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1 Introduction

Adaptive solution concepts aim at achieving a desired “quality” of a numerical solution
(usually in terms of error or deviation bounds with brespect to a given norm) at possi-
bly low numerical cost by exploiting information acquired during the solution process,
thereby extending the scope of computability.

In a real life application context such methods draw from several disciplines such as
computer science, physical modeling, and mathematics. This lecture is concerned with
the relevant mathematical foundations.

The problem areas of interest can be roughly divided into the following categories:

• Capturing (mathematical) objects that are given explicitly in terms of measure-
ments or observations, (imaging, machine learning).

• Capturing (mathematical) objects that are given only implicitly as solutions of dif-
ferential or integral equations, in brief operator equations.

In each of these categories one may encounter different regimes, namely

• Low spatial dimension: classical models in continuum mechanics, up to three spa-
tial and a time variable. Computational complexity is then essentially governed
by the regularity (measure of smoothness in terms of differentiability or related
properties) of the searched objects;

• high spatial dimension: one tries to capture functions of many (even several thou-
sand) variables. Examples are: models in high-dimensional phase space (Schrödinger
equation for electronic structure calculations, Fokker-Planck equations, paramet-
ric PDEs, stemming e.g. from stochastic PDEs, data-mining, etc.). The comploex-
ity of solution concepts is now no longer be goverend by regularity alone. Result-
ing effects are commionly referred to as curse of dimensionality. It can be mitigated
or avoided by using sparsity. This means roughly speaking that the searched ob-
ject can be approximated within a desired accuracy tolerance by relatively few
terms of a (possibly problem dependent) basis (or more generally dictionary).

Methodologies addressing these issues draw from several mathematical areas such as
numerical analysis, partial differential equations (PDEs), harmonic analysis, functional
analysis, statistical estimation. In this course, I try to bring out the basic ideas and the
interconnections between the various conceptual platforms. I do not aim at providing
all details but rather at working towards a common conceptual platform that helps to
place the various aspects in a propere context and navigate between them.
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2 The Role of Nonlinear Approximation Theory, Examples
and Basics

We discuss first some basic principles from approximation theory on which the
analysis and understanding of adaptive methods are based upon. We distin-
guish two basic paradigms:

• linear methods and

• nonlinear methods.

Adaptive methods are instances of nonlinear schemes.

2.1 A Guiding Example: Approximation by Piecewise Constants

2.1.1 Linear Methods

Setting:

Ω = (0, 1)

Pn =

{[k− 1
n

,
k

n

)
, k = 1, ..., n

}
uniform partitions

Approximation system:

Sn :=

{
g =
∑
I∈Pn

cIχI : cI ∈ R, I ∈ Pn

}
(2.1.1)

where

χI(x) =

{
1, if x ∈ I ,
0, else .

Task: understand the error

en(f) := inf
g∈Sn
‖f− g‖L∞(Ω) , (2.1.2)

where
‖f‖L∞(Ω) = sup

x∈Ω
|f(x)| .

Questions:

• How fast can en(f) decay as n→∞?

• On which properties of f does the decay of en(f) depend?
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Basic concept: Approximation classes

Ar ((Sn)n∈N, C(Ω)) = {f ∈ C(Ω) : sup
n∈N

nren(f)︸ ︷︷ ︸
:=|f|Ar

<∞} (2.1.3)

‖f‖Ar =: ‖f‖L∞(Ω) + |f|Ar

Exercise 2.1.1. Show that ‖f‖Ar is a quasi-norm for the space Ar ((Sn)n∈N, C(Ω)).

How to read membership to Ar ((Sn)n∈N, C(Ω))?

f ∈ Ar ((Sn)n∈N, C(Ω)) ⇒ inf
g∈Sn
‖f− g‖L∞(Ω) ≤ |f|Ar n

−r

Problem:

Characterize Ar ((Sn)n∈N, C(Ω)) in terms of “intrinsic” properties of f such as
smoothness properties – this is a central question in approximation theory.

Hölder continuity:

Lip (r, C(Ω)) := {f ∈ C(Ω) : ∃C > 0 : |f(x) − f(y)| ≤ C |x− y|r , x, y ∈ Ω}

(2.1.4)
‖f‖Lip(r,C(Ω)) := ‖f‖L∞(Ω) + |f|Lip(r,C(Ω))

|f|Lip(r,C(Ω)) := inf
{
C :

|f(x) − f(y)|

|x− y|r
≤ C ∀ x, y ∈ Ω

}
(Common alternative notation: Lip (r, C(Ω)) = Cr(Ω), r < 1)

Theorem 2.1.1. One has
Ar ((Sn)n∈N, C(Ω)) = Lip (r, C(Ω)) , 0 < r ≤ 1 and
∃ c, C > 0 : c ‖f‖Lip(r,C(Ω)) ≤ ‖f‖Ar ≤ C ‖f‖Lip(r,C(Ω)) .

(2.1.5)

Thus smoothness is characterized by approximability.

Proof. 1) “Direct Theorem”: Show Lip (r, C(Ω)) ⊆ Ar ((Sn)n∈N, C(Ω)), i.e.,

‖f‖Ar
!

≤ C ‖f‖Lip(r,C(Ω)) . (2.1.6)

In other words we need to find a constant C and for each n ∈ N a g = gn ∈
Sn such that nr‖f − g‖L∞(Ω) ≤ C|f|Lip(r,C(Ω)). Given f ∈ Lip (r, C(Ω)) let g :=∑

I∈Pn f(ξI)χI ∈ Sn, where ξI is the midpoint of the interval I. Then we have

‖f− g‖L∞(Ω) = max
I∈Pn

max
x∈I

|f(x) − f(ξI)|

≤ max
I∈Pn

max
x∈I

|f(x) − f(ξI)|

|x− ξI|
r |x− ξI|

r
,
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and by Hölder continuity

≤ max
I∈Pn

(
|I|

2

)r
|f|Lip(r,C(Ω))

= (2n)−r |f|Lip(r,C(Ω)) .

Therefore
en(f) ≤ n−r2−r |f|Lip(r,C(Ω))

and
|f|Ar ≤ 2−r |f|Lip(r,C(Ω)) .

This is (2.1.6) which yields

Lip (r, C(Ω)) ⊆ Ar ((Sn)n∈N, C(Ω)) .

2) “Inverse Theorem”: Show Ar ((Sn)n∈N, C(Ω)) ⊆ Lip (r, C(Ω)) which means

c ‖f‖Lip(r,C(Ω))

!

≤ ‖f‖Ar . (2.1.7)

To see this, pick n ≥ 2 and any x, y ∈ Ω such that 1
n
≤ |x− y| ≤ 1

n−1
.

Let g ∈ Sn such that ‖f− g‖L∞(Ω) ≤ |f|Ar n
−r. We consider two cases.

Case a): x, y ∈ I ∈ Pn.

|f(x) − f(y)| = |f(x) − g(x) + g(x) − f(y)|

= |f(x) − g(x) + g(y) − f(y)|

≤ |f(x) − g(x)|+ |g(y) − f(y)|

≤ 2‖f− g‖L∞(Ω),

Hence,

|f(x) − f(y)|

|x− y|r
≤ 2‖f− g‖L∞(Ω)|x− y|

−r ≤ 2‖f− g‖L∞(Ω)n
−r ≤ 2|f|Ar,

by our choice of g. This proves the claim in case a).

Case b): x, y do not belong to the same interval. In this case, since n ≥ 2, they
must belong to adjacent intervals. Let a be the shared endpoint of these two
intervals, then

|f(x) − f(y)| ≤ |f(x) − f(a)|+ |f(a) − f(y)| ,

6



where w.l.o.g. x < y. Applying case a) to (x, a) and (a, y) we obtain

|f(x) − f(y)|

|x− y|r
≤ |f(x) − f(a)|

|x− a|r
+

|f(y) − f(a)|

|y− a|r
≤ 4 |f|Ar , (2.1.8)

and hence |f|Lip(r,C(Ω)) ≤ 4 |f|Ar .

Remark 2.1.1. This is an example of linear approximation, although

f→ g∗ = argmin
g∈Sn

‖f− g‖L∞(Ω)

is a nonlinear mapping. We speak of linear approximation because we approximate from
linear spaces given independently of f.

Remark 2.1.2. r = 1 is the highest possible order achieved by approximation from Sn
in the sense that

en(f) = O(n−r) for some r > 1 ⇒ f = const. (2.1.9)

This is called saturation.

Proof. See Corollary 2.1.1 later below.

2.1.2 Nonlinear Approximation

Next we discuss an example of nonlinear approximation. Consider

Σn = {g : ∃ partition P ofΩ, #P ≤ n, g =
∑
I∈P
cIχI, cI ∈ R} . (2.1.10)

Note:
f, g ∈ Σn ⇒ f+ g ∈ Σ2n (2.1.11)

that is Σn is not a linear space. Now we are interested in

σn(f) := inf
g∈Σn
‖f− g‖L∞(Ω)

which is a nonlinear best approximation error. We can still define related ap-
proximation spaces

Ar ((Σn)n∈N, C(Ω)) = {f ∈ C(Ω) : sup
n∈N

nrσn(f) <∞}

‖f‖Ar := ‖f‖L∞(Ω) + |f|Ar , |f|Ar := sup
n∈N

nrσn(f) .
(2.1.12)
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Remark 2.1.3. Ar ((Σn)n∈N, C(Ω)) is a linear space and ‖·‖Ar is a quasi-norm, i.e.,
there exists a constant C such that

‖f+ g‖Ar ≤ C (‖f‖Ar + ‖g‖Ar) . (2.1.13)

Proof. exercise

Problem: Again we wish to characterize Ar ((Σn)n∈N, C(Ω)). We discuss only
the case r = 1.
Questions:

• What does nonlinearity buy us? Do we have

A1 ((Sn)n∈N, C(Ω)) $ A1 ((Σn)n∈N, C(Ω)) ?

• What is the main principle that gives us something better ?

The main tool for this is another smoothness notion

V(f,Ω) := sup
n,0≤x0<...<xn≤1

n∑
j=1

|f(xj) − f(xj−1)| ,

the total variation of f. The closure of C(Ω) under this metric is called BV(Ω),
the space of functions with bounded variation.

Remark 2.1.4. It can be shown that every BV-function can be written as a sum of two
monotone functions, see [32].

Theorem 2.1.2. One has

A1 ((Σn)n∈N, C(Ω)) = BV(Ω) ∩ C(Ω) , (2.1.14)

|f|A1 =
1

2
V(f,Ω) . (2.1.15)

Comments: A short discussion of this result prior to the proof.

Corollary 2.1.1. The highest nontrivial approximation rate achievable by piecewise
constants on n intervals is O(n−1):

(σn(f) ≤ Cn−r for some r > 1) ⇒ (f = const)

Exercise 2.1.2. One has

Lip (1, C(Ω)) $ BV(Ω) ∩ C(Ω), (2.1.16)

i.e., the nonlinear method provides the optimal rate for a strictly larger class of functions
than that for which the linear method achieves the optimal rate.
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Comments:

• nonlinear aproximation does not increase the highest possible rate but

• nonlinear approximation retains the highest rate for a much larger class of
functions, so it compensates lack of regularity to a certain extend.

Exercise 2.1.3. i) f(x) =
√
x, Ω = [0, 1], compare en(f), σn(f). More generally:

f(x) = xs, 0 < s < 1, f ∈ Lip (r, C(Ω)) if and only if r ≤ s.
ii) Let

W1(L1(Ω)) := {f :

∫
Ω

|f ′(t)| dt <∞} .

Show that
W1(L1(Ω)) $ BV(Ω) (2.1.17)

and that for f ∈W1(L1(Ω)), we have

V(f,Ω) =

∫
Ω

|f ′(t)| dt . (2.1.18)

The above two examples illustrate the principal distinctions between linear
and nonlinear schemes. The superior performance of nonlinear approximation
hinges on an equidistribution principle. In the above “Direct Theorem” the vari-
ation was equidistributed. The underlying approximation method is only an
idealized conceptual trick because one generally does not have the information
about the target function f needed to construct such an approximation.

Proof of Theorem 2.1.2: Suppose that f ∈ BV(Ω) ∩ C(Ω). To show (2.1.15)
observe that V(f, ·) is set additive, that is for [a, b] = [a, c] ∪ [c, b] one has

V (f, [a, b]) = V (f, [a, c]) + V (f, [c, b]) .

The key idea is to choose those intervals for piecewise polynomial approxima-
tion that equidistribute variation, that is given f ∈ BV(Ω)∩C(Ω) (for the direct
theorem BV ⊆ A1), choose 0 = x0 < ... < xn = 1 such that

V(f, Ij) =
1

n
V(f,Ω), j = 1..n, Ij = [xj−1, xj) . (2.1.19)

Clearly, the xj’s may be very irregularily distributed and their location depends
on f. (Equipartition of the range, not of the domain).

Next observe that for any partition P the best constant approximation on I ∈ P

is given by the medianmI(f) of f on I.

mI(f) :=
1

2

(
max
x∈I

f(x) + min
x∈I

f(x)

)
, (2.1.20)
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that is
mI(f) = argmin

c∈R
‖f− c‖L∞(I) , ‖f−mI(f)‖L∞(I) ≤

V(f, I)

2
.

Hence

eIk(f) = inf
c∈R
‖f− c‖L∞(Ik)

= ‖f−mIk(f)‖L∞(Ik)
≤ V(f, Ik)

2
=
1

2

V(f,Ω)

n
.

Thus
σn(f) ≤ max

k=1,..,n
eIk(f) ≤

1

2n
V(f,Ω)

and thereby
2 |f|A1 ≤ V(f,Ω) (2.1.21)

which gives the “Direct Theorem”:

BV(Ω) ∩ C(Ω) ⊆ A1 ((Σn)n∈N, C(Ω)) and |f|A1 ≤
1

2
V(f,Ω) .

For the “Inverse Theorem” assume f ∈ A1 ((Σn)n∈N, C(Ω)) and show f ∈
BV(Ω) i.e., we wish to show that V(f,Ω)

!

≤ C|f|A1 . To see this, onsider an
arbitrary partition P = {[xj−1, xj) = Ij, j = 1, .., n}, and set g :=

∑
I∈P f(ξI)χI for

some ξI ∈ I. Observe that

V(g,Ω) =

n∑
j=1

∣∣g(ξIj) − g(ξIj−1)∣∣ = n∑
j=1

∣∣f(ξIj) − f(ξIj−1)∣∣ ≤ V(f,Ω) .

Since∣∣f(ξIj) − f(ξIj−1)∣∣ ≤ |f(ξIj)︸ ︷︷ ︸
=g(ξIj )

−f(xj−1)|+ |f(xj−1) − f(ξIj−1)︸ ︷︷ ︸
g(ξIj−1 )

| ≤ 2 ‖f− g‖L∞(Ω)

it follows that
V(g,Ω) ≤ 2n ‖f− g‖L∞(Ω) . (2.1.22)

We use this to show next that also V(f,Ω) ≤ Cn ‖f− g‖L∞(Ω) for some constant
C which would prove our claim. To that end, consider any t0 < t1 < ... < tk in
Ω and note that

k∑
j=1

|f(tj) − f(tj−1)| ≤
k∑
j=1

(|f(tj) − g(tj)|+ |g(tj−1) − f(tj−1)|+ |g(tj) − g(tj−1)|)

≤ V(g,Ω) + 2k ‖f− g‖L∞(Ω)

(2.1.22)

≤ 2(n+ k) ‖f− g‖L∞(Ω) .
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Taking the infimum over all g ∈ Σn gives

k∑
j=1

|f(tj) − f(tj−1)| ≤ 2(n+ k)σn(f) = 2

(
1+

k

n

)
nσn(f)

f∈A1
≤ 2

(
1+

k

n

)
|f|A1 .

And for the limit n→∞
k∑
j=1

|f(tj) − f(tj−1)| ≤ 2 |f|A1 .

Since k, tj are arbitrary this yields V(f,Ω) ≤ 2 |f|A1 . �

2.1.3 Towards Algorithmic Realizations

Unfortunately, finding optimal partitions by equilibrating variation is ussually
practically infeasible.

Question:

Can one find an algorithm that works for every continuous function
and achieves the same rate O(n−1) if f ∈ BV(Ω) ∩ C(Ω) (without us-
ing this knowledge directly).
An algorithm that realizes the best possible rate without prior knowl-
edge of the properties of f is called universal.

A central idea is to equidistribute local errors. Recall that mI(f) is the median
of f on I and that

mI(f) = argmin
c∈R

‖f− c‖L∞(I) .

Ideal scheme:

• Pick ε > 0 target accuracy.

• Choose partition Pε such that for all I ∈ Pε:

eI(f) = inf
c∈R
‖f− c‖L∞(I) = ‖f−mI(f)‖L∞(I) = ε .

• Set
gε =

∑
I∈P
mI(f)χI ⇒ ‖f− gε‖L∞(Ω) = ε .
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Question: How many intervals belong to Pε?

(#Pε) · ε =
∑
I∈Pε

ε =
∑
I∈Pε

eI(f)
if f∈BV(Ω)∩C(Ω)

≤
∑
I∈Pε

V(f, I)

2
=
1

2
V(f,Ω) ,

which gives

ε = ‖f− gε‖L∞(Ω) ≤
1

2
(#Pε)−1V(f,Ω) . (2.1.23)

Thus, we obtain

#Pε ≤
V(f,Ω)

2ε
. (2.1.24)

In particular, taking ε = V(f,Ω)
2
n−1 leads to (#Pε) ≤ n, i.e., the error equidistri-

bution principle realizes the optimal rate. This latter principle works in most
adaptive methods.

This ideal scheme is, of course, difficult to implement because it is hard to find
Pε. A more practical alternative uses the greedy paradigm to push local errors
towards equilibration:

Adaptive refinements (here in the simplest prototype version):

Algorithm 2.1.1. Ω = (0, 1), fix ε > 0, Pgood,Pbad

i) Set Pbad = {Ω}, Pgood = ∅
ii) if Pbad 6= ∅, for I ∈ Pbad

if eI(f) ≤ ε,Pbad\{I}→ Pbad,Pgood ∪ {I}→ Pgood
else (Pbad\{I}) ∪ {I0, I1}→ Pbad,Pgood → Pgood

where I = I0 ∪ I1, |I0| = |I1| =
|I|

2

iii) if Pbad = ∅, set Pε = Pgood
set gε =

∑
I∈PεmI(f)χI

Algorithm 2.1.1 is an example of tree approximation. Hence it is more restric-
tive since only dyadic intervals I = [l 2−k, (l + 1)2−k), l = 0, ..., 2k − 1, k ∈ N0
occur. The question is: What do we lose?

For f ∈ C(Ω), Algorithm 2.1.1 terminates after finitely many steps.

Set
gε :=

∑
I∈Pε

mI(f)χI .

By construction
‖f− gε‖L∞(Ω) ≤ ε . (2.1.25)
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How “good” this algorithm is depends on how many intervals belong to Pε.
So we are again interested in the relation

ε
?↔ #Pε

depending on properties of f. Remember from (2.1.24): we have shown that
for f ∈ BV(Ω) ∩ C(Ω) the ideal scheme produces a partition P∗ε with #P∗ε ≤
(2ε)−1V(f,Ω).

