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Introduction

The aim of this work is to present numerical investigations for the collapse
and rebound of a laser-induced cavitation bubble in a compressible fluid.

The Saurel and Abgrall model for two phase flow [1] is used, with a
modification for the volume fraction equation.

The phase velocities, pressures and temperatures will relax to a common
value.

We introduced a procedure for the temperature relaxation that is used at
each time step after the pressure relaxation, we used the fact that
mechanical properties relax much faster than the thermal properties.

[1] R. Saurel , R. Abgrall, A multiphase Godunov method for compressbile multifluid and multiphase flows, Journal

of Computational Physics, 150 (2), 425-467, (1999).
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The model in spherical coordinates assuming rotational symmetry, with a modification
for the volume fraction equation can be written as

∂α1

∂t
+ U

∂α1

∂r
= µ(p1 − p2) +

θ

Φ
(T1 − T2) (1a)

∂α1ρ1

∂t
+

∂(α1ρ1u1)

∂r
=
−2

r
α1ρ1u1 (1b)

∂α1ρ1u1

∂t
+

∂(α1ρ1u2
1 + α1p1)

∂r
= P

∂α1

∂r
+ λ(u2 − u1)−

2

r
α1ρ1u

2
1 (1c)

∂α1ρ1E1

∂t
+

∂((ρ1E1 + p1)α1u1)

∂r
= PU

∂α1

∂r
+ µP(p2 − p1)

+ λU(u2 − u1) + θ(T2 − T1)−
2

r
((ρ1E1 + p1)α1u1) (1d)

∂α2ρ2

∂t
+

∂(α2ρ2u2)

∂r
=
−2

r
α2ρ2u2 (1e)

∂α2ρ2u2

∂t
+

∂(α2ρ2u2
2 + α2p2)

∂r
= −P

∂α1

∂r
− λ(u2 − u1)−

2

r
α2ρ2u

2
2 (1f)

∂α2ρ2E2

∂t
+

∂((ρ2E2 + p2)α2u2)

∂r
= −PU

∂α1

∂r
− µP(p2 − p1)

− λU(u2 − u1)− θ(T2 − T1)−
2

r
((ρ2E2 + p2)α2u2) (1g)
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The notations are classical:

αk : The volume fraction (α1 + α2 = 1)
ρk : The density.
uk : The radial velocity.
pk : The pressure.
Tk : The temperature.

Ek = ek +
u2

k

2
: The total specific energy, where ek is the specific internal energy.

Interfacial variables

P and U are the interfacial pressure and interfacial velocity respectively.

P =
2X

k=1

αkpk , U =
2X

k=1

αkρkuk

αkρk
(2)

Relaxation parameters

The parameters λ, µ and θ > 0 are the relaxation parameters which determine the
rates at which the velocities, pressures and temperatures of the two phases relax to a
common value.
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Our modification

We added the last term in the equation of volume fraction (1a).

The new variable Φ has to be determined.

Our assumptions

We assume that:

The relaxation time is very small compared with the other
characteristic times

The pressure relaxation time is much smaller than that of
temperature. This assumption agrees with physical evidence in a
large number of situations [2].

[2] H. Guillard and M. Labois, Numerical modelling of compressible two-phase flows, European Conference on

Computational Fluid Dynamics ECCOMAS CFD 2006, P. Wesseling and E. Onate and J. Priaux (Eds), 2006.
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Equations of State (EOS)

To overcome the problem of negative squares of sound speed in numerical
computations, each fluid obeys its own EOS as a pure material, also these EOS should
satisfy certain convexity constraints.

Stiffened gas EOS are used for their simplicity, they are expressed as

ek =
pk + γkπk

ρk (γk − 1)
, k = 1, 2. (3)

Assuming that phase ”1” is water vapor and phase ”2” liquid water, the closure
relations for temperatures can be given as

T1 =
p1 + γ1π1

Cv1ρ1(γ1 − 1)
, T2 =

e2 − γ2ξ
ρ2

Cv2
+ T0 (4)

Phase γ π(Pa) Cv (J/kg/K) ξ(Pa) T0(K)

1 1.327 0 1.41× 103 - -

2 4.4 6.6× 107 4.2× 103 6.0× 105 273.15

Table 1: EOS parameters for vapor and liquid water
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Mathematical Properties of the Model

The model (1) in terms of primitive variables can be written as

∂W

∂t
+ A

∂W

∂r
= S (5)

where W = (α1, ρ1, u1, p1, ρ2, u2, p2)T , the source vector S represents the
non-differential source terms.

