Asymptotic behavior of complex fluid systems

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

based on collaboration with Antonín Novotný, Hana Petzeltová, and Dalibor Pražák

RWTH Aachen University, February 4 - 6, 2009

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

(日) (同) (三) (

Scaled Navier-Stokes-Fourier system

Mass conservation:

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = 0, \ \mathbf{u} \cdot \mathbf{n}|_{\partial\Omega} = 0, \ \int_{\Omega} \varrho(t, \cdot) \ \mathrm{d}x = M_0$$

Balance of momentum:

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_x p(\varrho, \vartheta) = \operatorname{div}_x \mathbb{S} + \varrho \mathbf{f}, \ \mathbf{u}|_{\partial\Omega} = 0$$

Entropy production:

$$\partial_t(\varrho s(\varrho, \vartheta)) + \operatorname{div}_x(\varrho s(\varrho, \vartheta)\mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) = \sigma \ge 0, \ \mathbf{q} \cdot \mathbf{n}|_{\partial\Omega} = 0$$

Total energy balance:

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) \equiv \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left(\frac{1}{2}\varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta)\right) \, \mathrm{d}x = \int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \, \mathrm{d}x$$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

э

GIBBS' RELATION:

$$\vartheta Ds(\varrho, \vartheta) = De(\varrho, \vartheta) + p(\varrho, \vartheta) D\left(\frac{1}{\varrho}\right)$$

HYPOTHESIS OF THERMODYNAMIC STABILITY:

$$\frac{\partial p(\varrho, \vartheta)}{\partial \rho} > 0, \ \frac{\partial e(\varrho, \vartheta)}{\partial \vartheta} > 0$$

ENTROPY PRODUCTION RATE:

$$\sigma \geq \frac{1}{\vartheta} \left(\mathbb{S} : \nabla_{x} \mathbf{u} - \frac{\mathbf{q} \cdot \nabla_{x} \vartheta}{\vartheta} \right) \geq \mathbf{0}$$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

<ロ> <四> <四> <日> <日> <日</p>

CONSTITUTIVE RELATIONS:

Newton's rheological law:

$$\mathbb{S} = \mu \left(\nabla_{\mathsf{x}} \mathbf{u} + \nabla_{\mathsf{x}}^{t} \mathbf{u} - \frac{2}{3} \mathrm{div}_{\mathsf{x}} \mathbf{u} \mathbb{I} \right) + \eta \mathrm{div}_{\mathsf{x}} \mathbf{u} \mathbb{I}$$

$$\mu = \mu(\varrho, \vartheta) > 0, \ \eta = \eta(\varrho, \vartheta) \ge 0$$

Fourier's law:

$$\mathbf{q} = -\kappa \nabla_{\mathbf{x}} \vartheta$$

$$\kappa = \kappa(\varrho, \vartheta) > 0$$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

<ロ> <四> <四> <日> <日> <日</p>

Conservative driving force

- $\Omega \subset R^3$ a bounded (Lipschitz) domain
- $\mathbf{f} =
 abla_x F$, F = F(x), $F \in W^{1,\infty}(\Omega)$
- $\partial_{\varrho} p(0, \vartheta) > 0$ for any $\vartheta > 0$

$$\begin{split} \varrho(t,\cdot) &
ightarrow \widetilde{\varrho} \text{ in } L^p(\Omega) \text{ as } t
ightarrow \infty \ (\varrho \mathbf{u})(t,\cdot) &
ightarrow 0 \text{ in } L^p(\Omega; R^3) \text{ as } t
ightarrow \infty \ artheta(t,\cdot) &
ightarrow \overline{artheta} > 0 \text{ in } L^p(\Omega) \text{ as } t
ightarrow \infty \end{split}$$

Static problem:

$$\nabla_{x} p(\tilde{\varrho}, \overline{\vartheta}) = \tilde{\varrho} \nabla_{x} F, \ \int_{\Omega} \tilde{\varrho} \ \mathrm{d}x = M_{0}, \ \int_{\Omega} \left(\tilde{\varrho} e(\tilde{\varrho}, \overline{\vartheta}) - \tilde{\varrho} F \right) \ \mathrm{d}x = E_{0}$$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

◆ 同 ♪ → 三 ♪

UNIFORM STABILIZATION:

•
$$\int_{\Omega} \varrho \, \mathrm{d}x \ge M_0 > 0$$

•
$$\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) - \varrho F \right) \, \mathrm{d}x \le E_0$$

•
$$\int_{\Omega} \varrho s(\varrho, \vartheta) \, \mathrm{d}x \ge S_0$$

For any $\varepsilon > 0$ there is $T = T(\varepsilon)$ such that

$$\|\varrho(t,\cdot)-\tilde{\varrho}\|_{L^p(\Omega)}<\varepsilon$$

 $\|(\varrho \mathbf{u})(t,\cdot)\|_{L^p(\Omega;R^3)} < \varepsilon$

$$\|\vartheta(t,\cdot)-\overline{\vartheta}\|_{L^p(\Omega)}$$

for all $t > T(\varepsilon)$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

A (1) > A (1) > A

Non-conservative stationary driving forces

- $\Omega \subset R^3$ a bounded (Lipschitz) domain
- $\mathbf{f} = \mathbf{f}(x), \ \mathbf{f} \not\equiv \nabla_x F$

Total energy "blow up":

$$E(t) = \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) \, \mathrm{d}x \to \infty$$

as $t
ightarrow \infty$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

<ロ> (四) (四) (三) (三)

GENERAL BOUNDED DRIVING FORCE

- $\Omega \subset {\it R}^3$ a bounded (Lipschitz) domain
- $\mathbf{f} \in L^{\infty}((0,\infty) \times \Omega; R^3)$

Either

$$E(t) = \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) \, \mathrm{d}x \to \infty$$

as $t
ightarrow \infty$;

or

$$E(t) \leq E_{\infty}$$
 for a.a. $t > 0$

In the later case, for any sequence $t_n \to \infty$, there is an F = F(x) such that

$$\mathbf{f}(t_{n,k}+\cdot,\cdot) o
abla_{x}F$$
 weakly-(*) in $L^{\infty}((0,T) imes \Omega; R^{3})$

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

э

HIGHLY OSCILLATING DRIVING FORCES

• $\Omega \subset R^3$ a bounded (Lipschitz) domain

$$\begin{split} \mathbf{f} &= \omega(t^{\beta}) \mathbf{w}(x), \ \beta > 2\\ \omega &\in L^{\infty}(0,\infty), \ \omega \neq 0, \ \sup_{\tau > 0} \left| \int_{0}^{\tau} \omega(t) \ \mathrm{d}t \right| < \infty \end{split}$$

$$\varrho \mathbf{u}(t, \cdot) \to 0 \text{ in } L^p(\Omega; \mathbb{R}^3)$$

$$\varrho(t,\cdot) \to \overline{\varrho} \text{ in } L^p(\Omega), \ M_0 = \overline{\varrho}|\Omega|$$

$$\vartheta(t,\cdot) \to \overline{\vartheta}$$
 in $L^p(\Omega)$

as $t
ightarrow \infty$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

(a)

Complex fluid systems

Eduard Feireisl