To estimate #Pε for the output Pε of Algorithm 2.1.1 we we need a new smooth-
ness measure:

Hardy-Littlewood maximal function
For f ∈ L1(Ω) consider

Mf(x) = sup
I3x

1

|I|

∫
I⊆Ω

|f(t)| dt . (2.1.26)

Mapping properties (see e.g. [32, 31]):

Theorem 2.1.3. For 1 < p ≤∞:

Mf ∈ Lp(Ω) ⇔ f ∈ Lp(Ω) .

For p = 1:
Mf ∈ L1(Ω) ⇔ |f| log(1+ |f|) ∈ L1(Ω) .

Our new smoothness condition is

M(f ′) ∈ L1(Ω) .

(This is a stronger condition than f ′ ∈ L1(Ω) ⇔ f ∈W1(L1(Ω)) ⊂ BV(Ω))

Remark 2.1.5. For any f withMf ′ ∈ L1 one has

(#Pε) ≤ max
{
1, ε−1 ‖Mf ′‖L1(Ω)

}
. (2.1.27)

In other words, the algorithm constructs an approximation with accuracy O(n−1) at
the expense of n pieces wheneverMf ′ ∈ L1.
Proof. We need to count #Pε and w.l.o.g. #Pε > 1. Key observation: If I ∈ Pε its
parent Î belongs to Pbad, i.e., eÎ(f) > ε. Hence one has

ε < eÎ(f) ≤
1

2
V(f, Î)

(2.1.18)
=

∣∣̂I∣∣
2

1∣∣̂I∣∣
∫
Î

|f ′(t)| dt = |I|
1∣∣̂I∣∣
∫
Î

|f ′(t)| dt ≤ |I|Mf ′(x),

13



for any x ∈ I. Let x̄minimizeMf ′ over I. Then

Mf ′(x̄) ≤ 1

|I|

∫
I

|Mf ′(t)|dt,

so that
ε ≤ |I|Mf ′(x̂) ≤

∫
I

|Mf ′(t)|dt,

and consequently

‖Mf ′‖L1(Ω) =

∫
Ω

|Mf ′(t)| dt =
∑
I∈Pε

∫
I

|Mf ′(t)| dt ≥ (#Pε) · ε .

Thus,

#Pε ≤
‖Mf ′‖L1(Ω)

ε
. (2.1.28)

Moreover, for n ∈ N and ε = ‖Mf ′‖L1(Ω) n
−1 the algorithm creates a partition Pε

of at most n intervals, giving accuracy ‖Mf ′‖L1 n−1, it provides the optimal rate
for the class

M1(Ω) := {f ∈ L1(Ω) :Mf ′ ∈ L1(Ω)}.

.

What is the meaning ofMf ′ ∈ L1?

The theorem says that

|f ′| log(1+ |f ′|) ∈ L1(Ω) (2.1.29)

which is strictly (but only a little) stronger than f ′ ∈ L1(Ω) which implies
f ∈ BV(Ω) ∩ C(Ω). In fact, f ′ ∈ Lp(Ω), p > 1, implies (2.1.29). Hence the
adaptive algorithm realizes the same work-accuracy balance ε ↔ n(ε) as the
“best partition” scheme under slightly stronger smoothness requirements. We
shall encounter later more general results of this type.

Comments:

1. In the above abstract form Algorithm 2.1.1 is still idealized. However, as
will be seen later, it is very close to practical versions arising for instance
in machine learning, data coarsening, or implicitly in PDE solvers.

2. So far: Approximation methods were based on localization and equidistri-
bution. Moreover linear and nonlinear approximability could be charac-
terized through regularity viz. smoothness properties of the approximand

14



f. Another important class of adaptation concepts is based on representa-
tions of f in terms of a basis (or dictionary). This is particularly important
in the spatially high-dimensional regime. In either case it is essential to
have some understanding of the involved function spaces describing the
properties of f.

2.2 A General Framework: Approximation Classes

The above examples suggest the following abstract setting:

• Suppose that X with norm ‖ · ‖X is a (quasi-)Banach space.

• Let Σn ⊂ X, n ∈ N0, be determined by n degrees of freedom/parameters
s.t.

g ∈ Σn ⇒ cg ∈ Σn, c ∈ R, Σn + Σn ⊆ Σan some a ≥ 1, (2.2.1)

for instance, piecewise constants of fixed degree on arbitrary partitions
into n intervals. Let

σn(f)X := inf
g∈Σn
‖f− g‖X (2.2.2)

denote the error of best n-term approximation.

• Consider the approximation class

Ar((Σn),X) := {f ∈ X : |f|Arq <∞} (2.2.3)

‖f‖Arq := ‖f‖X + |f|Arq ,

where

|f|Arq :=

{
sup

n∈N n
rσn(f)X, q =∞,(∑

n∈N
(
nrσn(f)X

)q
1
n

)1/q
, 0 < q <∞. (2.2.4)

Thus, we put all f ∈ X into the same bucket whose error of best n-term
approximation decays at least as O(n−r). For q < ∞ this decay must be a
little stronger to make the series converge. So q can be viewed as a “fine
tuning” parameter. Its relevance will become clear later.
Since q = ∞ is perhaps the case of primary interest we usually write for
convenience

Ar((Σn),X) = Ar∞((Σn),X),
as in the earlier examples. In particular, f ∈ Ar((Σn),X) means that for
each n ∈ N we can find a gn ∈ Σn such that

‖f− gn‖X ≤ n−r|f|Ar .
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Remark 2.2.1. Another way to read t ∈ Ar((Σn),X) is that for any given target
accuracy ε > 0 it suffices to take

n(ε) :=

⌈( |f|Ar
ε

) 1
r

⌉ ⇒ ∃g ∈ Σn(ε) s.t. ‖f− g‖X ≤ ε,

compare this with (2.1.24), (2.1.28). Obviously the larger r the fewer terms are needed.

Remark 2.2.2. It is often convenient to work with the expression(∑
j∈N0

(
2rjσ2j(f)X

)q)1/q
∼ |f|Arq (2.2.5)

which indeed can be shown to be equivalent.

Linear Approximation:
We talk about linear approximation when the Σn are linear spaces such as splines
or finite element spaces with respect to fixed meshes

Non-linear Approximation:
Σn are non-linear sets (only satisfying (2.2.1)) such as rational functions, free-
knot splines, adaptive mesh-refinements.

Let Pm(Ω) denote the linear space of polynomials of (total) order m (degree
m− 1) overΩ. For a given partition P ofΩ let

Pm(P) :=
{∑
T∈P

χTPT : PT ∈ Pm(T), T ∈ P
}

denote the space of piecewise polynomials of order m subordinate to the parti-
tion P . The results in the previous section can be reinterpreted as follows.

Remark 2.2.3. Linear approximation classes:

Ar((P1(Pn)), C(0, 1)) = Lip(r, C(0, 1))

piecewise constants on uniform partitions Pn of (0, 1).

Remark 2.2.4. Non-linear approximation classes:

A1((Σn), C(0, 1)) = BV(0, 1)

Σn = piecewise constants with n arbitrary pieces, i.e.,

Σn =
⋃

{P1(P) : #(P) ≤ n}.
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Comments:
In the above examples we identify approximation classes with intrinsic classical
smoothness spaces. Why is this relevant? we can see from the type of smooth-
ness whether a nonlinear or adaptive approximation performs better than sim-
pler linear methods. Information about the smoothness of a function is, for
instance, provided by regularity theory for PDEs. In general the understanding
of the complexity and performance of adaptive schemes draws crucially on the
deep interrelation between approximability and regularity.

2.3 A Primer on Function Spaces

In view of the findings in the last section, we collect next some basics on function
spaces.

2.3.1 Sobolev Spaces

Classical differentiability is understood in a pointwise sense. So called weak
differentiability relaxes these requirements leading to the notion of weak deriva-
tives.

Let

‖f‖Lp(Ω) :=

{ ( ∫
Ω
|f(x)|pdx

)1/p
, 0 < p <∞,

esssup
x∈Ω|f(x)|, p =∞.

Note, this is only a quasi-norm when p < 1. The spaces of p-integrable (equivs-
lence classes of) functions are given by

Lp(Ω) :=
{
fmeasurable : ‖f‖Lp(Ω) <∞}.

These are (quasi-)Banach spaces (i.e., complete normed linear spaces).

Remark 2.3.1. Assume that Ω ⊂ Rd is a bounded domain. When r < p one can use
Hölder’s inequality to show that

‖f‖Lr(Ω) ≤ C‖f‖Lp(Ω), f ∈ Lp(Ω), (2.3.1)

with C depending on r, p,Ω, i.e., ‖ · ‖Lr(Ω) is a weaker norm than ‖ · ‖Lp(Ω). Measuring
smoothness in Lr is therefore less demanding than measuring smoothness in Lp, when
p > r. This will be used later intensely, see also Remark 2.3.2.

Consider the standard pointwise partial derivatives ∂α := ∂|α|

∂x
α1
1 ···∂x

αd
d

, α ∈ Zd+.
Here |α| = α1+ · · ·+αd. A function f ∈ Lp(Ω) possesses the αth weak derivative
Dαf ∈ Lp(Ω) if∫

Ω

f(x)∂αφ(x)dx = (−1)|α|
∫
Ω

Dαf(x)φ(x)dx, ∀ φ ∈ C∞
0 (Ω).
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Exercise 2.3.1. One has Dαf(x) = ∂αf(x) whenever f ∈ C|α|(Ω).

Sobolev semi-norm:

|f|Wm(Lp(Ω)) :=
(∑

|α|=m

‖∂αf‖pLp(Ω)

)1/p
, 1 ≤ p ≤∞;

Sobolev-norm:

‖f‖Wm(Lp(Ω)) :=
(
‖f‖p

Wm−1(Lp(Ω))
+ |f|pWm(Lp(Ω))

)1/p
, ‖f‖W0(Lp(Ω)) := ‖f‖Lp(Ω)

Assume that Ω ⊂ Rd is open, and satisfies a uniform cone-condition (at every
point x on the boundary ∂Ω of Omega one can fit a cone of a fixed opening
angle and peak x fully in Ω̄).
Sobolev-spaces:

Wm(Lp(Ω)) :=
{
f ∈ Lp(Ω) : ‖f‖Wm(Lp(Ω)) <∞}.

Remark 2.3.2. One has the following trivial continuous embeddings:

m ≤ n ⇒ Wn(Lp(Ω)) ⊆Wm(Lp(Ω)), p ≤ q ⇒ Wm(Lq(Ω)) ⊆Wm(Lp(Ω)),

where the second one follows from Remark 2.3.1.

Recall that a normed linear space (Y, ‖ · ‖Y) is called continuously embedded in
(X, ‖ · ‖X) if

‖f‖X ≤ C‖f‖Y, ∀ f ∈ Y. (2.3.2)

An important special case is p = 2. In this case one obtains Hilbert spaces, i.e.,
the norms are induced by inner products. One often uses the notation:

Hm(Ω) :=Wm(L2(Ω)), Hm0 (Ω) := clos‖·‖Hm
(
C∞
0 (Ω)

)
Exercise 2.3.2. The function f(x) := |x| belongs toH1((−1, 1)) but not toC1((−1, 1)).

Another special case is the Lipshitz space discussed earlier: W1(L∞(Ω)) =
Lip(1, C(Ω)).

2.3.2 Bounded Variation

A convenient way to define equivalent norms for the space BV(Ω) for Ω ⊂ Rd
is to use duality. To this end, for φ ∈ (Lp(Ω))d let

‖φ‖Lp(Ω) =
∥∥∥( d∑

i=1

|φi|
2
)1/2∥∥∥

Lp(Ω)
.
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For 1 < p ≤ ∞ the existence of the weak derivative can be characterized as
follows: there exists a constant C <∞ such that∫

Ω

f(x)∂αφ(x)dx ≤ C‖φ‖Lq(Ω), φ ∈ C∞
0 (Ω),

1

p
+
1

q
= 1, (2.3.3)

and in particular that f ∈W1(Lp(Ω)) if and only if∫
Ω

f(x)divφ(x)dx ≤ C‖φ‖Lq(Ω), φ ∈ (Lq(Ω))d. (2.3.4)

Here we use that Lq(Ω) is the dual space of Lp(Ω). For p = 1, q = ∞ this does
not characterize W1(L1(Ω)) because L1(Ω) is not the dual of L∞(Ω). Instead, in
this way one characterizes the space BV(Ω) of functions of bounded total varia-
tion. Specifically, define

|f|BV(Ω) := max
{∫

Ω

f(x)divφ(x)dx : φ ∈
(
C∞
0 (Ω)

)d and ‖φ‖L∞(Ω) = 1
}
.

(2.3.5)

Remark 2.3.3. One can show that f ∈ BV(Ω) if and only if sup
h∈Rd

‖∆hf‖L1(Ωh)
|h|

<∞,
where ∆hf(x) := (x + h) − f(x), Ωh := {x ∈ Ω : x + h ∈ Ω}. Thus BV(Ω) =
Lip(1, L1(Ω)).

Exercise 2.3.3. Suppose that E is a domain inΩ, Ē ⊂ Ω whose boundary ∂E has finite
Hausdorff dimensionHd−1(∂E). When the boundary is smooth enough one has

|χE|BV(Ω) = Hd−1(∂E).
This shows also that BV(Ω) 6=W1(L1(Ω)).

2.3.3 Besov Spaces

A series deficiency of the above smoothness classes is that they are too coarse
grained. A classical example is the Trace Theorem which states that the trace
opereator - a substitute for the restriction operator defined when a function is
defined pointwise - maps for instance H1(Ω) onto H1/2(∂Ω), i.e., traces of func-
tions with one weak derivative in L2(Ω) are only half differentiable in L2 on
∂Ω. An example of spaces with non-integer smoothness are the Lipshitz spaces
(also called Hölder spaces) encountered in earlier sections where smoothness
is measured in L∞. The concept of Besov spaces is important for (at least) two
reasons:

• it allows one to formulated non-integer degree of smoothness for all 0 <
p ≤∞ in a unified way;

• nonlinear and adaptive approximation is goverend by Besov-regularity,
not just by standard Sobolev regularity.
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Basic ingredients: The perhaps most important point is to describe smooth-
ness in a “derivative free” way. Instead, one uses so called moduli of smoothness:

Difference operators:

(∆hf)(x) := f(x+h)−f(x), ∆mh f = ∆
m−1
h (∆hf), Ωkh := {x ∈ Ω : x+lh ∈ Ω, l ≤ k};

Modulus of smoothness:

ωm(f, t,Ω)p := sup
|h|≤t
‖∆mh f‖Lp(Ωmh), 0 < p <∞. (2.3.6)

For p =∞ the integration overΩmh is replaced by the supremum.

Comments and related results:

• Notice that
ωm(g, t,Ω)p = 0 ∀g ∈ Pm,

becausemth order differences annihilate polynomials of degreem−1, i.e.,
orderm, just like derivatives.

• For each fixed f ∈ Lp(Ω) one has ω1(f, t,Ω)p → 0, t → 0 which expresses
continuity in Lp just like continuity in C(Ω):

ω1(f, t,Ω)∞ = sup
x∈Ω

sup
|h|≤t

|f(x+ h) − f(x)|→ 0, t→ 0.

• It is easy to show (triangle inequality) that

ωn(f, t,Ω)p ≤ Cωk(f, t,Ω)p, k ≤ n, C = C(k, n), (2.3.7)

so that each fixed f ∈ Lp(Ω) one has ωn(f, t,Ω)p → 0, t → 0, holds for an
fixed n ∈ N, see e.g. [32].

• On a deeper level the modulus characterizes compactness in Lp in the sense
that F is a compact subset of Lp(Ω) if and only if

lim
t→0 sup

f∈F
ωm(f, t,Ω)p = 0,

which corresponds to Ascoli’s Theorem for p =∞.

Clearly, for an arbitrary f ∈ Lp(Ω) the convergence of ωm(f, t,Ω)p may be ar-
bitrarily slow. However, the smoother f the faster one expects the convergence
to be. This suggests to describe smoothness by quantifying the decay of the
modulus.
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Definition 2.3.1. Let s > 0 and 0 < p, q ≤∞ and let m ∈ N be an integer such that
s < m

|f|Bsq(Lp(Ω)) :=

{ ( ∫∞
0
(t−sωm(f, t,Ω)p)

q dt
t

)1/q
, 0 < q <∞,

sup
t>0
t−sωm(f, t,Ω)p, q =∞,

Then
Bsq(Lp(Ω)) :=

{
f ∈ Lp(Ω) : |f|Bsq(Lp(Ω)) <∞}

and
‖f‖Bsq(Lp(Ω)) := ‖f‖Lp(Ω) + |f|Bsq(Lp(Ω)).

Remark 2.3.4. In analogy to (2.1.4) one can define Lipschitz spaces for Lp by

Lip(s, Lp(Ω)) := {f ∈ Lp(Ω) : sup
t>0

t−sω1(f, t,Ω)p := |f|Lip(s,Lp(Ω) <∞}. (2.3.8)

Obviously, one has

Lip(s, Lp(Ω)) = Bs∞(Lp(Ω)), 0 < s < 1. (2.3.9)

One can show that

Lip(1, Lp(Ω)) =W1(Lp(Ω)), 1 < p ≤∞
Lip(1, L1(Ω)) = BV(Ω) 6=W1(L1(Ω)). (2.3.10)

The smoothness characterized by this definition seems to depend on m, the
order of the modulus, because s is limited by m through s < m. It is a con-
sequence of Marchaud’s inequality for moduli of smoothness that this is not the
case in the sense that( ∫∞

0

(t−sωm(f, t,Ω)p)
qdt

t

)1/q
+‖f‖Lp(Ω) ∼

( ∫∞
0

(t−sωk(f, t,Ω)p)
qdt

t

)1/q
+‖f‖Lp(Ω),

(2.3.11)
as long asm,k > s, see [32].

Remark 2.3.5. One may wonder about the role of the additional parameter q ∈ (0,∞].
It will be explained later in a bit more detail. Here it suffices to note that the strongest
information is given by s and p, while q is used as a “fine-tuning” parameter.