The eigenvalues are

λ1 = U,

λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1, (6)

λ5 = u2 − c2, λ6 = u2, λ7 = u2 + c2.

The system is hyperbolic.

Considering the Riemann problem of the system:

The 1-, 3- and 6- fields are linearly degenerate.
The 2-, 4-, 5- and 7- fields are genuinely nonlinear.
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Numerical Method

To account for hyperbolic part and non-differentiable source terms we use
the Strang splitting approach [3]. Thus the solution is obtained by the
succession of operators

Un+1
j = L

∆t
2

s L∆t
h L

∆t
2

s Un
j (7)

where
U = (α1, α1ρ1, α1ρ1u1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2E2)

T .

L∆t
h is the operator of numerical solution of the hyperbolic part of the

system (1) over ∆t

L
∆t
2

s is the operator of integration of the source and relaxation terms over

half of the time interval, i.e.
∆t

2
.

[3] G. Strang, On the construction and comparison of difference schemes, SIAM J. Num. Anal. 5, 506-517 (1968).
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Hyperbolic Operator

A modified Godunov type scheme is used to take into account the
discretization of non-conservative part of the system.

The discretization of non-conservative terms depends on the choice
of the flux for the conservative fluxes.

HLL and HLLC solvers are used.

To achieve second order accuracy the MUSCL method is used.
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Source and Relaxation Operators

According to the Strang splitting (7), we have to solve the following
system of ordinary differential equations.

dU

dt
= S (8)

where U = (α1, α1ρ1, α1ρ1u1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2E2)
T

The source vector S can be decomposed as

S = SS + SV + SP + ST (9)

where SV ,SP and ST are associated with velocity, pressure and
temperature relaxation terms respectively and SS represents the
other source terms.
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SS =



0
−2α1ρ1u1/r
−2α1ρ1u

2
1/r

−2((ρ1E1 + p1)α1u1)/r
−2α2ρ2u2/r
−2α2ρ2u

2
2/r

−2((ρ2E2 + p2)α2u2)/r


, SV =



0
0

λ(u2 − u1)
λU(u2 − u1)

0
−λ(u2 − u1)
−λU(u2 − u1)


, (10)

SP =



µ(p1 − p2)
0
0

µP(p2 − p1)
0
0

−µP(p2 − p1)


and ST =



θ

Φ
(T2 − T1)

0
0

θ(T2 − T1)
0
0

−θ(T2 − T1)


(11)
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The system (8) is solved by successive integrations considering each
one of the source vectors alone.

The solution of the system (8) with SS can be achieved by e.g.
Runge-Kutta schemes.

The system (8) with velocity and pressure relaxation terms is solved
by instantaneous relaxation procedures of Saurel and Abgrall [1].

[1] R. Saurel , R. Abgrall, A multiphase Godunov method for compressbile multifluid and multiphase flows, Journal

of Computational Physics, 150 (2), 425-467, (1999).
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Temperature Relaxation

In order to have a temperature relaxation we solve the following system
of ODE

dU

dt
= ST (12)

with θ →∞ .
Consider the equations of phase ’1’

∂α1

∂t
=

θ

Φ
(T1 − T2) (13a)

∂α1ρ1

∂t
= 0 (13b)

∂α1ρ1u1

∂t
= 0 (13c)

∂α1ρ1E1

∂t
= θ(T2 − T1) (13d)
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α1ρ1 and α1ρ1u1 stay constant through the relaxation process.

