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Scaled Navier-Stokes-Fourier system

Mass conservation:

∂t% + divx(%u) = 0, u · n|∂Ω = 0,

∫
Ω

%(t, ·) dx = M0

Balance of momentum:

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %f, u|∂Ω = 0

Entropy production:

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
= σ ≥ 0, q · n|∂Ω = 0

Total energy balance:

d
dt

E (t) ≡ d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx =

∫
Ω

%f · u dx
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Gibbs’ relation:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)
Hypothesis of thermodynamic stability:

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0

Entropy production rate:

σ ≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
≥ 0
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Constitutive relations:

Newton’s rheological law:

S = µ

(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI

µ = µ(%, ϑ) > 0, η = η(%, ϑ) ≥ 0

Fourier’s law:

q = −κ∇xϑ

κ = κ(%, ϑ) > 0
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Conservative driving force

• Ω ⊂ R3 a bounded (Lipschitz) domain
• f = ∇xF , F = F (x), F ∈ W 1,∞(Ω)
• ∂%p(0, ϑ) > 0 for any ϑ > 0

%(t, ·) → %̃ in Lp(Ω) as t →∞

(%u)(t, ·) → 0 in Lp(Ω; R3) as t →∞

ϑ(t, ·) → ϑ > 0 in Lp(Ω) as t →∞

Static problem:

∇xp(%̃, ϑ) = %̃∇xF ,

∫
Ω

%̃ dx = M0,

∫
Ω

(
%̃e(%̃, ϑ)− %̃F

)
dx = E0
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Uniform stabilization:

•
∫
Ω % dx ≥ M0 > 0

•
∫
Ω

(
1
2%|u|2 + %e(%, ϑ)− %F

)
dx ≤ E0

•
∫
Ω %s(%, ϑ) dx ≥ S0

For any ε > 0 there is T = T (ε) such that

‖%(t, ·)− %̃‖Lp(Ω) < ε

‖(%u)(t, ·)‖Lp(Ω;R3) < ε

‖ϑ(t, ·)− ϑ‖Lp(Ω) < ε

for all t > T (ε)
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Non-conservative stationary driving forces

• Ω ⊂ R3 a bounded (Lipschitz) domain
• f = f(x), f 6≡ ∇xF

Total energy “blow up”:

E (t) =

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx →∞

as t →∞
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General bounded driving force

• Ω ⊂ R3 a bounded (Lipschitz) domain
• f ∈ L∞((0,∞)× Ω; R3)

Either

E (t) =

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx →∞

as t →∞;

or

E (t) ≤ E∞ for a.a. t > 0

In the later case, for any sequence tn →∞, there is an F = F (x)
such that

f(tn,k + ·, ·) → ∇xF weakly-(*) in L∞((0,T )× Ω; R3)
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Highly oscillating driving forces

• Ω ⊂ R3 a bounded (Lipschitz) domain
•

f = ω(tβ)w(x), β > 2

ω ∈ L∞(0,∞), ω 6= 0, sup
τ>0

∣∣∣∣∫ τ

0
ω(t) dt

∣∣∣∣ < ∞

%u(t, ·) → 0 in Lp(Ω; R3)

%(t, ·) → % in Lp(Ω), M0 = %|Ω|

ϑ(t, ·) → ϑ in Lp(Ω)

as t →∞
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