There is another important fact at the heart of analysing the Besov spaces,
sometimes referred to as Whitney’s Theorem that says

inf
g∈Pm

‖f− g‖Lp(Ω) ∼ ωm(g,Ω)p, f ∈ Lp(Ω), (2.3.12)

with constants of equivalence depending onm,p, andΩ, where

ωm(g,Ω)p := sup
t>0

ωm(g, t,Ω)p. (2.3.13)

21



(2.3.12) says that best local polynomial approximation scales like the modulus.
One direction is familiar from Taylor’s expansion. Thus, local polynomial ap-
proximability is also a smoothness measure. One very familiar consequence of
Whitney’s Theorem can be stated as follows: let D be a fixed “reference do-
main” (e.g. unit simplex, unit cube) and let (Dh)h≥0 be a family of affine images
of D of shrinking size h = diamDh where the affine mappings have uniformly
conditioned linear parts, then rescaling arguments show that (2.3.12) implies

inf
g∈Pm

‖f− g‖Lp(Dh) ≤ Chm|f|Wm(Lp(Dh)), f ∈Wm(Lp(Dh)), (2.3.14)

where C depends on m,p, the bound on the condition of the affine mappings,
and on the reference domain D. In fact, there is a more general version

inf
g∈Pm

‖f− g‖Lp(Dh) ≤ Chδ|f|Bs∞(Lr(Dh)), δ = s−
(d
r
−
d

p

)
. (2.3.15)

When r = p this gives the order hs of approximation corresponding to the fact
that smoothness is s. When r < p measuring smoothness in Lr is weaker than
mesuring smoothness in Lp (see Remark 2.3.1). Thus, one can still quantify the
error even when f is not smooth in Lp. It lowers the rate though by d

r
− d

p
> 0.

Conversely, when r > p one gains in approximation order taking advantage of
the fact that f has smoothness s in a stronger metric.

Additional Background Facts: We record next some further useful facts with-
out proof and refer to [32] for details. In particular, this concerns the relation
between Sobolev and Besov spaces.

Remark 2.3.6. The following properties hold:

1. 0 < s < m: Bsq(Lp(Ω)) interpolates between Lp(Ω) andWm(Lp(Ω)).

2. p, q ≥ 1: Bsq(Lp(Ω)) is a Banach space, otherwise only a quasi-Banach space.

3. p, q < 1 is important for nonlinear approximation, as shown later.

4. Bmp (Lp(Ω)) 6=Wm(Lp(Ω)) for p 6= 2, but Bs2(L2(Ω)) = Hs(Ω), s ∈ R.

5. Equivalent semi-norm: ‖(aλ)λ∈I‖`p(I) :=
(∑

λ∈I |aλ|
p
)1/p

|f|Bsq(Lp(Ω)) := ‖(2sjωm(f, 2
−j,Ω)p)j∈Z+‖`q(Z+).

This follows from discretizing the integral in Definition 2.3.1. Compare this with
the expression (2.2.5) appearing in the approximation classes.
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6. Defining
Ws(Lp(Ω)) := Bsp(Lp(Ω)), s /∈ N,

one recovers the Sobolev-Slobodezcki spaces, defined through multiple integrals.
Moreover Bs∞(L∞(Ω)) are for all s > 0 the spaces referred to as Hölder spaces.

The key word above is “interpolation”. 1. says that the Besov spacesBsq(Lp(Ω)),
k < s < k+1, somehow fill the “gap” betweenWk(Lp(Ω)) andWk+1(Lp(Ω)). In-
terpolation of Banach spaces is a concept addressing the following objective. Sup-
pose that X, ‖ · ‖X, Y, ‖ · ‖Y are two Banach spaces where we assume that Y ⊂ X
in the sense of continuous embeddings. More precisely, we assume that Y has a
semi-norm | · |Y and

‖ · ‖X + | · |Y ∼ ‖ · ‖Y, (2.3.16)

i.e., the left expression is an equivalent norm on Y. Simple examples are X =
Lp(Ω), Y =Wk(Lp(Ω)), | · |Y = | · |Wk(Lp(Ω)).

Remark 2.3.7. We are considering a somewhat specialized setting. In general one need
not require an embedding of one space into the other but rather works with the spaces
X+Y,X ∩Y. For our purposes the specialized scenario suffices, see [5] for the general
picture.

We wish to “fill up” the “interval” [X,Y] by certain “intermediate” spaces
[X,Y]θ,q, parametrized by θ ∈ [0, 1], q ∈ (0,∞] (as explained later) in the follow-
ing way:

• Let L(X,Y) denote the space of bounded linear operators from X to Y en-
dowed with the norm

‖B‖L(X,Y) := sup
v∈X

‖Bv‖Y
‖v‖X

,

and suppose that B ∈ L(X1,Y1) and B ∈ L(X2,Y2).
• The interpolation method that yields the interpolation spaces

[X1,Y1]θ,q, [X2,Y2]θ,q

for fixed θ, q should ensure that

‖B‖L([X1,Y1]θ,q,[X2,Y2]θ,q) ≤ ‖B‖1−θL(X1,Y1)‖B‖
θ
L(X2,Y2). (2.3.17)

i.e., B is also bounded as a mapping between the interpolated spaces.

A classical application arises in deriving error estimates in the finite element
method. Suppose one has constructed a projectorQh whose range is a finite ele-
ment space Vh subordinate to a mesh of mesh size h. Certain such projectors are
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so calles “quasi-interpolants” which are bounded mappings in L(L2(Ω), L2(Ω))
and also in L(H1(Ω), H1(Ω)) (L2- and H1-stable). Typical error estimates (Nu-
maIV) then read

‖f−Qhf‖L2(Ω) ≤ Ch|f|H1(Ω). (2.3.18)

L2-boundedness also gives ‖f −Qhf‖L2(Ω) ≤ C‖f‖L2(Ω) = Ch0‖f‖L2(Ω). Once one
knows that Hs(Ω) = [L2(Ω), H1(Ω)]s,2 an application of (2.3.17) to B := I − Qh

yields
‖f−Qhf‖L2(Ω) ≤ Chs|f|Hs(Ω), (2.3.19)

i.e., the rate s is determined by the difference of smoothness between the norms
on the left and on the right.

The K-functional: The decisive tool to construct the interpolation spaces [X,Y]θ,q
is the K-functional (see [5] and the literature quoted there) introduced by J. Pee-
tre. Under the assumption (2.3.16) it takes the form

K(f, t) = K(f, t;X,Y) := inf
g∈Y

{
‖f− g‖X + t|g|Y

}
. (2.3.20)

Thus, K(f, t) measures closeness of f ∈ X to some element in the subspace Y.
When insisting of approximating f too well by an element from Y the second
term may become large. The optimal compromise given by K(f, t) is therefore
also a measure of smoothness when the semi-norm | · |Y measures smoothness
(as in the above examples).

Definition 2.3.2. For 0 < q ≤∞, 0 < θ < 1, let

‖f‖[X,Y]θ,q :=


( ∫∞

0
(t−θK(f, t;X,Y))q dt

t

)1/q
, 0 < q <∞,

sup
t>0
t−θK(f, t;X,Y), q =∞. (2.3.21)

and
[X,Y]θ,q := {f ∈ X : ‖f‖[X,Y]θ,q <∞}.

A glimpse at Definition 2.3.1 reveals that the interpolation norm (2.3.21) has
exactly the same structure as the Besov-semi-norm. In addition there is an im-
portant result by H. Johnen and K. Scherer [39] saying that for 1 ≤ p ≤ ∞ and
domainsΩ satisfying a uniform cone condition

K(f, t;Lp(Ω),Wm(Lp(Ω)) ∼ ωm(f, t,Ω)p (2.3.22)

with constants depending only on p,m,Ω. This explains the following remark.
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Remark 2.3.8. Besov spaces are interpolation spaces between Lp- and Sobolev spaces.
A typical example is

Bsq(Lp(Ω)) = [Lp(Ω),Wm(Lp(Ω)]θ,q, θ = s/m.

A further important result is that the approximation classesArq are interpolation spaces
under the following circumstances: suppose there exists R > 0 such that the elements
of Y satisfy the Jackson inequality

σn(f)X ≤ Cn−R|f|Y, n ∈ N, f ∈ Y, (2.3.23)

as well as a companion Bernstein inequality

|g|Y ≤ CnR‖g‖X, g ∈ Σn, n ∈ N. (2.3.24)

Then one has
Arq((Σn),X) = [X,Y]θ,q, θ = r/R. (2.3.25)

This sometimes referred to as Jackson-Bernstein-Theory.

The so called Re-iteration Theorem says that interpolating between two inter-
polation spaces is the same as interpolating between the extreme spaces. This
shows that interpolating between Besov spaces again yields Besov spaces. Like-
wise interpolating between approximation classes yields approximation classes.

Now the role of the parameter q becomes clearer as a means to distinguish
between different possible ways of interpolation yielding the same primary
smoothness s, say.

We refer to [32, 31] for more details.

Exercise 2.3.4. Let Pn denote again the uniform partition of Ω = (0, 1) into n subin-
tervals of equal length h = 1/n and let Σn = Pm(Pn), m ∈ N fixed. Determine the R
for which the Jackson and Bernstein estimates (2.3.23), (2.3.24) hold when X = Lp(Ω),
Y =Wk(Lp(Ω)).

Topography of Function Spaces: Interpolation theory helps also in deriving
the following chart showing which spaces are embedded in which ones. We
assume thatΩ is bounded or a torus.

We summarize the embedding of Besov and Sobolev spaces on Figure 1. In
this figure, a smoothness space measuring s derivatives in Lp - such as Ws(Lp)
or Bsq(Lp) for some q > 0 - is represented by the point (1/p, s) in the upper-right
quadrant. If X is a smoothness space on a domain Ω that satisfies the uniform
cone condition, which is represented by the point (1/p, t), then

• Spaces Y represented by a point in region

I := {(1/r, s) : s > t and r > p}

embed in X whenΩ is bounded, and this embedding is compact.
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Figure 1: Graphical summary of Besov and Sobolev embeddings

• Spaces Y represented by a point in region

II := {(1/r, s) : s > t, r ≤ p and s− t > d/r− d/p}

embed in X, and this embedding is compact whenΩ is bounded.

• Spaces Y represented by a point on segment

S := {(1/r, s) : s = t and r > p}

may embed in X when Ω is bounded, depending on the precise definition
of X and Y - for example Bsq1(Lr(Ω)) ⊂ Bsq2(Lp(Ω)) if and only if q1 ≤ q2 -
and this embedding is not compact.

• Spaces Y represented by a point on line

L := {(1/r, s) : s > t and s− t = d/r− d/p}

may embed in X depending on the precise definition of X and Y - for exam-
ple Bsq1(Lr(Ω)) ⊂ Btq2(Lp(Ω)) if and only if q1 ≤ q2 - and this embedding is
not compact.

• Spaces Y represented by a point in the remaining region III do not embed
in X.
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The spaces Bkq(L∞(Ω)), Wk(L∞(Ω)), Ck(Ω), k ∈ N0, 0 < q ≤∞, are all associ-
ated with the point (0, k) = (1/∞, k) on the vertical coordinate axis. The spaces
B1q(L1(Ω)), W1(L1(Ω)), BV(Ω) are associated with the point (1, 1) = (1/1, 1).
When r decreases, i.e., 1/r increases to the right, the spaces Lr get larger, i.e.,
smoothness of the same order s gets weaker when r decreases. The space
Bsr(Lr(Ω)) is still embedded in Lp(Ω) as long as

1

r
≤ s

d
+
1

p
,

1

τ
=
s

d
+
1

p
being the critical embedding. (2.3.26)

2.4 A First Application - Back to Adaptive Piecewise Polynomial
Approximation

LetΩ := (0, 1)d, Pm the space of polynomials of total orderm (degreem− 1) on
Rd. Let

Σn :=
⋃

{Pm(P) : #(P) ≤ n, P a dyadic partition}.

Here we call P a dyadic partition if all its cells result from a successive dyadic
refinement of some “father cell” starting with the root {Ω}. A dyadic partition
of a cube means its subdivision into 2d congruent cubes (the children).

Remark 2.4.1. The number of degrees of freedom carried byΣn is notn butndimPm =

n
(
m−1+d
d

)
. Since m,d are fixed the number of degrees of freedom is still uniformly pro-

portional to n. Since all estimates involve some fixed constant we retain the simpler
notation just using n.

We shall later use that such partitions can be identified with the set of leaves
of a tree with single root {Ω}, see Figure 2.

Figure 2: Dyadic refinements, tree representation

We consider the following setting:

• (Pj)j∈N0 hierarchy of uniform nested partitions; T :=
⋃
j∈N0 Pj partition tree

with roots in P0
• Pn := set of all dyadic leaf-partitions with at most n cells;
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• m fixed, Σn :=
⋃
{Pm(P) : P ∈ Pn}

• e(f, T)p := infg∈Pm ‖f− g‖Lp(T), C(T) = set of children of T ∈ T
The following algorithm is in principle identical to Algorithm 2.1.1, only the

ingredients: norm, higher polynomial order, local error indicator, differ.

Algorithm 2.4.1. 1: Initialize: Set threshold η > 0, B := {T ∈ P0 : e(f, T)p > η} set
of “bad” cells, G := {T ∈ P0 : e(f, T)p ≤ η} set of “good” cells

2: Output: partition Pη with e(f, T)p ≤ η, T ∈ Pη
3: while B 6= ∅
4: for T ∈ B

B → (B \ {T }) ∪ {T ′ ∈ C(T) : e(f, T ′)p > η}
G → G ∪ {T ′ ∈ C(T) : e(f, T ′)p ≤ η}

5: end for do
6: end while do
7: output Pη = G

Let gT ∈ Pm(T) denote a best approximation to f on T . Then

gη :=
∑
T∈Pη

gTχT ∈ Pm(Pη)

is the piecewise polynomial approximant corresponding to the output partition
Pη.
Theorem 2.4.1. Let 0 < p ≤ ∞, f ∈ Bsτ(Lτ(Ω)), 0 < s < m, δ := s− d

τ
+ d

p
> 0,

gη := argmin
g∈Pm(Pη)

‖f− g‖Lp(Ω), then

‖f− gη‖Lp(Ω) ≤ C(#Pη)−s/d|f|Bsτ(Lτ(Ω)) (C = C(p, τ,m, δ)) (2.4.1)

In addition
σn(f)Lp(Ω) = inf

g∈Σn
‖f− g‖Lp(Ω) ≤ Cn−s/d|f|Bsτ(Lτ(Ω)) (2.4.2)

Hence
Bsτ(Lτ(Ω)) ⊂ As/d

(
(Σn), Lp(Ω)), when

1

τ
<
s

d
+
1

p
(2.4.3)

Comments 2.4.1. 1. Note that we do not have ‖f − gη‖Lp(Ω) ≤ η when p < ∞.
One only has

‖f− gη‖pLp(Ω) ≤ ηp#Pη.
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2. In contrast to Theorem 2.1.3 we have now a result for variable smoothness order.
For s = 1 however Theorem 2.1.3 gives a slightly stronger result because for any
τ > 1 the condition f ′ ∈ Lτ(Ω) implies f ∈M1(Ω) (here: s = 1, p =∞, d = 1).

3. For approximation in one spatial variable (d = 1) we obtained error bounds of
the form . n−s when s is the degree of smoothness and n the number of degrees
of freedom. In Theorem 2.1.1 the number of degrees of freedomn is related to a
mesh-size h = 1/n, i.e., n = h−1. For a uniform Cartesian grid of mesh-size h
for the unit square (d = 2) we have n = h−2 and in general for the unit cube in
Rd, the mesh-size h corresponds to n = h−d degrees of freedom. More generally,
consider for bounded domains in Rd a quasi-uniform partition Ph, i.e., all cells
have approximately the same diameter h and all cells are “ball-like”, i.e., the ratio
of the radii of the smallest circumscribed ball and the largest inscribed ball remains
uniformly bounded over all cells. Such partitions are called shape-regular. One
then has

#Ph ∼ h−d, h ∼ (#Ph)−1/d. (2.4.4)

Hence, when measuring accuracy not by mesh-size but by the number of degrees
of freedom, because a mesh-size does not make sense for locally refined partitions,
we expect that errors decay at best like

error for smoothness s and n degrees of freedom scales at best like n−s/d.
(2.4.5)

For smoothness s the rate n−s/d is best possible. Thus smoothness becomes less
and less effective when the spatial dimension d increases. The error estimates
(2.4.1), (2.4.2) reflect exactly this behavior.

4. The theorem says that the simple adaptive algorithm realizes the optimal order for
approximands in the Besov space Bsτ(Lτ(Ω)). But one can actually give examples
of elements in the approximation class As/d

(
(Σn), Lp(Ω)) which do not belong to

Bsτ(Lτ(Ω)). So there exist functions which can be approximated by elements from
Σn with order n−s/d but the corresponding partition is not found by the simple
greedy strategy in Algorithm 2.4.1.

5. We can relate Theorem 2.4.1 to the embedding diagram in Figure 1. This is illus-
trated below in Figure 2.4. The smaller τ, subject to the constraint 1

τ
< s

d
+ 1

p
, the

larger the space Bsτ(Lτ(Ω)), but the theorem is no longer valid when 1
τ
= s

d
+ 1

p
,

i.e., when Bsτ(Lτ(Ω)) is on the critical embedding line. In brief, the simple adap-
tive scheme provides optimal orders (although not exhaustingAs/d

(
(Σn), Lp(Ω)))

up to the embedding line which is as far as one can go so that smoothness s still
ensures embedding in Lp(Ω).

Proof. (Sketch) (i) Since cells in Pη are good 

‖f− gη‖Lp(Ω) ≤ (#Pη)1/pη. (2.4.6)
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Figure 3: Bsτ(Lτ(Ω)) ⊂ As/d
(
(Σn), Lp(Ω)), 1

τ <
s
d + 1

p

(ii) count #Pη: in Theorem 2.1.3 the counting is based on estimating the local
errors by the maximal function. Here, the same strategy works, estimating local
errors this time by local Besov-norms. Whitney’s Theorem says infg∈Pm ‖f −
g‖Lp(Ω) ≤ Cωm(f,diamΩ,Ω)p, (see (2.3.15)) 

inf
g∈Pm

‖f− g‖Lp(T) ≤ C(diamT)s−
d
τ
+d
p |f|Bsτ(Lτ(T)), (2.4.7)

recall that s− d
τ
+ d

p
= δ,diamT ∼ 2−j when T has refinement generation j.