From system (13) we can get

∂e1

∂t
= − Φ

α1ρ1

∂α1

∂t
(14)

Integrating this equation, we obtain the following approximation

e∗1 = e0
1 −

Φ̄

α1ρ1
(α∗

1 − α0
1) (15)

where ’0’ and ’*’ refer to the states before and after relaxation
process and Φ̄ is the mean value between states (α0

1, ρ
0
1, e

0
1 ) and

(α∗
1 , ρ

∗
1 , e

∗
1 ).

We can proceed in the same way to get a similar result for phase ’2’.

Now, we aim to find α1 that satisfy the equilibrium condition

g(α1) = T2(e2, ρ2)− T1(e1, ρ1) = 0 (16)
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The temperature relaxation procedure is used at each time step after the
pressure relaxation.

But, now we see that the pressure will change again and we lose the
equality of pressure that achieved by the pressure relaxation.

To solve this problem we assume that the pressure will stay constant through
the temperature relaxation. This assumption agrees with the physical situation
since the pressure relaxed much faster than the temperature.

It remains to find an appropriate expression for Φ. To do that we use the
second law of thermodynamics. i.e. the generated entropy of the mixture
increases or stays constant.

During the temperature relaxation we assume that the velocity and
pressure equilibrium conditions are satisfied. To take into account this
point, we use the model of one velocity and one pressure. Thus to find Φ
we used the entropy equations of a five-equation reduced model.
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Applying the reduction method presented in Murrone and Guillard [4] on the model
(1), we obtain the following five-equation model

∂α1

∂t
+ u · ∇α1 =

α1α2(ρ2c2
2 − ρ1c2

1 )

α2ρ1c2
1 + α1ρ2c2

2

∇ · u (17a)

+

α1α2(
Γ1

α1
+

Γ2

α2
)

α2ρ1c2
1 + α1ρ2c2

2

(1−
p

Φ
)θ(T2 − T1)

∂α1ρ1

∂t
+∇ · (α1ρ1u) = 0 (17b)

∂α2ρ2

∂t
+∇ · (α2ρ2u) = 0 (17c)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = 0 (17d)

∂ρE

∂t
+∇ · (ρE + p)u = 0 (17e)

where ρ = α1ρ1 + α2ρ2, ρe = α1ρ1e1 + α2ρ2e2 and Γk =
1

ρk

„
∂pk

∂ek

«
ρk

[4] A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of

Computational Physics, 202 (2), 664 - 698 (2005).
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To find the entropy equations we proceed in a similar way to the method that used by
Saurel, Petitpas and Abgrall [5]. We derive two hybrid equations for the entropies of
phases:

The first equation comes from the using of Gibbs relations with mixture energy
and momentum conservation.

The second equation comes from the pressure equilibrium between phases.

Denote the material derivative as
D(.)

Dt
=

∂(.)

∂t
+ u · ∇(.)

The Gibbs relation for each phase can be written as

Tkdsk = dek −
pk

ρ2
k

dρk , k = 1, 2 (18)

where sk is the specific entropy.

[5] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating

and flashing flows, Journal of Fluid Mechanics, 607, 313-350 (2008).
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Using Gibbs relations with model (17) we obtain

α1ρ1T1
Ds1

Dt
+ α2ρ2T2

Ds2

Dt
= 0 (19)

A second equation is derived from the pressure equilibrium

p1(ρ1, s1) = p2(ρ2, s2) (20)

By differentiation, we have„
∂p1

∂ρ1

«
s1

Dρ1

Dt
+

„
∂p1

∂s1

«
ρ1

Ds1

Dt
=

„
∂p2

∂ρ2

«
s2

Dρ2

Dt
+

„
∂p2

∂s2

«
ρ2

Ds2

Dt
(21)

Using the following relations for square speed of sound and Gruneisen coefficient

c2
k =

„
∂pk

∂ρk

«
sk

, Γk =
1

ρkTk

„
∂pk

∂sk

«
ρk

, k = 1, 2 (22)

we obtain

ρ1T1Γ1
Ds1

Dt
− ρ2T2Γ2

Ds2

Dt
= −c2

1

Dρ1

Dt
+ c2

2

Dρ2

Dt
(23)
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Using (19) and (23), we get

