoc
0.5176 0.07401 - 0.1090 - 0.09565 - 0.1139 -
0.2831 0.02594 1.74 0.03986 1.67 0.1325 0.93 0.04539 1.52
0.1500 0.007796 1.89 0.01587 1.45 0.07188 0.96 0.01696 1.55
0.07716 0.002192 1.91 0.007147 1.20 0.03879 0.93 0.006144 1.53
0.03912 0.0006067 1.89 0.003438 1.08 0.02042 0.95 0.002333 1.43
0.01969 0.0001694 1.86 0.001699 1.03 0.01061 0.95 0.0009357 1.33

h L∞(L2
Φ(Γ0)) eoc L2(H1

Φ(Γ0)) eoc L∞(L∞(Γ0)) eoc
0.5176 0.07401 - 0.0874 - 0.06148 -
0.2831 0.03142 1.77 0.04512 1.10 0.02389 1.57
0.1500 0.009560 1.88 0.02653 0.84 0.009116 1.52
0.07716 0.002690 1.91 0.01149 1.26 0.002446 1.98
0.03912 0.0006343 2.13 0.006237 0.90 0.0005447 2.21
0.01969 0.0001484 1.89 0.002943 1.10 0.0001484 1.89



Level sets mapped to level sets

• Homogeneous Neumann boundary conditions: solution is conserved on
each level surface

• Solution u evolves to a stationary solution which is constant on each
level line of Φ

• In this example Φ(x) = x2 − 2(1− x2
2) sin (0.3) sin (2πx1)

• the initital value u0(x1, x2) = x2 on the domain Ω = (−1, 1)× (−1, 1)
• The function u becomes constant on the level lines of Φ



Level sets mapped to level sets

Level lines of the solution u for the time steps 0, 100, 400 and 5200. The last
picture nearly shows the level lines of Φ. Levels between −1 and 1 equally
spaced with increment 0.1 are shown.



Level sets to level sets in 3-dim

• The computational domain is Ω = (−1, 1)3, and we use the level set
function

Φ(x1, x2, x3) = x1x3 − 2(1− x2
3) sin 0.3 sin (2πx1).

• The initial value is taken to be u0(x1, x2, x3) = x2.
• In the figures we show various level surfaces of Φ which are coloured

according to the values of uh at three time steps. The continuous solution
tends to a constant on the levels of Φ.

• The colour coding is such that blue corresponds to the value −1, red to
the value 1 with a linear scale between.



Level sets to level sets in 3-dim

Level surfaces Φ = −0.75,−0.5, 0.0, 0.5, 0.75 with colouring according to
the values of uh: 0 time step,1000-th time step, 3900-th time step.



Pattern formation by surface evolution

We choose Ω = (−1, 1)2 and constant initial data u0(x1, x2) = 1. The level
set function is given by

Φ(x1, x2, t) = x2 − (1− x2
2) sin (πx1) sin (t),

and we used τ = 0.000390625 and h = 0.0625. We show the solution for
times from one period of the level set function Φ. The time dependent levels
of Φ are shown in the same Figure. In the second Figure we show the solution
on the strip Ωδ = {x ∈ Ω| |Φ(x, t)| < δ} for δ = 0.1 for some time steps to
demonstrate the effect of "heating by motion".



Solution (1st and 3rd row) with levels of Φ (2nd and 4th row) for the times
t = 0.0, 0.039, 0.426, 0.813, 1.59, 2.36, 3.13 and 6.26. Blue=-0.1, Red =1.1.



Solution of Example 9 for the times t = 0.0, 0.039, 0.078, 0.12 and 0.16 on
the strip Ωδ.



Narrow Band:-Three Dimensional Grid



Narrow Band:-Solution



Conclusion: Implicit surfaces

• Mesh can be independent of geometry
• Data may be given on and as a level surface
• Application may demand a solution on many level surfaces
• Complicated morphology

• Data requires extension off the surface
• One space dimension higher so solve in narrow band–not quite geometry

independent mesh
• Discrete solution is not local
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