LetPj denote all dyadic cells of generaltion/level j (mesh-size 2−j). T ∈ Pη∩Pj⇒ e(f, P(T))p > η, P(T) parent of T , T ∈ Pj  diamT ∼ 2−j, then (2.4.7) 

η . 2−jδ|f|Bsτ(Lτ(P(T))). (2.4.8)

Next note that the Besov-seminorm is set-subadditive. This means that for any
partition P ofΩ ∑

T∈P
|f|τBsτ(Lτ(T)) . |f|τBsτ(Lτ(Ω)),

compare integer order Sobolev semi-norms. This cannot directly be seen from
Definition 2.3.1 because the modulus of continuity is not obviously subadditive
with respect to sets. However, there is a variant, the so called averaged modulus
where the “sup” is replaced by an average

ω̄m(f, t,Ω)p :=
( 1

|B(0, t)|

∫
B(0,t)

‖∆mh f‖pLp(Ωmh)dh
)1/p

. (2.4.9)
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It can be shown that both variants are equivalent, i.e., each one can be bounded
by a uniform constant multiple of the other one, where the constants depend
only on m,p. Thus, replacing the standard modulus by the averaged one in
the definition of the Besov semi-norm, yields an equivalent Besov semi-norm
and one can use that the Besov-seminorm is indeed set-subadditive. Thus,
summing over all level-j cells T ∈ Pη ∩ Pj, (2.4.8) yields

#(Pη ∩ Pj)ητ . 2−jτδ|f|τBsτ(Lτ(Ω))  #(Pη ∩ Pj) . 2−jτδη−τ|f|τBsτ(Lτ(Ω)). (2.4.10)

On the other hand,

#(Pη ∩ Pj) ≤ #(Pj)
(2.4.4)
. 2jd. (2.4.11)

Hence
#(Pη ∩ Pj) . min

{
2jd, 2−jτδη−τ|f|τBsτ(Lτ(Ω))

}
. (2.4.12)

Now j0 tip over point where both bounds are essentially of equal order, i.e.,
2j0d ∼ 2−j0τδη−τ|f|τBsτ(Lτ(Ω)). Then one obtains

#(Pη) =
∑
j≥0

#(Pη ∩ Pj) .
∑
j≤j0

2jd +
∑
j>j0

2−jτδη−τ|f|τBsτ(Lτ(Ω))

. 2j0d + 2−j0τδη−τ|f|τBsτ(Lτ(Ω)) . 2
−j0τδη−τ|f|τBsτ(Lτ(Ω)). (2.4.13)

Now 2j0d ∼ 2−j0τδη−τ|f|τBsτ(Lτ(Ω)) means that

2j0 ∼
(
η−τ|f|τBsτ(Lτ(Ω))

)− τδ
d+τδ ,

and therefore

2−j0τδη−τ|f|τBsτ(Lτ(Ω)) .
(
η−τ|f|τBsτ(Lτ(Ω))

) d
d+τδ

. (2.4.14)

Thus, (2.4.13) yields

#(Pη) .
(
η−τ|f|τBsτ(Lτ(Ω))

) d
d+τδ

,

and hence
η . |f|Bsτ(Lτ(Ω))#(Pη)−

d+τδ
τd = |f|Bsτ(Lτ(Ω))#(Pη)−

s
d
− 1
p . (2.4.15)

Insert this into (2.4.6) (2.4.1).

Remark 2.4.2. The same arguments apply to other isotropic refinement methods (to
be learnt later) such as shape preserving bisections like “newwest-vertex-bisection” for
simplices. Then the diameter of refined cells shrinks at a slower rate ρ−1 for some ρ > 1.
The result would remain the same because of the same geometric series effect.
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3 Tree-Based Algorithms

3.1 Some Basic Notions

A tree is a specific instance of a graph, namely, it is a set of nodes T , certain pairs
of which correspond to the edges of the graph. We assume that when a path of
edges connects two nodes, this path is unique, which means that the graph has
no cycle. In addition, one fixes an orientation for any edge between two nodes
T and T ′, by saying that T ′ is a child of T and that T is its parent. The orientation
must be chosen so that every node has at most one parent. A node without a
parent is called a root. We denote by C(T) the set of all children of T and refer to
any two elements of C(T) as siblings. We confine the subsequent discussions to
trees for which each parent has at most a fixed numberM ∈ N of children, i.e.

2 ≤ #(C(T)) ≤M, T ∈ T . (3.1.1)

In addition, we require that every node in a tree has a finite number of ancestors,
and therefore every node is linked to a single root by a unique path.

So far this permits the existence of several roots. In this case one sometimes
speaks of a forest. For simplicity we consider in what follows (mainly) the case
of trees T with a single root denoted by R(T ). Most findings however carry over
to forests.

Given a domain Ω and a refinement rule, for instance, bisecting a triangle into
two triangles by splitting the longest edge, or by subdividing a cube in Rd into
2d congruent cubes (dyadic subdivision) gives rise to a (geometric) tree. In fact,
view Ω as the root node/cell; a consecutive refinement of a cell – viz. a node T
– creates the set of children C(T) as new nodes. Repeating this process creates a
tree T , see Figure 2. Refining all cells ad infimum creates an infinite tree, called
the master tree T ∗.

A cell T in a finite tree T ≺ T ∗ is called a leaf if none of its children (in T ∗)
belongs to T . A tree is called complete if one of the elements of C(T ) belongs to
T then C(T) ⊂ T .

The set of leaves of a complete tree T

L(T ) := {T ∈ T : C(T) ∩ T = ∅}

forms a partition of the root cell Ω. We say a partition P is induced by a tree T
if P = L(T ). Conversely, every partition generated by a successive refinement
of the root corresponds to a tree which encodes the refinement history. This is
expressed by writing

P = L(T ), T = T (P) if L(T ) = P.

Exercise 3.1.1. Obviously #(L(T )) ≤ #(T ). Show that #(T ) ≤ 2#(L(T )).
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Why considering trees? Algorithm 2.4.1 is the simplest example of a tree-based
algorithm that generates a partition P = L(T ) where T (P) encodes its refine-
ment history. One way to interprete Algorithm 2.4.1 is that it attempts to grow
a tree which realizes a given target accuracy at the expense of a possibly small
partition. More generally, one tries to find among all trees with at most n leaf
nodes the one that optimizes a certain criterion. In this section we discuss this
issue in a somewhat more abstract setting which covers the situation of Algo-
rithm 2.4.1 as a special case. The quality criterion will be given in terms of error
functionals.

Suppose we can associate with each node/cell T ∈ T ∗ an error functional
e(T) = e(f; T) (which is to represent a local approximation to f on T ) satisfy-
ing the weak subadditivity property∑

T ′∈L(T ′)
e(T ′) ≤ Ce(T), for any tree T ′ with R(T ′) = T, (3.1.2)

where C is a fixed constant. When C = 1we call the error functional subadditive.

Goal (ideal): Given ε > 0 find Tε ⊂ T ∗ such that

Tε = argmin
T ≺T ∗

{#T : e(T ) ≤ ε}, where e(T ) :=
∑
T∈L(T )

e(T). (3.1.3)

Example 3.1.1. 1. Local polynomial approximation in Lp, 0 < p <∞:

e(T) = e(f; T)pp := inf
P∈Pm

‖f− P‖pLp(T).

This error functional is even subadditive (C = 1 in (3.1.2)) and it is used in
Algorithm 2.4.1.

2. Empirical errors in machine learning (regression, classification). Suppose that
ρ is an unknown measure on a space Z := X × Y, dρ(x, y) = dρ(y|x)dρX(x),
(dρX is the so called marginal measure). The goal is to estimate the regression
function

fρ(x) := E(y|x) =
∫
Y

ydρ(y|x) (3.1.4)

see Figure 3.1, from independent identically (with respect to ρ) distributed (i.i.d.)
samples Zn := {(xi, yi) : i = 1, . . . , n}. Think of every xi as a list of answers to a
catalog of questions which are kept by a bank together with a success measure yi
obtained when giving a loan to the ith client who came up with the answers xi.
The regression function then tells the bank what the success rate of the decision
would be in expectation.
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Estimating fρ means to construct an estimator f̂ = f̂Zn that minimizes the Risk
Functional

E(f) :=
∫
Z

(y− f(x))2dρ,

which can be shown to decompose as

E(f) = E(fρ) + ‖f− fρ‖2L2(X,ρX). (3.1.5)

Thus, minimizing the risk means to best approximate the (unknown) regression
function in an L2-norm, in this case the L2-norm with respect to the (unknown)
measure ρ.
A common strategy is to construct the estimator f̂ as a piecewise polynomial on
a partition that should be chosen adaptively based on the given data (samples).
Given a partition P of the domain on which fρ lives we determine for each T ∈ P
a polynomial PT determined by

PT = argmin
P∈Pm

n∑
i=1

(yi − P(xi))
2χT(xi), f̂ =

∑
T∈P

χTPT . (3.1.6)

Notice that T should contain sufficiently many samples to determine PT .
A natural error functional would in this case be

e(T) = e(fρ; T) :=
1

n

n∑
i=1

(yi − PT(xi))
2χT(xi), (3.1.7)

which is again subadditive. Note that these indicators are computable. Since the
output, depending on which way these indicators are used, is based on random
samples, it itself is a random variable. Therefore, the resulting estimator f̂ is a
random variable. In the end, one has to prove how accurate the estimator is, for
instance in terms of

Eρn
(
‖f̂− fρ‖2L2(X,ρX)

)
.

This is done in mathematical/statistical learning theory.

3. Local error estimators arise also from estimating residuals when solving certain
types of PDEs. This will be discussed in detail later.

Complexity: Consider

Tn := {T ⊂ T ∗ : R(T ) = R(T ∗), #(L(T )) ≤ n} (3.1.8)

the collection of all finite trees whose set of leaves has at most n elements. A
brute force method for accomplishing (3.1.3) would be to compute e(T ) for each
T ∈ Tn. This would be an NP-hard problem.

Remark 3.1.1. A complete search through Tn has exponential cost in n, i.e., #(Tn) ∼
an for some a > 1.
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Figure 4: regression function

3.2 The Binev-DeVore Algorithm

The render the goal more tractable one can relax is slightly. This leads to the
notion of weak optimality.

Definition 3.2.1. We call a tree T weakly optimal for an error function e associated
with T ∗ if there exists a positive constant 1 ≤ C∗ < ∞ such that for any tree T̃ ⊂ T ∗
one has

C∗e(T̃ ) ≤ e(T ) ⇒ #(T ) ≤ C∗#(T̃ ). (3.2.1)

The following modification of Algorithm 2.4.1 realizes weak optimality. Specif-
ically, consider the following modified error functionals:

ẽ(T) :=


e(T), T = R(T );(

1
e(T)

+ 1

ẽ(T̂)

)−1
, T ∈ C(T̂), T̂ parent of T.

(3.2.2)

Thus, the larger the level of T (i.e., the number of edges needed to connect T to
the root R(T )) the smaller becomes the modified error functional ẽ(T) compared
with e(T).

Algorithm 3.2.1. 1: Initialize: {R(T ∗)}→ T
2: while e(T ) > ε do
3: for T ∈ argmax

T ′∈L(T )
ẽ(T ′) set T → T ∪ C(T)

4: end while
5: Output: Tε with e(Tε) ≤ ε
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The algorithm is another instance of a greedy method. It successively refines
the cell with the currently largest modified error functional.

To describe the performance of Algorithm 3.2.1 it is convenient to use a slightly
different complexity measure. For a given finite tree T ⊂ T ∗ let

n(T ) := #(T ) − #(L(T )). (3.2.3)

By Exercise 3.1.1, we have

n(T ) ∼ #(L(T )) ∼ #(T ). (3.2.4)

Define
σn(e) := min

T ⊂T ∗:n(T )≤n
e(T ). (3.2.5)

A proof of the following result can be found in [6].

Theorem 3.2.1. Assume that (3.1.2) holds with C = 1 and let the modified error
functionals be defined by (3.2.2). Then any output T of Algorithm 3.2.1 satisfies

e(T ) ≤
( n(T )
n(T ) − k

)
σk(e) whenever k < n(T ). (3.2.6)

Thus, choosing, in particular, k = bn(T )/2c one sees that (3.2.1) holds with
C∗ = 2. Therefore, one obtains the following immediate consequence of Theo-
rem 3.2.1.

Corollary 3.2.1. Let Σn denote the set of all subtrees of the master tree T ∗ satisfying
n(T ) ≤ n where n(T ) is defined by (3.2.3). Denoting by As∞((Σn)) the set of those
error functions e associated with T ∗ for which σn(e) ≤Mn−s holds for some constant
M <∞. Then, for each n ∈ N Algorithm 3.2.1 outputs a tree Tn such that

e(Tn) ≤ 21+1/sMn−s, n ∈ N. (3.2.7)

Hence the algoritm is rate-optimal for any polynomial convergence rate.

Algorithm 3.2.1 is superior to Algorithm 2.4.1 since it applies to a wider spec-
trum of applications and realizes the order O(n−r) for all functions in a corre-
sponding approximation class Ar.

3.3 Optimal pruning: CART

The modified greedy algorithm discussed in the previous section grows trees
with weakly optimal approximation properties in the sense of (3.2.1). In this
section we discuss a strategy for coarsening a given tree in a way that one ob-
tains a sequence of subtrees that provide even optimal approximations within
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the initial tree without a complete search. It is based on the concept of optimal
pruning which goes back to Leo Breiman and Jerome H. Friedman in 1973 [8]
who used it for the the generation of Classification and Regression Trees (CART)
in the context of machine learning. In this context local error indicators are ob-
tained by sample measurements in terms of the local least squares errors (3.1.7).

For simplicity, we continue to assume that the underlying master tree T ∗ has
a single root T0 = R(T ∗) and that the error functionals e associated with a fixed
master tree T ∗ are subadditive, i.e., satisfy (3.1.2) with C = 1.

Ideally, given a target accuracy ε > 0 and an error function e, we would like
to find a tree T (ε) ⊂ T ∗ that satisfies (3.2.1) with C∗ = 1, i.e.,

e(T (ε)) ≤ ε, e(T ) ≤ ε ⇒ #(T ) ≥ #(T (ε)). (3.3.1)

We discuss in this section in which sense pruning gets close to such ideal ap-
proximations without going through a complete tree search. The underlying
method has two major stages:

• The first one is to grow a finite tree T̂ of T ∗ which, roughly speaking, is
large enough for a given range of target accuracies.

• Given such a T̂ , the second step consists in reducing T̂ to certain subtrees
with the aid of a particular pruning strategy which turn out to be optimal
in the sense of (3.3.1) at least in T̂ .

A natural way of generating T̂ is to apply Algorithm 3.2.1. We describe now
the second stage, namely the process of pruning. A tree T ′ is called a pruned
subtree of T if R(T ′) = R(T ) and if T ′ ⊂ T . We express this by writing

T ′ � T , or T ′ ≺ T when T ′ 6= T . (3.3.2)

Moreover, we denote for T 6∈ L(T ) by B(T ; T ) the branch of T rooted in T , i.e.,
the tree which is comprised of T and all its descendents in T :

B(T ; T ) = {T ′ ∈ T : T is an ancestor of T ′}. (3.3.3)

Throughout the remainder of this section we work under the following

Assumption: For any T ∈ T̂ \ L(T̂ ) one has

e(T) > e(B(T ; T̂ )). (3.3.4)

Property (3.3.4) means that T̂ does not contain any unnecessary nodes in the
following sense. Each refinement of a non-leaf node decreases the error as-
sociated with that node. One can always ensure (3.3.4), if necessary, as fol-
lows. For any T ∈ T̂ which is a parent of some leaf node, check whether
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e(T) =
∑

T ′∈C(T) e(T
′). If in this case we remove the collection C(T) one still

has e(T̂ \ C(T)) = e(T̂ ), i.e., this pruning step does not sacrifice accuarcy. It is
easy to see that after at most finitely many such removals one arrives at a tree
satisfying (3.3.4) but has the same accuracy as the original one.

Complexity Penalization: The key to describing the second stage of pruning is
complexity penalization: consider for a penalty parameter µ ≥ 0 and a given finite
subtree T of T ∗ with a single root R(T ) = R, the functional

Eµ(T ) := e(T ) + µ#(L(T )). (3.3.5)

For the trivial tree {T } with root T we briefly write Eµ(T) = Eµ({T }) = e(T) + µ.
Clearly, for every finite tree T ⊂ T ∗ and any µ ≥ 0 there exists a tree T ′

satisfying
Eµ(T ′) = min

T̃ �T
Eµ(T̃ ). (3.3.6)

Definition 3.3.1. A tree T ′ satisfying (3.3.6) is called a µ-optimally pruned subtree of
T .

Remark 3.3.1. Clearly, when growing T the first summand e(T ) decreases but the
second summand increases with the number of the leaf nodes (complexity of the corre-
sponding partition). Therefore

• minimizing for a given penalty parameter µ the functional Eµ(T ) over all finite
subtrees seeks a compromize between accuracy and complexity;

• Increasing µ decreases the size of minimizers of Eµ. Specifically, when

µ ≥ e(R(T )) − e(T )
#L(T ) − 1 , (3.3.7)

then the root {R(T )} is the unique minimal µ-optimally pruned subtree of T .

A frequently used tool is to decompose a tree into the branches of the root
children. Notice that e(T ) =∑T ′∈C(R) e(B(T ′; T )) and

#(L(T )) =
∑

T ′∈C(R)
#(L(B(T ′, T ))), (3.3.8)

so that
Eµ(T ) =

∑
T ′∈C(R(T ))

Eµ(B(T ′; T )). (3.3.9)

The following simple fact that µ-optimality is inherited by branches is useful in
what follows.

Exercise 3.3.1. If for some Tµ 6= {R} one has Eµ(Tµ) = minT̃ �T Eµ(T̃ ), then for each
T ′ ∈ C(R) the branch B(T ′; Tµ) is a µ-optimally pruned subtree of B(T ′; T ).
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Uniqueness of Minimal µ-Optimally Pruned Subtrees: It is less obvious that
there exists for each µ ≥ 0 a unique µ-optimally pruned subtree of minimal car-
dinality. To see this the main vehicle is the following recursion.

Lemma 3.3.1. For any finite T ⊂ T ∗ with root R = R(T ) one has

min
T ′�T

Eµ(T ′) = min
{
Eµ(R),

∑
T ′∈C(R)

min
T̃ �B(T ′;T )

Eµ(T̃ )
}
. (3.3.10)

Proof: It follows from (3.3.9) that for any subtree T̃ of T with root R

min
{
Eµ(R),

∑
T ′∈C(R)

min
T ′�B(T ′;T̃ )

Eµ(T ′)
}
≤ Eµ(T̃ ). (3.3.11)

To show the converse inequality note first that there is nothing to show when
minT ′�T Eµ(T ′) ≥ Eµ(R). Therefore suppose now that minT ′�T Eµ(T ′) < Eµ(R).
Since Eµ trivially possesses at least one minimizer in T rooted in R, we can
choose for each T ′ ∈ C(R) a µ-optimally pruned subtree T (T ′) ofB(T ′; T ). Defin-
ing then

T̃ :=
⋃

T ′∈C(R)
T (T ′), (3.3.12)

one readily concludes that

Eµ(T̃ ) =
∑

T ′∈C(R)
min

T ′�B(T ′;T )
Eµ(T ′), (3.3.13)

which completes the proof. �

The next observation asserts the uniqueness of minimizers of minimal size.