α1α2ρ1T1

„
Γ1

α1
+

Γ2

α2

«
Ds1

Dt
= α2

„
c2
2

Dρ2

Dt
− c2

1

Dρ1

Dt

«
(24a)

α1α2ρ2T2

„
Γ1

α1
+

Γ2

α2

«
Ds2

Dt
= α1

„
c2
1

Dρ1

Dt
− c2

2

Dρ2

Dt

«
(24b)

with (17b) and (17c) we obtain

α1ρ1T1

„
Γ1

α1
+

Γ2

α2

«
Ds1

Dt
=

„„
ρ1c2

1

α1
+

ρ2c2
2

α2

«
Dα1

Dt
− (ρ2c

2
2 − ρ1c

2
1 )∇ · u

«
(25a)

α2ρ2T2

„
Γ1

α1
+

Γ2

α2

«
Ds2

Dt
= −

„„
ρ1c2

1

α1
+

ρ2c2
2

α2

«
Dα1

Dt
− (ρ2c

2
2 − ρ1c

2
1 )∇ · u

«
(25b)
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Then using the volume fraction equation (17a) in (25) we get

α1ρ1T1
Ds1

Dt
=

“
1−

p

Φ

”
θ(T2 − T1) (26a)

α2ρ2T2
Ds2

Dt
= −

“
1−

p

Φ

”
θ(T2 − T1) (26b)

Combining these equations we get the following equation for the mixture entropy

∂ρs

∂t
+∇ · (ρsu) = θ

“
1−

p

Φ

” (T2 − T1)2

T1T2
(27)

where ρs = α1ρ1s1 + α2ρ2s2

According to the second law of thermodynamics

∂ρs

∂t
+∇ · (ρsu) = θ

“
1−

p

Φ

” (T2 − T1)2

T1T2
≥ 0 (28)

Thus we want that

Φ ≥ p (29)
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Numerical Results

Initially we consider the radius of the bubble Rmax = 0.75 mm.

The pressure inside the bubble equals to the saturated vapor
pressure psat = 2330 pa.

The pressure of the water is 1 bar .

The temperature inside and outside the bubble is 293.15 K .

The interval of computations is [0, 20Rmax ] in radial direction.

We compare our results with the experimental results of [6].

[6] S. Müller, M. Bachmann, D. Kröninger, Th. Kurz and Ph. Helluy, Comparison and Validation of Compressible

Flow Simulations of Laser-Induced Cavitation Bubbles, Report No. 285, IGPM, RWTH Aachen, 2008.
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Figure 1: The collapse and the rebound of the radius of the bubble versus time,

HLLC 2500 cells
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Figure 2: The pressure at the center of the bubble versus time, HLLC 2500 cells
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Figure 3: The temperature at the center of the bubble versus time, HLLC 2500 cells
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Figure 4: Spatial profiles of temperature at four moments of time, time is shown

with respect to the collapse moment, HLLC 2500 cells
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Figure 5: Spatial profiles of pressure at four moments of time, time is shown with

respect to the collapse moment, HLLC 2500 cells
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Figure 6: Spatial profiles of pressure and temperature at four moments of time, time

is shown with respect to the collapse moment, vertical lines mark the vapor bubble

radius, HLLC 2500 cells
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Figure 7: The collapse and the rebound of the radius of the bubble versus time,

comparison
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Figure 8: The temperature at the center of the bubble versus time, comparison
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Figure 9: The pressure at the center of the bubble versus time, comparison
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Future Work

Considering the phase transition

Considering other Riemann solvers, i.e VFRoe

Dealing with reduced models for one velocity, one pressure and/or
one temperature.
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[6] S. Müller, M. Bachmann, D. Kröninger, Th. Kurz and Ph. Helluy, Comparison
and Validation of Compressible Flow Simulations of Laser-Induced Cavitation
Bubbles, Report No. 285, IGPM, RWTH Aachen, 2008.

39


	Introduction
	Mathematical Model
	Mathematical Properties of the Model
	Numerical Method
	Hyperbolic Operator
	Source and Relaxation Operators
	Temperature Relaxation

	Numerical Results
	Future Work