Theorem 3.3.1. Assume that µ ≥ 0 and let T be any finite subtree of T ∗ (with single
root R). Then there exists a unique minimal µ-optimally pruned subtree Tµ(T ) of T ,
i.e.,

Eµ(Tµ(T )) = min
T ′�T

Eµ(T ′), Eµ(T ′) = Eµ(Tµ(T )), T ′ � T ⇒ Tµ(T ) � T ′.
(3.3.14)

Proof: We only need to show the second relation in (3.3.14). There is nothing
to show when the tree is trivial, i.e., T = R(T ). For any T 6∈ L(T ) and any
descendant T ′ of T in T (T ′ ∈ B(T ; T )) let `(T, T ′) denote the number of edges
required to connect T with T ′. Then define

d(T, T ) := max
T ′∈L(T )

`(T, T ′)
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denote the “maximal distance” of T from L(T ) (in other words the largest re-
finement level in T ). Assume that we have proved for some k ≥ 0 the assertion
for any T with d(R(T ), T ) ≤ k and consider now a tree T with d(R(T ),L(T )) =
k + 1. Suppose that there exist two different µ-optimally pruned substrees
Tµ,i � T , i = 1, 2, of equal minimal cardinality #(Tµ,1) = #(Tµ,2). In particu-
lar, this implies that Eµ(Tµ,i) < Eµ(R(T )), i = 1, 2. On the one hand, we then
know from Lemma 3.3.1 that

Eµ(Tµ,i) =
∑

T ′∈C(R)
min

T ′�B(T ′;T )
Eµ(T ′), i = 1, 2, (3.3.15)

while, on the other hand, (3.3.9) says that

Eµ(Tµ,i) =
∑

T ′∈C(R)
Eµ(B(T ′; Tµ,i)), i = 1, 2. (3.3.16)

Now, since Tµ,1 6= Tµ,2 there must exist a T ′ ∈ C(R) such that B(T ′; Tµ,1) 6=
B(T ′; Tµ,2). Both must be µ-optimally prunded subtrees of B(T ′; T ) with min-
imal size because d(T ′,B(T ′; Tµ,i)) = k. This is a contradiction. �

Construction of Minimal Optimally Pruned Subtrees: We proceed collecting a
few further properties of µ-optimally pruned minimal subtrees. In fact, we often
make use of the following immediate stability result.

Exercise 3.3.2. Suppose that T ′ � T . Then

Tµ(T ) � T ′ ⇒ Tµ(T ) = Tµ(T ′), (3.3.17)

i.e., a µ-optimally pruned minimal subtree of a given T stays optimal in any subtree T ′
of T containing it.

We now turn to an efficient way of generating µ-optimal subtrees with the
aid of pruning. As indicated in Remark 3.3.1, the minimal optimally pruned
trees become smaller when µ increases. In particular, for µ sufficiently large
one eventually has Tµ(T ) = {R(T )}.

This observation generalizes as follows. Consider a node T ∈ T \L(T ). Given
µ, we can cut the branch B(T ; T ) without increasing error functional if and only
if

e(T) + µ ≤ e(B(T ; T )) + µ#L(B(T ; T )) ⇔ µ ≥ e(T) − e(B(T ; T ))
#(L(B(T ; T ))) − 1.

Thus, the tip-over value of µ for which pruning pays off is given by the function
ζ(·; T ) : T \ L(T )→ R+ defined by

ζ(T ; T ) := e(T) − e(B(T ; T ))
#(L(B(T ; T ))) − 1, T ∈ T \ L(T ). (3.3.18)

In fact, one easily verifies the following facts.
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Exercise 3.3.3. For each T ∈ T \ L(T ) one has

µ ≤ ζ(T ; T ) if and only if Eµ(T) ≥ Eµ(B(T ; T )),
µ < ζ(T ; T ) if and only if Eµ(T) > Eµ(B(T ; T )). (3.3.19)

That is, the size of ζ(T ; T ) relative to the current value of µ, tells whether the
descendants of T in T should be pruned or not. More precisely, let

µ1 := min
T∈T \L(T )

ζ(T ; T ). (3.3.20)

Thus, when µ < µ1 gradually increases, as soon as µ = µ1 there is a T ∈ T \L(T )
whose branch can be cut without increasing Eµ1 . From (3.3.19) one can derive
the following observation.

Lemma 3.3.2. As long as µ < µ1, defined in (3.3.20), T is the minimal µ-optimally
pruned subtree of itself. For µ = µ1 the tree T is still µ1-optimally pruned but no
longer minimal. In fact

Tµ1(T ) = {T ∈ T : ζ(T̂ ; T ) > µ1 for all ancestors T̂ of T } ∪ {R(T )}. (3.3.21)

Proof. Exercise

Suppose now that we have fixed the initial tree T̂ =: T0 with root T0 = R(T0),
satisfying (3.3.4), i.e., T0 is the minimal 0-optimally pruned subtree of itself (µ =
0), and define T1 := Tµ1(T0) for µ1 defined by (3.3.20). Then, given Tk � T0 such
that Tk 6= {T0}, let

µk+1 := min
T∈Tk\L(Tk)

ζ(T ; Tk), (3.3.22)

and define

Tk+1 := Tk \
⋃

{(B(T ; Tk) \ {T }) : T ∈ Tk \ L(Tk), ζ(T ; Tk) = µk+1}. (3.3.23)

Thus, Tk+1 is obtained from Tk by cutting away those branches in Tk whose roots
minimize ζ(·; Tk). Since Tk+1 ≺ Tk, repeating this process must terminate at some
m := k+ 1when Tk+1 = {T0}. The properties of the sequence of pruned subtrees

{R(T0)} = Tm ≺ Tm−1 ≺ · · · ≺ T1 ≺ T0 = T̂ (3.3.24)

can be summarized as follows (for a complete proof see [8] or the last paragraph
below).

Theorem 3.3.2. One has µ0 = 0 < µ1 < · · · < µm and the trees Tk defined by (3.3.23)
satisfy

Tk = {T ∈ Tk−1 : ζ(T̂ ; Tk−1) > µk for all ancestors T̂ of T } ∪ {T0}, (3.3.25)
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i.e.,
Tk = Tµk(Tk−1) = Tµk(T0), k = 1, . . . ,m. (3.3.26)

Moreover, one has

Tµ(T0) =

 T0, µ < µ1,
Tk, µk ≤ µ < µk+1, 1 ≤ k < m,
{T0}, µ ≥ µm.

(3.3.27)

As stated in (3.3.27), Tk = Tµk(Tk−1) is a µk+1-optimally pruned subtree of T0
but no longer its minimal one which is Tk+1. Hence Eµk+1(Tk) = Eµk+1(Tk+1)
which means

µk+1 =
e(Tk+1) − e(Tk)

#(L(Tk)) − #(L(Tk+1))
, 0 < k < m. (3.3.28)

Thus the transition threshold µk+1 is the average local error of the nodes in
L(Tk) \ L(Tk+1).

Using induction, the above findings can be reformulated as follows.

Remark 3.3.2. Let for 1 ≤ k < m

ζk(T) :=

{
ζ(T ; Tk), T ∈ Tk \ L(Tk),
ζk−1(T), otherwise. (3.3.29)

Then one has for 0 ≤ µ <∞
Tµ(T0) = {T ∈ T0 : ζm−1(T̂) > µ for all ancestors T̂ of T } ∪ {T0}. (3.3.30)

Computational Cost: The computational cost for finding the hierarchy of trees
Tk depends on the cost of assessing the quantities e(T), T ∈ T̂ . Assigning a
cost unit to each node, a trivial lower bound for the complexity is therefore the
cardinality #(T̂ ) of the initial tree. Given the values e(T), T ∈ T̂ = T0, one
next has to evaluate ζ0(T), defined by (3.3.29). This requires determining the
quantities e(B(T ; T0)) for T ∈ T0 \ L(T0). Working towards the root and using
that for T ′ ∈ C(T̂) one has e(B(T̂ ; T0)) =

∑
T ′∈C(T̂) e(B(T ′; T0), the total cost is

again proportional to #(T0). Repeating this argument for Tk, 0 < k ≤ m, for the
total cost of computing the quantities ζk(T), T ∈ Tk, a crude estimate shows that
the whole process takes at most the order of

m∑
k=0

#(Tk) . m#(T̂ ) (3.3.31)

operations which is, of course, by far less than a complete search through all
subtrees of T̂ .

42



Optimality Properties: It is now straightforward to translate the properties of
the trees Tk, k = 1, . . . , Tm, into optimality relations for the underlying approxi-
mations.

Theorem 3.3.3. Assume that T0 = T̂ satisfies (3.3.4). Then the hierarchy of nested
subtrees Tk, k = 0, . . . ,m, given by (3.3.25) has the following propery. The values

εk := e(Tk), k = 0, . . . ,m, (3.3.32)

satisfy
ε0 < ε1 < · · · < εm, (3.3.33)

and

T ⊆ T̂ , e(T ) ≤ εk ⇒ #(T ) ≥ #(Tk), k = 0, . . . ,m, (3.3.34)

i.e., the trees Tk are subtrees of T̂ of minimal cardinality realizing accuracy εk.

Proof. Since Tk+1 ≺ Tk k = 0, . . . ,m, it is clear that εk ≤ εk+1. On the other hand,
εk = εk+1 would imply

Eµk(Tk+1) = e(Tk+1) + µk#(L(Tk+1))
= e(Tk) + µk#(L(Tk+1))
< e(Tk) + µk#(L(Tk))
= Eµk(Tk), (3.3.35)

contradicting the optimality of Tk. Concerning (3.3.34), suppose that e(T ) ≤
εk = e(Tk) and #(T ) < #(Tk). Then

Eµk(T ) = e(T ) + µk#(L(T )) < e(Tk) + µk#(L(Tk)) = Eµk(Tk) (3.3.36)

contradicting the optimality of Tk.

Construction of an Initial Tree T0: A natural approach is then to use the tree al-
gorithm discussed in the previous section for the construction of a T̂ satisfying
e(T̂ ) ≤ ε0. To this end, let for η > 0, T (η) denote the smallest tree in T ∗ satisfy-
ing e(T (η)) ≤ η. From Theorem 3.2.1 we know that #(T (ε0/2)) ≥ (#(T̂ ))/2.

We know that the Tk constructed by pruning are optimal within the initial tree
T0 = T̂ = Tg(ε0), where Tg(η) is the smallest tree generated by the modified
greedy algorithm that satisfies e(Tg(η)) ≤ η. We show next that the Tk remain
in essence optimal in the whole master tree T ∗.

To that end, fix any η ≥ ε0. Then T̂ (η) := T̂ ∩ T (η) satisfies

η ≤ e(T̂ (η)) =
∑

T∈L(T (η))∩T̂

e(T) +
∑

T∈L(T̂ )∩T (η)

e(T) ≤ η+ ε0 ≤ 2η. (3.3.37)
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Let Tg(2η) be the smallest tree generated by the modified greedy algorithm that
satisfies e(Tg(2η)) ≤ 2η. Since 2η ≥ ε0 we have Tg(2η) ≺ T̂ and, by Theorem
3.2.1, we also know that

#(Tg(2η)) ≤ 2#(T (η)) ≤ 2#(T̂ (η)) ≤ 2#(T (η)). (3.3.38)

Now pick k = k(η) such that

εk ≥ 2η > εk−1. (3.3.39)

Then Theorem 3.3.3 and (3.3.38) yield

#(Tk) ≤ #(Tg(2η)) ≤ 2#(T (η)). (3.3.40)

Combining (3.3.39) and (3.3.40) shows that optimal pruning provides class-
optimal tree based approximations.

Proposition 3.3.1. Assume that the initial tree T̂ used in the pruning process is gen-
erated by the modified greedy algorithm Mod-Greedy with target accuracy ε0. Then
the optimally pruned trees Tk ≺ T̂ are weakly optimal in T ∗. Moreover, whenever the
error functional e belongs to the approximation class As((Σn)), defined in Corollary
3.2.1, one has

e(Tk) ≤ C(#(Tk))−s, k = 0, . . . ,m, (3.3.41)

where C depends only on e.

Proof of Theorem 3.3.2: We need some preliminaries.

Lemma 3.3.3. The minimal µ-optimal subtrees are monotone in the following sense

µ ′ ≥ µ ⇒ Tµ ′(T ) � Tµ(T ). (3.3.42)

Moreover, abbreviating Tµ(T ) = Tµ, one has

µ ′ > µ, #(Tµ ′) < #(Tµ) ⇒ µ <
e(Tµ ′) − e(Tµ)

#(L(Tµ)) − #(L(Tµ ′))
≤ µ ′. (3.3.43)

Proof. When Tµ(T ) = {R(T )} (3.3.42) is trivial Tµ ′(T ) must be trivial as well. The
general case (3.3.42) follows now from (3.3.10) by induction on #(Tµ(T )).

Moreover, by definition of µ-optimality, one has Eµ ′(Tµ ′) ≤ Eµ ′(Tµ), Eµ(Tµ) ≤
Eµ(Tµ ′), and therefore

e(Tµ ′) + µ ′#(L(Tµ ′)) ≤ e(Tµ) + µ ′#(L(Tµ))
e(Tµ) + µ#(L(Tµ)) ≤ e(Tµ ′) + µ#(L(Tµ ′)). (3.3.44)

When µ ′ > µ and #(Tµ ′) < #(Tµ), one has by the second inequality in (3.3.44)
that e(Tµ) + µ#(L(Tµ)) < e(Tµ ′) + µ#(L(Tµ)) which means e(Tµ) < e(Tµ ′) so that
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the quotient in (3.3.43) is indeed nonzero and (3.3.44) readily yields (3.3.43) with
< replaced by ≤. Moreover, there must exist a µ̃ ∈ (µ, µ ′) such that Tµ is still
µ̃-optimal and hence e(Tµ) + µ̃#(L(Tµ)) ≤ e(Tµ ′) + µ#(L(Tµ)). Since µ̃ > µ the
lower inequality in (3.3.43) must be strict.

The next observation offers a useful description of the trees Tµ(T ).
Lemma 3.3.4. If Eµ(T) ≥ Eµ(B(T ; T )) for all T ∈ T \L(T ), then Eµ(T ) = min {Eµ(T̃ ) :
T̃ � T }, i.e., T is already a µ-optimally pruned subtree of itself, while the minimal µ-
optimally pruned subtree is given by

Tµ(T ) = {T ∈ T : Eµ(T̂) > Eµ(B(T̂ ; T )) for all ancestors T̂ of T } ∪ {R(T )}. (3.3.45)

Proof. The fact that, under the above assumptions, Eµ(T ) is already minimal
follows from the fact that there is no branch whose removal would strictly lower
the cost-complexity Eµ. Of course, T may not be minimal yet.

To prove (3.3.45) denote the right hand side of (3.3.45) by T̃ which indeed
is a pruned subtree of T . We show first that Tµ(T ) ⊆ T̃ . In fact, whenever
T ∈ Tµ(T ) \ {R(T )} any ancestor T̂ of T must satisfy Eµ(B(T̂ ; T )) < Eµ(T̂) since
otherwise it could be cut away without increasing Eµ while reducing size. But
since T ∈ B(T̂ ; T ) this contradicts the minimality of Tµ(T ). This shows that
indeed Tµ(T ) � T̃ . Conversely, suppose that T ∈ T̃ \ Tµ(T ). Then there must
exist an ancestor T̂ of T for which Eµ(T̂) ≤ Eµ(B(T̂ ; T )) which contradicts the
definition of T̃ .

Note that it immediately follows from Lemma 3.3.4 that for any T ∈ Tµ1 \
L(Tµ1(T )) the subtree B(T ; Tµ1(T )) is the minimal µ1-optimally pruned subtree
of B(T ; T ), i.e.,

Tµ1(B(T ; T )) = B(T ; Tµ1(T )), (3.3.46)

which is used next to establish the following monotonicity property of ζ(·; ·)
with respect to the second argument.

Lemma 3.3.5. For ζ defined by (3.3.18) and any T ∈ Tµ1(T ) \ L(Tµ1(T )) one has

ζ(T ; Tµ1(T )) > ζ(T ; T ), if B(T ; Tµ1(T )) ≺ B(T ; T ),
ζ(T ; Tµ1(T )) = ζ(T ; T ), else.

(3.3.47)

Proof. Let T ∈ Tµ1(T ) \L(Tµ1(T )). The second relation in (3.3.5) holds by defini-
tion so that we may assume that B(T ; Tµ1(T )) is strictly contained in the branch
B(T ; T ). As stated in (3.3.46), B(T ; Tµ1(T )) is the minimal µ1-optimally pruned
subtree of B(T ; T ). Now choose µ̄ > µ1 large enough to ensure that {T } is the
smallest µ̄-optimally pruned subtree of B(T ; T ). Since for µ < µ1, B(T ; T ) is the
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minimal µ-optimally pruned subtree of itself we infer from (3.3.43) in Lemma
3.3.3 that

e(T) − e(B(T ; Tµ1(T )))
#(L(B(T ; Tµ1(T ))) − 1

> µ1 ≥
e(B(T, Tµ1(T ))) − e(B(T ; T ))

#(L(B(T ; T ))) − #(L(B(T, Tµ1(T ))))
. (3.3.48)

In fact, the left inequality corresponds to taking µ ′ = µ̄, µ = µ1 in Lemma 3.3.3,
while the right inequality follows from the choice µ ′ = µ1, µ = µ. Now (3.3.48)
implies

e(T) − e(B(T ; T )) = e(T) − e(B(T ; Tµ1(T ))) + e(B(T ; Tµ1(T ))) − e(B(T ; T ))
< (e(T) − e(B(T ; Tµ1(T ))))

×
(
1+

#(L(B(T ; T ))) − #(L(B(T, Tµ1(T ))))
#(L(B(T ; Tµ1(T ))) − 1

)
= (e(T) − e(B(T ; Tµ1(T ))))

(
#(L(B(T ; T )) − 1

#(L(B(T ; Tµ1(T ))) − 1

)
(3.3.49)

which provides (3.3.47).

Proof of Theorem 3.3.2: The validity of (3.3.25) for k = 1 has been already stated
in Remark 3.3.2 for T = T0. Suppose (3.3.25) holds for some k ≥ 1. It follows
from Lemma 3.3.5 that µk+1 > µk. Furthermore, the right hand side of (3.3.23)
in addition to T0 consists of precisely those T ∈ Tk whose ancestors T̂ satisfy
ζ(T̂ ; Tk) > µk+1 which is (3.3.25). Applying Remark 3.3.2 for T = Tk, yields
Tk+1 = Tµk+1 which is the first relation in (3.3.26). The second relation follows
from (3.3.42). The remaining claim is again a consequence of Lemma 3.3.4 and
(3.3.19) which finishes the proof. �
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4 Bases and Dictionaries

4.1 Preview and Motivation

We consider next another framework for nonlinear or adaptive approximation.
The previous examples used approximations based on partitions and localization.
In this section we consider approximations based on representations.

Idea: Representation of real numbers: Fix b ∈ N, then for each x ∈ R there exist
integers dj ∈ {0, ..., b− 1} – digits – such that

x = ±
∞∑
j=−L

djb
−j .

So a real number x can be identified with a generally infinite sequence of inte-
gers d = (dj)

∞
j=−L. If x is needed within some accuracy tolerance, the sequence

is truncated and replaced by a finite one.

Question: Can we do this with functions as well? what are suitable bases for
functions?

Candidates are the trigononemtric system, or series of orthogonal polynomi-
als (Legendre, Tchebychev, Laguerre, etc.). However, these systems are very
restrictive in the following sense. In several dimensions they work via tensor-
products only on product domains (which for certain cases is important). More-
over, the expansion in these systems do not provide any local spatial informa-
tion on the represented function.

An alternative general approach to function representations which is very
flexibel looks as follows. Suppose X is a Banach space and suppose that (Pj)j∈N0
is a sequence of (for the moment linear) mappings of X onto some dense hierar-
chy of nested linear spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ · · ·X,
⋃
j∈N0

Vj
‖·‖X

= X, (4.1.1)

such that the Pjf converge to f in some sense. Then, formally we have

f = P0f+

∞∑
J=1

(Pj − Pj−1)f. (4.1.2)

The terms (Pj − Pj−1)f represent “detail information” added when going from
a coarser resolution Vj−1 to the next higher resolution Vj. These details are con-
tained in the spaces

Wj−1 := range(Pj − Pj−1).
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If we had a basis Ψj−1 for eachWj−1 and a basisΦ0 for the coarsest space V0, then
the collection

Ψ := Φ0

∞⋃
j=0

Ψj (4.1.3)

is a candidate for a basis for all of X.
Since we are working in an infinite dimensional space the problem is to give

the above ingredients a precise meaning regarding the convergence of the above
expansions. This requires some discussion of bases in Banach spaces in general.

The results obtained in this section are needed for understanding applications
to image compression/encoding and adaptive methods for operator equations,
especially in high dimensions.

4.2 Bases in Banach Spaces

Recall that a Banach space X is a normed linear space which is complete, i.e.,
Cauchy sequences have a limit in X.

Example 4.2.1. 1. Λ a countable index set, `p(Λ): p-summable sequences:

‖d‖lp =
{ (∑

λ∈Λ |dλ|
p
) 1
p , 1 ≤ p <∞

sup
λ∈Λ |dλ| , p =∞, where d = (dλ)λ∈Λ

2. p-integrable functions:

Lp(Ω) = {f measurable : ‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|p dx

) 1
p

<∞}, 1 ≤ p ≤∞;

or

Lp(Ω,µ) = {f measurable : ‖f‖Lp(Ω,µ) :=
(∫

Ω

|f(x)|p dµ

) 1
p

<∞}, 1 ≤ p ≤∞;

(for p < 1 these are only quasi-Banach spaces);

3. Continous functions C(Ω), ‖·‖L∞(Ω) .

X is called separable if there exists a dense countable subset, that is every f ∈ X
can be approximated arbitrarily well by linear combinations from this subset.

Bases: The notion basis is well understood in finite dimensional spaces.
A collection Ψ = {ψλ : λ ∈ Λ}, Λ countable, is a basis if every f ∈ X has a unique
expansion

f =
∑
λ∈Λ

dλ(f)ψλ. (4.2.1)
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The sequence of “digits” (dλ)λ∈Λ = d(f) completely determines f. The specifica-
tion of the sense in which the expansion converges gives rise to different notions
of bases.

Definition 4.2.1. Ψ is called a Schauder basis of X if for some ordering

Λ = {λk, k ∈ N}

every f ∈ X has a unique coordinate sequence

d(f) = (dλk(f))k∈N

such that ∥∥∥∥∥
n∑
k=1

dλk(f)ψλk − f

∥∥∥∥∥
X

n→∞
−→ 0.

For practical purposes a somewhat stronger notion of basis is important.

Definition 4.2.2. A Schauder basis Ψ is called an unconditional basis, if there exists
a constant C < ∞, such that if for any Γ ⊂ Λ, #Γ < ∞ and any dλ, cλ, λ ∈ Γ one has
|cλ| ≤ |dλ| , λ ∈ Γ , then ∥∥∥∥∥∑

λ∈Γ
cλψλ

∥∥∥∥∥
X

≤ C
∥∥∥∥∥∑
λ∈Γ
dλψλ

∥∥∥∥∥
X

. (4.2.2)

This has important implications of practical relevance:

1. X-norm is stable under damping coefficients (see thresholding in image
processing).

2. The convergence of partial sums becomes independent of the ordering Λ,
that is for any (Γk)k∈N, Γk ⊂ Λ, #Γk <∞,⋃k∈N Γk = Λ,
for

PΓf =
∑
λ∈Γ
dλ(f)ψλ

one has ‖PΓkf− f‖X
k→∞→ 0 and

sup
Γ⊂Λ,#Γ<∞ ‖PΓ‖L(X,X) <∞ . (4.2.3)

Remark 4.2.1. L1(Rd) has no unconditional basis, but Lp(Ω), 1 < p < ∞ all do.
Wavelet bases are unconditional in that range.

Remark 4.2.2. One often finds an equivalent definition of unconditional basis: ∃ a
constant C, such that for every Γ ⊂ Λ, #Γ <∞, any dλ, λ ∈ Γ , every ελ ∈ {±1}∥∥∥∥∥∑

λ∈Γ
ελdλψλ

∥∥∥∥∥
X

≤ C
∥∥∥∥∥∑
λ∈Γ
dλψλ

∥∥∥∥∥
X

. (4.2.4)
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Hilber Spaces: A complete normed linear space H is called Hilbert space if

‖f‖H = 〈f, f〉
1
2

H where 〈·, ·〉H is the scalar product onH.

Examples for Hilbert spacesH:

1. H = Rd, ‖x‖2`2 = xTx =
∑d

j=1 x
2
j

H = Cd, ‖x‖2`2 = x∗x =
∑d

j=1 |xj|
2

2. H = `2(Λ), ‖d‖`2(Λ) =
(∑

λ∈Λ |dλ|
2
) 1
2

〈d,g〉 =∑λ∈Λ dλgλ

3. L2(Ω), ‖f‖L2(Ω) =
(∫

Ω
|f(x)|2 dx

) 1
2

〈f, g〉 =
∫
Ω
f(x)g(x)dx

4. Hs(Ω) Sobolev spaces

When X = H is a Hilbert space an important class of unconditional bases are
Riesz bases.

Definition 4.2.3. A collection Ψ ⊂ H is a Riesz basis if it is dense (finite linear
combinations are dense in H) and if ∃ 0 < cΨ, CΨ <∞ such that for any Γ ⊂ Λ, #Γ <∞, any dλ, λ ∈ Γ one has

cΨ ‖(dλ)‖`2(Γ) ≤
∥∥∥∥∥∑
λ∈Γ
dλψλ

∥∥∥∥∥
H

≤ CΨ ‖(dλ)‖`2(Γ) . (4.2.5)

Note that (4.2.5) implies (4.2.2), (4.2.4), for |cλ| ≤ |dλ| we have∥∥∥∥∥∑
λ∈Γ
cλψλ

∥∥∥∥∥
H

(4.2.5)

≤ CΨ ‖(cλ)‖`2(Γ) ≤ CΨ ‖(dλ)‖`2(Γ)
(4.2.5)

≤ CΨ

cΨ

∥∥∥∥∥∑
λ∈Γ
dλψλ

∥∥∥∥∥
H

.

Remark 4.2.3. If Ψ is a Riesz basis the mapping

F : d ∈ `2(Λ) 7→∑
λ∈Λ

dλψλ

is an isomorphism from `2(Λ) ontoH and

‖F‖L(`2,H) ≤ CΨ ,
∥∥F−1∥∥L(H,`2) ≤ 1

cΨ
. (4.2.6)
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Proof. We proceed in several steps:

Steop 1: F is well defined and bounded. Obviously, the restriction of F to finitely
supported sequences is linear. Now pick any d ∈ `2(Λ), increasing sequence of
finite index sets (Λk)k∈N, Λk ⊂ Λk+1, #Λk < ∞, Λ =

⋃
k∈NΛk. Define fk :=∑

λ∈Λk dλψλ ∈ H. Our claim is that (fk)k∈N is a Cauchy sequence. In fact

‖fk+m − fk‖H =

∥∥∥∥ ∑
λ∈Λk+m\Λk

dλψλ

∥∥∥∥
H

(4.2.5)

≤ CΨ
∥∥(dλ)λ∈Λk+m\Λk

∥∥
`2

≤ CΨ
∥∥(dλ)λ∈Λ\Λk∥∥`2 k→∞

−→ 0.

Hence there exists a limit f =
∑

λ∈Λ dλψλ ∈ H and the first relation in (4.2.6)
holds: ∥∥∥∥∑

λ∈Λ
dλψλ︸ ︷︷ ︸
=f

∥∥∥∥
H
=

∥∥∥∥∑
λ∈Λk

dλψλ︸ ︷︷ ︸
=fk

+f− fk

∥∥∥∥
H
≤
∥∥∥∥∥∑
λ∈Λk

dλψλ

∥∥∥∥∥
H

+ ‖f− fk‖H︸ ︷︷ ︸
−→0,k→∞

≤ CΨ ‖(dλ)‖`2(Λ) + ‖f− fk‖H .

Letting k tend to infinity shows independence of the particular Cauchy se-
quence so that F is well defined and bounded.

Step 2: F is bijective: By denseness of Ψ, every f ∈ H must have such an expan-
sion so that F is surjective. To verify injectivity, abbreviate dΓ := (dλ)λ∈Γ

‖d‖`2 = ‖dΛk + (d − dΛk)‖`2 ≤ ‖dΛk‖`2 + ‖d − dΛk‖`2
≤ 1

cΨ

∥∥∥∥∑
λ∈Λk

dλψλ

∥∥∥∥
H
+ ‖d − dΛk‖l2︸ ︷︷ ︸→0, k→∞

.

Letting k go to∞, yields

cΨ ‖d‖`2 ≤
∥∥∥∥∑
λ∈Λ

dλψλ

∥∥∥∥
H
= ‖F(d)‖H .

This shows injectivity and implies

∥∥F−1f∥∥
`2
≤ 1

cΨ
‖f‖H .

thus verifying (4.2.6).
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Remark 4.2.4. For Ψ Riesz basis, every f ∈ H has a unique expansion

f =
∑
λ∈Λ

dλ(f)ψλ

such that
cΨ ‖(dλ(f))‖`2 ≤ ‖f‖H ≤ CΨ ‖(dλ(f))‖`2 . (4.2.7)

Remark 4.2.5. The relevance of Riesz basis is that small changes in f correspond to
small changes in the “coordinates” of f, the coeffcicient sequence (f) =

(
〈f, ψ̃λ〉H

)
λ∈Λ.

How tightly these perturbations depend on each other depends on the ratio CΨ/cΨ of the
Riesz-constants. That quotient is also called condition of the Riesz basis.

Dual Riesz bases:

Proposition 4.2.1. If Ψ is a Riesz basis for the Hilbert spaceH there exist ψ̃λ ∈ H, λ ∈
Λ such that dλ(f) = 〈f, ψ̃λ〉H and

〈ψλ, ψ̃ν〉H = δλ,ν, λ, ν ∈ Λ. (4.2.8)

Moreover, Ψ̃ = {ψ̃λ, λ ∈ Λ} is also a Riesz basis forH.

Proof. The adjoint F∗ of the mapping F : `2(Λ)→ H, given by F(d) =
∑

λ∈Λ dλψλ,
is

F∗ : H ′ = H→ `2(Λ)
′ = `2(Λ), F∗(f) =

(
〈ψλ, f〉H

)
λ∈Λ (4.2.9)

because

〈F(d), f〉H =
〈∑
λ∈Λ

dλψλ, f
〉
H
=
∑
λ∈Λ

dλ〈ψλ, f〉H =
〈
d,
(
〈ψλ, f〉H

)
λ∈Λ
〉
`2
= 〈d,F∗(f)〉`2 .

It is well-known that the adjoint of a linear mapping is boundedly invertible if
and only if the mapping is and the norms are equal. Since (F∗)−1 = (F−1)∗ this
means

‖F∗‖L(`2(Λ),H) = ‖F‖L(H,`2(Λ)), ‖(F∗)−1‖L(H,`2(Λ)) = ‖F−1‖L(`2(Λ),H)). (4.2.10)

Now define for eλ := (δλ,ν)ν∈Λ

ψ̃λ := (F∗)−1(eλ), λ ∈ Λ. (4.2.11)

Then, noting that ψλ = F(eλ), one has

〈ψν, ψ̃λ〉H = 〈F(eν), (F∗)−1(eλ)〉H = 〈eν, F∗(F∗)−1eλ〉`2 = δν,λ, ν, λ ∈ Λ,

which is (4.2.8). The fact that Ψ̃ := {ψ̃λ : λ ∈ Λ} is also a Riesz basis (with the
same condition as Ψ) follows from (4.2.10) (Exercise).
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We have used above that, by the Riesz-Representation Theorem, every bounded
linear functional on a Hilbert space has a representer as an element in the Hilbert
space itself. One and the same functional can have different representations. In
practical situations when the Hilbert space is different from L2(Ω), for instance,
whenH = H10(Ω) (see § 2.3.1), linear functionals are usually not represented by
elements inH10(Ω). Therefore, it is reasonable to introduce the space of bounded
linear functionals of a Hilbert spaceH as a new object. Recall that in general, for
any Banach space X, the space of bounded linear functionals L(X,R) is usually
denoted by X ′ which becomes also a Banach space under the norm

‖z‖X ′ := sup
v∈X\{0}

z(v)

‖v‖X
, (4.2.12)

(compare with the definition of an operator norm). The action of z ∈ X ′ on
X is often denoted by z(v) but also by 〈v, z〉 = 〈v, z〉X,X ′ . Here, 〈·, ·〉 does not
denote an inner product but a dual pairing in the above sense. The latter notation
especially in the context of Hilbert spaces stems from the fact that in many cases
the linear functional has a “natural” representation in terms of another “pivot”
space “between” H and H ′. The well-known classical example is H = H10(Ω)
whose dual is denoted by H−1(Ω) := (H10(Ω)) ′. The pivot space is now L2(Ω)
with

H10(Ω) ⊂ L2(Ω) ⊂ H−1(Ω), (4.2.13)

in the sense of compact embeddings. In fact, as shown in Numerical Analysis
IV, any function f ∈ L2(Ω) induces a functional ` ∈ H−1(Ω) := (H10(Ω)) ′ defined
by

`f(v) :=

∫
Ω

v(x)f(x)dx, v ∈ H10(Ω).

Exercise 4.2.1. Determine the representation of `f as an element ofH10(Ω) whenH10(Ω)

is endowed with the norm ‖v‖H1(Ω) :=
(
‖v‖2L2(Ω)+‖∇v‖2L2(Ω)

)1/2
. Can one replace this

norm just by ‖∇v‖L2(Ω)? If so which effect does that have on the representation of `f?.

Exercise 4.2.2. Let Ψ = {ψλ : λ ∈ Λ} be a Riesz basis for the Hilbert space H. Then
there exists a Riesz basis Ψ̃ for its dualH ′ satisfying

ψ̃ν(ψλ) = 〈ψλ, ψ̃λ〉 = δν,λ, λ, ν ∈ Λ,

and

(CΨ)
−1
∥∥(ψλ, w〉)λ∈Λ∥∥`2 ≤ ‖w‖H ′ ≤ (cΨ)

−1
∥∥(ψλ, w〉)λ∈Λ∥∥`2 , w ∈ H ′. (4.2.14)

53



Orthonormal Bases: There is an important special case of Riesz bases, namely:
cΨ = CΨ = 1

‖(dλ(f))‖`2 =
∥∥∥∥∥∑
λ∈Λ

dλ(f)ψλ

∥∥∥∥∥
H

, (4.2.15)

that is Ψ is an orthonormal basis, ψλ = ψ̃λ. In fact for #Γ <∞, Γ ⊂ Λ:

‖d‖2`2 =
∥∥∥∥∥∑
λ∈Γ
dλψλ

∥∥∥∥∥
2

H

=
〈∑
λ∈Γ
dλψλ,

∑
λ∈Γ
dλψλ

〉
H
=
∑
λ,ν∈Γ

dλdν〈ψλ, ψν〉H = d∗MΓd

for all d with supp d ⊆ Γ whereMΓ = (〈ψλ, ψν〉H)λ,ν∈Γ . This yields

d∗d = d∗MΓd whereMΓ s.p.d.

Hence all eigenvalues ofMΓ must be equal to one wich impliesMΓ = Id, that is

〈ψλ, ψν〉H = δλ,ν, λ, ν ∈ Λ , (4.2.16)

i.e., Ψ is an orthonormal basis forH.

Thus orthonormal bases are perfectly conditioned with condition number
equal to one: the coefficient norm equals the function norm. Moreover, an or-
thonormal bases is dual to itself (when representing functionals inH).

Remark 4.2.6. The following examples of orthonormal bases indicate that it is gener-
ally difficult to construct practicable orthonormal systems, e.g. for more general domain
geometries. Orthonormal functions are typically global (e.g. because of Gram-Schmidt).
Riesz bases can be viewed as a relaxed version which will later be seen to lead to localiz-
able basis elements. The prize for this “enhanced” practicality is to accept a somewhat
larger condition of the basis, which nevertheless relates perturbations of the function to
perturbations of its coefficients in a uniform way.

Example 4.2.2. 1. H = L2([0, 1]), ‖f‖L2([0,1]) =
(∫1

0
|f(t)|2 dt

) 1
2

=: (f, f)
1
2

[0,1]: The
so called Haar basis is the simplest example of a wavelet basis. It has multi-
level structure:

Ψ = {ψ(−1,0), ψj,k : k = 0, .., 2j − 1, j = 0, 1, 2, . . .}

where
ψ−1,0(t) = φ(t) := χ[0,1)(t) scaling function,

and

ψ(0,0)(t) := ψ(t) = φ(2t) − φ(2t− 1), ψj,k(t) = 2
j
2ψ(2jt− k).

with
Λ = {(−1, 0), (j, k), k = 0..2j − 1, j = 0, 1, 2, . . .}.
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2. Trigonometric basis: H = L2,2π = {f(·+ 2πk) = f a.e., f ∈ L2([−π, π])}, 〈f, g〉 =∫π
−π
f(x)g(x)dx

Ψ = {ek : k ∈ Z}, ek(t) =
1√
2π
eitk (i2 = −1).

The coefficients 〈f, ek〉 = 1√
2π

∫π
−π
f(t)e−itk dt = f̂(k) are the classical Fourier

coefficients and the projection

P2n+1f(t) =
∑
|k|≤n

f̂(k)eikt

provides the Fourier partial sums.

The Haar basis:

Exercise 4.2.3. (a) Show that Ψ defined above is indeed an orthonormal system and a
basis for all of L2((0, 1)).

(b) Show also that the collection

φj,k(t) = 2
j
2φ(2jt− k), k = 0, . . . , 2j − 1. (4.2.17)

is an orthonormal basis for P1(P2j) where P2j is the uniform partition of [0, 1] into
intervals of length 2−j.

(c) Show that

ΨJ−1 := {φ,ψj,k : k = 0, . . . , 2j − 1, 0 ≤ j ≤ J− 1}
is also an orthonormal basis for P1(P2j).

Figure 5 illustrates the decomposition of a piecewise constant into an average
on a coarser mesh and a fluctuation on the fine mesh.

a

+=

Detail+

b

Feinstruktur = Mittelung

Figure 5: Decomposition of a piecewise constant

The generators of the Haar basis φ(t) and ψ(t) are illustrated in Figure 6.
Integration against φ is an average. Integration against the “oscillatory” profile
ψ anihilates the constant part.
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1

0
1

1

0

-1-1

Figure 6: scaling function φ(t) “mother” wavelet ψ(t)

Exercise 4.2.4. Estimate the quantity |〈f, ψj,k〉[0,1]| when f ∈W1(Lp((k2
−j, (k+1)2−j)),

to see that the wavelet coefficient |〈f, ψj,k〉[0,1]| is “small” when f is smooth on the sup-
port of ψj,k. This is heavily used in image compression.

Consider the function

vJ :=

2J−1∑
k=0

pj,kφj,k ∈ P1(P2j).

By Exercise 4.2.3, vJ can also be expanded in terms of the basis ΨJ−1.

Exercise 4.2.5. Derive a transformation that generates the wavelet coefficients dj,k =
dj,k(vJ) of vJ. Hint: one can proceed in a cascadic way starting from the finest level J,
see Figure 7. and (4.2.18)

Figure 7: wavelet-transform
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2J−1∑
k=0

pJ,kφJ,k(x) =

2J−1−1∑
k=0

pJ−1,kφJ−1,k(x) +

2J−1−1∑
k=0

dJ−1,kψJ−1,k(x) (4.2.18)

In either case, the important consequence of a Riesz basis is that approxi-
mation in H is equivalent to approximation in `2(Λ). We’ll say more later on
wavelet-Riesz bases need for image compression as well as the adaptive solution of
operator equations.

A first example of “multiresolution-analysis”: As shown above

Pjf :=

2j−1∑
k=0

〈f, φj,k〉[0,1]φj,k =
∑

(l,k)∈Λj−1

〈f, ψl,k〉[0,1]ψl,k (4.2.19)

where
Λj−1 = {(−1, 0), (l, k), k = 0..2l − 1, l = 0, 1, 2, . . . , j− 1},

projects L2(Ω) (Ω = (0, 1)) to the space

Vj := P1(P2j) (4.2.20)

of piecewise constants on the uniform partition of (0, 1) into intervals of length
2−j. Note that

PJf =

J∑
j=0

(Pj − Pj−1)f, where P−1f := 0. (4.2.21)

Since by denseness of the
⋃
j≥0 Vj in L2(Ω),

lim
j→∞ ‖f− Pjf‖L2(Ω) = 0, (4.2.22)

the telescoping expansion

f =

∞∑
j=0

(Pj − Pj−1)f (4.2.23)

converges in L2(Ω).

Exercise 4.2.6. Show that the “fluctuation” operatorsQj := Pj−Pj−1 are also projectors
and

Wj−1 := (Pj − Pj−1)Vj := {(Pj − Pj−1)f : f ∈ Vj}, (4.2.24)
is the orthogonal complement of Vj−1 in the refined space Vj, i.e.,

Vj = Vj−1 ⊕Wj−1.

Moreover,

‖f‖2L2(Ω) =

∞∑
j=0

‖(Pj − Pj−1)f‖2L2(Ω), f ∈ L2(Ω). (4.2.25)
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This gives the multiscale-decomposition

L2(Ω) = V0

∞⊕
j=0

Wj (4.2.26)

of L2(Ω).

Comments 4.2.1. The following should help interpreting the above findings.

• (4.2.25) indicates the importance of such telescoping expansions which, in partic-
ular, motivates their pivotal role in the next section.

• Note that
Ψj \ Ψj−1 = {ψj−1,k : k = 0, . . . , 2j − 1}

is an orthonormal basis ofWj and therefore

‖(Pj − Pj−1)f‖2L2(Ω) =

2j−1−1∑
k=0

∣∣〈f, ψj,k〉[0,1]∣∣2, (4.2.27)

so that
‖f‖2L2(Ω) =

∑
(j,k)∈Λ

∣∣〈f, ψj,k〉[0,1]∣∣2. (4.2.28)

Note that discarding small wavelet coefficients on the right hand side will cause
only small quantifiable changes in the L2-norm of f. We have seen that wavelet
coefficients are small when f is smooth on the respective support. This is the basis
of image compression.

A sketch of an application to image compression/encoding: Here is a rough
sketch of the compression scheme in [19] (representing essentially the JPEG2000
standard).

• view the digital image as a piecewise constant function over the pixel raster
(vector valued if colored image);

• for bivariate wavelets by taking tensor products of univariate wavelets
(usually higher order analogs to the Haar wavelet with more vanishing
moments for better compression, see Exercise 4.2.4;

• transform the piecewise constant function into its wavelet representation
using the above fast transform;

• quantize the wavelet coefficients in a certain systematic fashion to retain a
bitstream of possibly shortest length for guaranteeing an overall `2 target
accuracy.
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Figure 11 shows a visual comparison between an original and compressed
image.

Figure 8: left: original 768 × 512 pixel 8 bit graylevel depth  384 KB naive storage
allocation; right: compressed version 3.5 % of original storage

Thus, the image – a function – is decomposed into its multiscale contributions
using the fact, that discarding small wavelet coefficients has only a small quan-
tifiable effect on the image. If the image contains large smooth regions with
little variation, many wavelet coefficients will be small. This is illustrated by
the following sequence of compressed versions.

The decomposition of the image into portions with dyadic frequency scales is
shown in Figure 9.
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Figure 9: Multiscale decomposition of the image

Of course this compression scheme is a highly nonlinear process. The follow-
ing discussions provide a basis for analyzing such schemes.

The main distinction from Fourier transforms (which provide frequency de-
compositions) the wavelet transform reflects decompositions into frequency ranges
combined with spatial localization.

4.3 Linear versus Nonlinear Approximation

Given a basis with good stability properties the approximation of functions can
be reduced to the approximation of sequences. Again, there are linear and non-
linear strategies.

Given a basis Ψ ⊂ X in a Banach space X, consider an ordering Λ = {λk, k ∈
N}. Then

en(f)X := inf
g∈Xn
‖f− g‖X ,Xn = span{ψλk : k = 1, .., n}

is the error of the best linear approximation to f from Xn.

Similarly let

Σn =

{∑
λ∈Γ
dλψλ : #Γ ≤ n, dλ ∈ K

}
(for unconditional Ψ)
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be the nonlinear set of k-term expansions and

σn(f)X := inf
g∈Σn
‖f− g‖X

the error of best n-term approximation.
Note: Σn + Σn ⊂ Σ2n

Exercise 4.3.1. If Ψ is unconditional then

σn(f)X ≤ inf
#Γ≤n
‖f− PΓf‖X ≤ Cσn(f)X (4.3.1)

where
C = 1+ sup

#Γ≤n
‖PΓ‖X→X , PΓf =

∑
λ∈Γ
dλ(f)ψλ .

Good news: A coordinate projection realizes, up to a uniform constant, the error
of the best n-term approximation. Such an approximation is called near-best n-
term approximation.

Bad news: Under the above general assumptions, the search for the best Γ ⊂
Λ, #Γ = n, is usually infeasible.

This latter obstruction disappears for more specific bases, for instance, for
Riesz bases in a Hilbert space.

4.4 Basis Approximation in Hilbert Spaces

LetH be a seperable Hilbert space and Ψ ⊂ H an orthonormal basis. Then

PΓ : f→∑
λ∈Γ
〈f, ψλ〉ψλ

is the orthogonal projection ofH ontoHΓ := span{ψλ, λ ∈ Γ } because by (4.2.16)

〈f− PΓf, ψν〉 = 〈f, ψν〉− 〈PΓf, ψν〉
= 〈f, ψν〉− 〈f, ψν〉
= 0 .

PΓf realizes the unique best approximation in HΓ because for any gΓ ∈ HΓ we
have

‖f− gΓ︸︷︷︸
∈HΓ

‖2H = ‖f− PΓf− gΓ︸ ︷︷ ︸
∈HΓ

+PΓf‖2H
Pythagoras

= ‖f− PΓf‖2H + ‖PΓf− gΓ‖2H (4.4.1)

and thus
‖f− PΓf‖H = min

g∈H
‖f− g‖H . (4.4.2)
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Linear approximation: For a given ordering Λ = {λk : k ∈ N} and associated
spacesHn := span{ψλk : 1 ≤ k ≤ n}, one has

en(f)H =

( ∞∑
k=n+1

|〈f, ψλk〉|2
) 1
2

. (4.4.3)

Nonlinear approximation: Since

‖f− PΓf‖H =

(∑
λ/∈Γ

|〈f, ψλ〉H|2
) 1
2

the error is obviously minimized over all Γ, #Γ ≤ n, if Γ is comprised of the first
n coefficients with largest absolute value. So the best set Γ ∗ can be read off the
coefficients. Γ is not necessarily unique if several coefficients have the same ab-
solute value. Obviously this selection depends on f and is therefore nonlinear.

This suggests to take a greedy strategy: Consider the decreasing rearrange-
ment of coefficients.
Let Λ be ordered as Λ = {λk : k ∈ N} with

|〈f, ψλ1〉︸ ︷︷ ︸
=d∗1

| ≥ |〈f, ψλ2〉︸ ︷︷ ︸
=d∗2

| ≥ ... ≥ |〈f, ψλk〉︸ ︷︷ ︸
=d∗k

| . (4.4.4)

Let

Λk = {λj}
k
j=1, Gnf :=

n∑
j=1

〈f, ψλj〉︸ ︷︷ ︸
d∗j

ψλj . (4.4.5)

Then

σn(f)H = ‖f−Gnf‖H =

( ∞∑
j=n+1

∣∣〈f, ψλj〉∣∣2
) 1
2

= σn(d)l2 (4.4.6)

with
d = d(f) := (〈f, ψλ〉)λ∈Λ .

Exercise 4.4.1. Assume that Ψ is a Riesz basis forH and let

Gnf =

n∑
j=1

〈f, ψ̃λj〉ψλj ,
∣∣〈f, ψ̃λ1〉∣∣ ≥ ∣∣〈f, ψ̃λ2〉∣∣ ≥ ... .

Then, one has

σn(f)H ≤ ‖f−Gnf‖H ≤
CΨ

cΨ
σn(f)H. (4.4.7)
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where
CΨ

cΨ
= condition of the Riesz basis.

The operators Gn are sometimes called greedy projectors.
The main upshot of the above observations is that best n-term approximation

in a Hilbert space is characterized by best n-term approximation in `2. To make
this precise, let

Σn(Ψ) :=
{
v =
∑

λ∈Γ vλψλ : #Γ ≤ n} ⊂ H,
Σn(Λ) :=

{
v ∈ `2(Λ) : #(supp v) ≤ n

}
⊂ `2(Λ).

(4.4.8)

Recall that F : `2(Λ)→ H is an isomorphism if and only if Ψ is a Riesz basis.

Exercise 4.4.2. Let Ψ be a Riesz basis for the Hilbert spaceH. Then

v ∈ Ar((Σn(Λ)), `2(Λ)) ⇔ F(v) ∈ Ar((Σn(Ψ)),H), (4.4.9)

and
C−1
Ψ σn(f)H ≤ σn

(
(〈f, ψ̃λ〉H)

)
`2(Λ)
≤ c−1Ψ σn(f)H. (4.4.10)

In this sense one can identify Ar((Σn(Λ)), `2(Λ)) with Ar((Σn(Ψ)),H), or more pre-
cisely Ar((Σn(Ψ),H) = F

(
Ar((Σn(Λ)), `2(Λ))

)
.

The last fact motivates studying approximation in sequence spaces.

4.5 Basics About Approximation in Sequence Space

Whenever one works in a Hilbert space, linear and nonlinear approximation
happens in sequence spaces. In this section we discuss basic concepts in se-
quence spaces like best n-term approximation or thresholding. These are pre-
requisites for adaptive solvers to be discussed later. As we have learnt be-
fore, when dealing with adaptive approximation errors are better estimated by
smoothness in different metrics which requires dealing with more general se-
quence spaces `p rather than only `2.

Recall that for a countable index set Λ

`p(Λ) =

d : ‖d‖`p(Λ) =


(∑
λ∈Λ

|dλ|
p

) 1
p

, 0 < p <∞
sup
λ∈Λ

|dλ| , p =∞
 <∞

 .

63



4.5.1 Linear Approximation

In the case of linear approximation we have

Λ = {λk : k ∈ N}, Xn = span{d : supp d ⊆ Λn}
Λn = {λk, k = 1, .., n}

en(d)`p = inf
g∈Xn
‖d − g‖`p

and the approximation spaces

Ar∞ ((Xn), lp(Λ)) =

{
d ∈ `p(Λ) : sup

n≥1
nren(d)`p =: |d|Ar <∞

}
,

or more generally

Ar
q ((Xn), lp(Λ)) =

d ∈ `p(Λ) : |d|Arq =
( ∞∑
n=1

(
nren(d)`p

)q 1
n

) 1
q

<∞
 , 0 < q <∞ .

Exercise 4.5.1. Show that

|f|
q
Arq

=
∑
n>0

(nrσn(f)X)
q 1

n
∼

∞∑
j=0

(
2rjσ2j(f)X

)q (4.5.1)

∑
n>0

(nren(f)X)
q 1

n
∼

∞∑
j=0

(
2rje2j(f)X

)q
.

Goal: We wish to characterize such approximation spaces in terms of intrinsic
sequence properties. We begin with the following general facts (see also Exer-
cise 4.2.6 and Comments 4.2.1).

Theorem 4.5.1. Let X be a quasi-Banach space (like `p(Λ), 0 < p ≤ ∞), let the sets
Σn be admissible, that is

(i) 0 ∈ Σn
(ii) Σn ⊂ Σn+1
(iii) cΣn = Σn

(iv) Σn + Σn ⊂ Σan for some fixed a ∈ N

(4.5.2)

(all satisfied for nested linear spaces).
Assume: Gn : X → Σn gives a near-best approximation with some constant C0, that
is

‖f−Gnf‖X ≤ C0σn(f)X, f ∈ X, n ≥ 1 . (4.5.3)
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Then, setting gj = gj(f) = G2jf ∈ Σ2j we have

|f|Arq((Σn),X) ∼
∥∥∥(2rj ‖f− gj‖X)j∈N0∥∥∥`q ∼

∥∥∥(2rj ‖gj+1 − gj‖X)j∈N0∥∥∥`q (4.5.4)

and

‖f‖Arq ∼ ‖g0‖X +
∥∥∥(2rj ‖f− gj‖X)j∈N0∥∥∥`q ∼ ‖g0‖X +

∥∥∥(2rj ‖gj+1 − gj‖X)j∈N0∥∥∥`q
(4.5.5)

with constants C(r, q,X, C0).

Note that the main non-trivial step lies in the transition from the terms ‖f− gj‖X
to the terms ‖gj+1 − gj‖X. These latter terms provide the key for later characteri-
zations of function spaces by wavelet coefficients and is therefore quite essential
(although looking innocent).

The main tools for handling this transition are

• telescoping expansions;

• discrete Hardy inequalities.

Discrete Hardy inequalities: :

Theorem 4.5.2. First Hardy’s inequality:
For any fixed numberm, let bj := 2−mj

∑
l≤j
2mlal. Then, for all 0 < q ≤∞ and s < m,

we have
‖(2sjbj)j∈Z‖`q ≤ C‖(2sjaj)j∈Z‖`q , (4.5.6)

whereC depends on s, q, andm. The same result holds with bj := 2−mj
(∑

l≤j 2
mplapl

)1/p
for any p > 0, where C depends on s, p, q, andm.

Second Hardy’s inequality:

Let (aj)j∈N be any sequence of positive numbers. Let bj :=
(∑

l≥j a
p
l

) 1
p

for any fixed
0 < p <∞. Then for any q > 0, s > 0, one has∥∥(2sjbj)j∥∥`q ≤ C ∥∥(2sjaj)j∥∥`q (4.5.7)

where C = C(s, q, p).

Proof. For both inequalities, we only treat the case p = 1, since the general-
ization to p 6= 1 follows by applying the result established for p = 1 with aj
replaced by apj and (q, s,m) replaced by (q/p, sp,mp). We also only have to
consider the case where the norm M on the right side of these inequalities is
finite.
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First Hardy’s inequality:
When q =∞, we have al ≤M2−sl, and therefore

bj ≤M2−mj
∑
l≤j
2(m−s)l ≤ M

1− 2s−m
2−sj, (4.5.8)

which proves the result with C = (1 − 2s−m)−1. When 1 < q < ∞, we define
t := m−s

2
. Using the conjugate exponent q ′ such that 1

q
+ 1

q ′
= 1, we can write∑

j∈Z
(2sjbj)

q =
∑
j∈Z
2(s−m)qj

(∑
l≤j
2mlal

)q
≤
∑
j∈Z
2(s−m)qj

(∑
l≤j
2tq

′l
)q/q ′(∑

l≤j
2(m−t)qlaql

)
.
∑
j∈Z
2(s−m+t)qj

(∑
l≤j
2(m−t)qlaql

)
=
∑
l∈Z
aql 2

(m−t)ql
(∑
j≥l
2(s−m+t)qj

)
.
∑
l∈Z
2sqlaql ,

where the multiplicative constants depend on s, q and m. When q ≤ 1, we
simply write ∑

j∈Z
(2sjbj)

q =
∑
j∈Z
2(s−m)qj

(∑
l≤j
2mlal

)q
≤
∑
j∈Z
2(s−m)qj

∑
l≤j
2mqlaql

=
∑
l∈Z
aql 2

mql
(∑
j≥l
2(s−m)qj

)
.
∑
l∈Z
2sqlaql ,

where the multiplicative constants depend on s, q andm.
Second Hardy’s inequality: Consider first
q =∞: Let k := sup

j
2sjaj =

∥∥(2sjaj)j∥∥`∞ <∞. Then

aj ≤ 2−sjk

⇒ bj =

∞∑
l=j

al ≤ k
∞∑
l=j

2−sl = k(1− 2−s)−12−sj

⇒ ∥∥(2sjbj)j∥∥`∞ ≤ k

1− 2−s
= (1− 2−s)−1

∥∥(2sjaj)j∥∥`∞
66



1 < q <∞: Pick any 0 < t < s, let 1
q ′

+ 1
q
= 1. Then

∥∥∥(2sjbj)j∥∥∥q`q =∑
j≥0

(2sjbj)
q =
∑
j≥0
2sjq

(∑
l≥j
al

)q

=
∑
j≥0
2sjq

(∑
l≥j
2−tl(2tlal)

)q
Hölder
≤
∑
j≥0
2sjq

(∑
l≥j
2−tlq

′

) q

q ′

︸ ︷︷ ︸
≤C(t,q)·2−jtq

(∑
l≥j
2tlqaql

)

.
∑
j≥0
2jq(s−t)

(∑
l≥j
2ltqaql

)
=

∞∑
l=0

2ltqaql

l∑
j=0

2jq(s−t)︸ ︷︷ ︸
.2lq(s−t)

.
∞∑
l=0

(2lsal)
q

=
∥∥(2lsal)l∥∥q`q

0 < q ≤ 1:

∥∥∥(2sjbj)j∥∥∥q`q =
∞∑
j=0

(2sjbj)
q =

∞∑
j=0

2sjq

( ∞∑
l=j

aj

)q
q≤1
≤

∞∑
j=0

2sjq
∞∑
l=j

aql

=

∞∑
l=0

aql

l∑
j=0

2sjq .
∞∑
l=0

(2slal)
q =

∥∥(2slal)l∥∥q`q
Proof. Back to Theorem ??: The first equivalence in (4.5.4) is trivial because

σ2j(f)X ≤ ‖f−G2jf‖X ≤ C0σ2j(f)X .

As for the second equivalence: Note that since X is a quasi-Banach space

‖gj+1 − gj‖X = ‖gj+1 − f+ f− gj‖X . C0 (σ2j+1(f)X + σ2j(f)X) . σ2j(f)X .

Using (4.5.1) this yields(∑
j≥0

(
2rj ‖gj+1 − gj‖X

)q)
. |f|

q
Arq
.

To prove the converse inequality note first (by telescoping expansion):

f = g0 +

∞∑
j=0

(gj+1 − gj) , the sum converges in X.
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Now suppose that ‖u+ v‖µX ≤ ‖u‖
µ
X + ‖v‖µX for some µ > 0 (for X = `p, Lp, µ =

min{1, p}). Then

σ2j(f)
µ
X ≤ ‖f− gj‖µX =

∥∥∥∥∥∑
k≥j

(gk+1 − gk)

∥∥∥∥∥
µ

X

≤
∑
k≥j
‖gk+1 − gk‖µX .

Hence

|f|
q
Arq

(4.5.1)
∼
∥∥(2jrσ2j(f)X)∥∥q`q = ∞∑

j=0

2jrqσ2j(f)
q
X

≤
∑
j≥0
2jrq

µ
µ

(∑
k≥j
‖gk+1 − gk‖µX

)q
µ

.

Applying Theorem 4.5.2, (4.5.7) with aj = ‖gj+1 − gj‖X, bj =
(∑

k≥j a
µ
k

) 1
µ

yields∥∥∥(2jrσ2j(f)X)j∥∥∥`q .
∥∥∥(2jr ‖gj+1 − gj‖X)j∥∥∥`q ,

which proves (4.5.4).
As for (4.5.5) we have

‖g0‖µX ≤ ‖g0 − f‖
µ
X + ‖f‖µX ≤ Cµ0σ1(f)µX + ‖f‖µX ≤ (1+ Cµ0 ) ‖f‖µX ,

and conversely

‖f‖µX ≤ ‖g0‖
µ
X + Cµ0σ1(f)X . (1+ Cµ0 ) ‖g0‖µX .

As a first application we take X = `p(Λ) which gives a characterization of
Ar
q ((Xn), `p(Λ)) (q = p).
To this end, consider the weighted sequence spaces

`rp(Λ) = {d ∈ `p(Λ) : ‖d‖`rp = ‖(k
rdλk)k‖`p <∞} . (4.5.9)

Theorem 4.5.3. For r > 0, p > 0 one has

Ar
p ((Xn), `p(Λ)) = `rp(Λ)

with equivalent norms.

Proof. (X = `p(Λ), Gn = Pn in Theorem 4.5.1). By (4.5.5) we have

‖d‖Arp ∼ ‖P1d‖`p +
∥∥∥∥(2rj ‖P2j+1d − P2jd‖`p

)
j

∥∥∥∥
`p

= |dλ1 |+

∥∥∥∥∥∥∥
2rj

 2j+1∑
k=2j+1

|dλk |
p

 1
p


j

∥∥∥∥∥∥∥
`p
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and because 2rj ≤ kr ≤ 2r(j+1) = 2r2rj

∼ |dλ1 |+

∥∥∥∥∥∥∥
 2j+1∑
k=2j+1

krp |dλk |
p

 1
p

∥∥∥∥∥∥∥
`p

=

( ∞∑
k=1

(kr |dλk |)
p

) 1
p

= ‖d‖`rp

Exercise 4.5.2. Two cases of interest:

• derive an analogous characterization for q 6= p;

• 2π-periodic functions and Fourier transforms: Let Hm2π = {f ∈ L2,2π : f(l) ∈
L2,2π, l ≤ m}

show
(
f̂(k)

)
k∈Z ∈ Am

2 ((Xn), `2(Z)), Xn = span{ek : |k| ≤ n}

4.5.2 Nonlinear Approximation

Now take Σn := {d ∈ `p(Λ) : supp d ≤ n} the set of all n-sparse sequences:

Ar
q ((Σn), `p(Λ)) =

{
d ∈ `p(Λ) : |d|Arq :=

{
sup

n
nrσn(d)`p <∞(∑

n≥1
(
nrσn(d)`p

)q 1
n

) 1
q <∞

}
0 < p, q ≤∞
‖d‖Arq = ‖d‖`p + |d|Arq

(4.5.10)

In the following we assume that

#{λ : |dλ| > η} <∞ . (4.5.11)

For p < ∞ this is automatically true but for p = ∞ this is an additional as-
sumption. Due to this assumption the decreasing rearrangement (d∗k)k∈N of d
is well-defined, i.e., there is an ordering of Λ = (λk)k∈N such that |dλ1 | = d∗1 ≥
|dλ2 | = d

∗
2 ≥ ....

Rearrangements are used to define so called Lorentz spaces. As a first in-
stance the space weak `p is defined by

w`p(Λ) = {d : sup
k≥1

k
1
pd∗k =: ‖d‖w`p <∞} . (4.5.12)

More generally

`p,q(Λ) :=

d :

( ∞∑
k=1

(
k
1
pd∗k

)q 1
k

) 1
q

=: ‖d‖`p,q <∞
 , (4.5.13)
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that is `p,∞(Λ) = w`p(Λ), `p,p(Λ) = `p(Λ).
It can be seen from the definition of ‖ · ‖`p,q(Λ) that the spaces are interpolation

spaces (see Definition 2.3.2), i.e.,

`p,q(Λ) = [`p1(Λ), `p2(Λ)]θ,q = `p,q,
1

p
=
1− θ

p1
+
θ

p2
. (4.5.14)

w`p and `p,q are important for the understanding of nonlinear and adaptive
approximation. This is explained by the following main result of this section.

Theorem 4.5.4. For any r > 0, 0 < p ≤∞ one has

Ar∞ ((Σn), `p(Λ)) = w`τ(Λ),
1

τ
= r+

1

p

and ‖·‖Ar∞ ∼ ‖·‖w`τ
(4.5.15)

with constants depending on p, τ, which blow up as τ→ p.
Moreover, for any r > 0, 0 < q <∞, 0 < p ≤∞ one has

Ar
q ((Σn), `p(Λ)) = `τ,q(Λ),

1

τ
= r+

1

p
, (4.5.16)

and in particular
Ar
τ ((Σn), `p(Λ)) = `τ,τ(Λ) = `τ(Λ) . (4.5.17)

Comments on Theorem 4.5.4, and discussion of the spacesw`τ(Λ): A few com-
ments before turning to the proof of Theorem 4.5.4: The rate of nonlinear ap-
proximation is determinated by the summability index of the smoothness norm.
The larger r, the smaller τ and the more concentrated is d. The case q =∞ is of
particular interest.

Remark 4.5.1. Theorem 4.5.4, (4.5.15) ensures the validity of the Jackson estimate

σn(d)`p ≤ c(τ, p)n−r ‖d‖w`τ (4.5.18)

with 1
τ
= r + 1

p
, c(p, τ) ∼

(
τ
p−τ

)
. Note that the relation 1

τ
= r + 1

p
corresponds to the

critical embedding in Figure 2.4, i.e., δ = 0.

Remark 4.5.2. In (4.5.18) c(τ, p) can be replaced by 1 if w`τ is replaced by `τ, i.e.,

σn(d)lp ≤ n−r ‖d‖`τ (4.5.19)

for 1
τ
= r+ 1

p
(with constant one). This is often called Stechkin’s inequality.
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Proof. We have

σn(d)
p
`p
=

∞∑
k=n+1

(d∗k)
p ≤ (d∗n)

p−τ

∞∑
k=n+1

(d∗k)
τ

≤
(
1

n

n∑
k=1

(d∗k)
τ

)p−τ
τ
( ∞∑
k=n+1

(d∗k)
τ

)
≤ n1−pτ ‖d‖p−τlτ

‖d‖τlτ
= n1−

p
τ ‖d‖p`τ .

This implies

σn(d)`p ≤ n
1
p
− 1
τ ‖d‖`τ .

Relation between weak and strong `τ-spaces:

Remark 4.5.3. a) One has `p(Λ) $ w`p(Λ) ⊂ `p+ε(Λ) for any ε > 0.

b) For any τ < p one has ‖·‖`p ≤ c(τ, p) ‖·‖w`τ .

Proof. a) Exercise.
b) We have

‖d‖p`p =
∑
λ

|dλ|
p =
∑
λ

|dλ|
τ
|dλ|

p−τ =
∑
k∈N

(
k
1
τd∗k

)τ
k−1(d∗k)

p−τ

≤ ‖d‖τwlτ
∑
k∈N

k−1(d∗k)
pp−τ
p

Hölder
≤ ‖d‖τwlτ

(∑
k∈N

k−
p
τ

) τ
p
(∑
k∈N

(d∗k)
p

)p−τ
p

≤ c(p− τ)︸ ︷︷ ︸
explodes for τ→p

‖d‖τwlτ ‖d‖
p−τ
`p
,

and hence

‖d‖τlp ≤ c(p− τ) ‖d‖
τ
wlτ

⇔ ‖d‖`p ≤ c(p, τ)
1
τ ‖d‖w`τ .

It is often convenient to employ a different way of describing the norm ‖d‖w`p .
To this end, consider the redistribution function

η 7→ µd(η) := #{λ : |dλ| ≥ η} . (4.5.20)
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Remark 4.5.4. Let 0 < p < ∞. d ∈ w`p(Λ) if and only if there exists a constant M
such that

µd(η) = #{λ : |dλ| ≥ η} ≤Mη−p (4.5.21)

and for the smallest constantM in (4.5.21) we have

M = sup
η>0

ηpµd(η) = ‖d‖pw`p . (4.5.22)

Proof. Pick any η > 0, choose the largest m ∈ N such that d∗m ≥ η, that is

from µd(η) = m follows ηpµd(η) ≤ m(d∗m)
p

def.
≤ ‖d‖pw`p . Then, since η > 0 was

arbitrary,
M ≤ ‖d‖pw`p .

Conversely: For ε > 0 choosem such that

m(d∗m)
p ≥ ‖d‖pw`p − ε

but sincem = µd(d
∗
m) we have

m(d∗m)
p = (d∗m)

pµd(d
∗
m) ≤ sup

η>0

ηpµd(η) =M,

and since εwas arbitrary
M ≥ ‖d‖pw`p .

Finally we record one further equivalent quantity

Remark 4.5.5. Consider

sup
η>0

ηp#{λ : 2η ≥ |dλ| > η} =: M̃ . (4.5.23)

Then
M̃ ≤ ‖d‖pw`p︸ ︷︷ ︸

=M

≤ (1− 2−p)−1M̃ . (4.5.24)

Proof. Clearly M̃ ≤M = ‖d‖pw`p . Conversely,

#{λ : |dλ| > η} =
∑
j≥0

#{λ : 2j+1η ≥ |dλ| > 2
jη}

(4.5.23)
≤
∑
j≥0
2−jpη−pM̃

= η−pM̃
∑
j≥0
2−jp = η−pM̃

1

1− 2−p
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Proof of Theorem 4.5.4: Assume first p < ∞: For d ∈ w`τ show ‖bd‖w`τ .
‖d‖Ar∞ :

σn(d)
p
`p
=

∞∑
k=n+1

(d∗k)
p =

∞∑
k=n+1

k
−p
τ

(
k
1
τd∗k

)p
≤ ‖d‖pwlτ

∞∑
k=n+1

k
−p
τ ≤ ‖d‖pw`τ

∫∞
n

s
−p
τ ds = ‖d‖pw`τ

(
τ

p− τ

)
n1−

p
τ

⇒ σn(d)`p ≤ n
1
p
− 1
τ

(
τ

p− τ

) 1
p

‖d‖w`τ = n
−r

(
τ

p− τ

) 1
p

‖d‖w`τ

⇒ |d|Ar∞ ≤
(

τ

p− τ

) 1
p

‖d‖w`τ⇒ d ∈ Ar∞.
(4.5.25)

Also, since τ < p, we can use Remark 4.5.3 b) which says ‖·‖`p ≤ c(p, τ) ‖·‖w`τ .
Since w`τ ⊆ Ar∞ we conclude

‖d‖Ar∞ .
(
1+

(
τ

p− τ

) 1
p

)
‖d‖w`τ . (4.5.26)

For the converse direction suppose d ∈ Ar∞. Then for anym ∈ N we have

m(d∗2m)
p ≤

2m∑
k=m+1

(d∗k)
p ≤

∞∑
k=m+1

(d∗k)
p = σm(d)

p
`p

def. of d∈Ar∞≤ m−rp |d|pAr∞
= m1−p

τ |d|pAr∞⇒ m
1
τd∗2m ≤ |d|Ar∞ .

So considering different cases we get
2−

1
τ (2m)

1
τd∗2m ≤ |d|Ar∞ ,m ∈ N

(2m+ 1)
1
τ

m
1
τ

(2m+1)
1
τ
d∗2m+1 ≤ |d|Ar∞ ,m ∈ N

d∗1 ≤ |d|Ar∞
which gives us

‖d‖w`τ ≤ 3
1
τ ‖d‖Ar∞ .

Consider now p =∞: Let r = 1
τ

and assume that d ∈ w`τ

σn(d)`∞ = d∗n+1 ≤ n− 1
τ ‖d‖w`τ = n

−r ‖d‖w`τ .
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By the definition of |d|Ar∞ it follows that

|d|Ar∞ ≤ ‖d‖w`τ ,

and consequently

‖d‖Ar∞ ≤ 2 ‖d‖w`τ .
Conversely: For d ∈ Ar∞ we have

n
1
τd∗n+1 = n

rd∗n+1 = n
rσn(d)`∞ ≤ |d|Ar∞ .

Taking the supremum yields

sup
n≥1

n
1
τd∗n ≤ 2

1
τ |d|Ar∞ ,

and by d∗1 = ‖d‖`∞ follows

‖d‖w`τ ≤ 2
1
τ ‖d‖Ar∞ ,

The proof of the remaining assertion (4.5.16) follows from interpolation, using
(4.5.14) and (2.3.25) in Remark 2.3.8. �

Different objectives: N-term approximation relates the total error to the num-
ber of terms needed to achieve it. It is based on sorting coefficients by size.
Instead of cutting according to a desired number of terms we may also truncate
the coefficient sequence according to their size. This is called “thresholding”.

• So far, we prescribe the budget n and asked for the n-term error σn(d)`p .

• Now we want to control the size of the coefficients and ask for the error
incurred by cutting off coefficients below a given threshold (Image Com-
pression).

To this end consider for any η > 0

(Tηd)λ :=

{
dλ if |dλ| ≥ η ,
0 otherwise .

How does this relate to σn(d)`p?

74



Theorem 4.5.5. Let 0 < τ < p ≤∞, then d belongs tow`τ(Λ) with 1
τ
− 1

p
=: r if and

only if
sup
η>0

η
τ
p
−1 ‖d − Tηd‖`p︸ ︷︷ ︸
=:C∗(d)

<∞ (4.5.27)

and
C∗(d) ≤ C ‖d‖

τ
p

w`τ
. (4.5.28)

Let us see what this means: From (4.5.27) and (4.5.28) we obtain

‖d − Tηd‖`p ≤ C ‖d‖
τ
p

w`τ
η1−

τ
p = C ‖d‖

τ
p
−1

w`τ
η1−

τ
p ‖d‖w`τ

= C

(
η

‖d‖w`τ

)1− τ
p

‖d‖w`τ
(4.5.22)
≤ C

(
µd(η)

− 1
τ

)1− τ
p ‖d‖w`τ

= Cµd(η)
1
p
− 1
τ ‖d‖w`τ .

Hence we obtain

‖d − Tηd‖`p ≤ C (# supp Tηd)
−r ‖d‖w`τ

which means that thresholding has best (n = µd(η))-term performance.

Proof. of Theorem 4.5.5 (p <∞): Assume d ∈ w`τ, show (4.5.27), (4.5.28):

‖d − Tηd‖p`p =
∑
|dλ|≤η

|dλ|
p =
∑
j≥0

∑
2−(j+1)η<|dλ|≤2−jη

|dλ|
p

≤
∑
j≥0
2−jpηp #{λ : |dλ| > 2

−(j+1)η}︸ ︷︷ ︸
=µd(2−(j+1)η)

(4.5.22)
≤
∑
j≥0
2−jpηp ‖d‖τw`τ η

−τ2τ(j+1)

= ‖d‖τw`τ η
p−τ2τ

∑
j≥0
2−j(p−τ) ≤ c(p, τ)ηp−τ ‖d‖τw`τ

This proves (4.5.27) and (4.5.28).
Suppose now that η1−

τ
p ‖d − Tηd‖`p ≤ C∗. We wish to show that d ∈ w`τ. To

this end, consider for any η > 0

ηp#{λ : 2η ≥ |dλ| > η} =
∑

λ:η<|dλ|≤2η
ηp ≤

∑
λ:η<|dλ|≤2η

|dλ|
p ≤

∑
λ:|dλ|≤2η

|dλ|
p = ‖d − T2ηd‖p`p .

Hence

ητ#{λ : 2η ≥ |dλ| > η} ≤ ητ−p ‖d − T2ηd‖p`p = 2
−(τ−p)(2η)τ−p ‖d − T2ηd‖p`p
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which is by assumption

≤ 2p−τ(C∗)p .
By (4.5.24) we obtain

‖d‖w`p ≤ (1− 2−p)−12p−τ(C∗)p.

So far we have prescribed:

• the budget n and

• the minimal coefficient size.

There is yet another way of monitoring the best n-term approximation, namely

• prescribing the target accuracy

and choosing the smallest number of terms to achieve that error. We see next
how to bound this number.

Exercise 4.5.3. Assume that d ∈ w`τ(Λ). Define the coarsening operator

Cε(d) = (d∗k)
n(ε)
k=1

where

n(ε) = argmin
n


(∑
k>n

(d∗k)
p

) 1
p

≤ ε

 ,

i.e., Cε coarsens d back to shortest subsequence – which is a best n(ε)-term approxima-
tion – that realizes the target accuracy ε. Then one has

n(ε) . ε−
1
r ‖d‖

1
r

w`τ
,

1

τ
= r+

1

p
. (4.5.29)

Proof. Exercise.

4.6 Wavelets and Function Spaces: a Quick Tour

So called wavelet bases form an important class of Riesz bases for L2 and corresponding
Sobolev bases. They also provide simple characterizations of Besov spaces. The most
convenient framework for constructing wavelet bases is the concept of Multiresolution
Spaces that has been already briefly indicated earlier, see (4.1.1). The envisaged charac-
terization of function spaces through wavelet bases can be based on the characterization
of function spaces through such multiresolution spaces.

The main difference from what one mostly finds in the literature is to avoid making
essential use of Fourier-transforms because the concepts should eventually work on
general domains rather than on the whole Euclidean space or the torus.
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4.6.1 Multiresolution Spaces

In their classical form such multiresolution spaces Vj are generated by a single so called
scaling function φ(x) defined on R, see e.g. [30, 36]. Then defining (as in the example of
the Haar wavelet) φj,k(x) := 2j/2φ(2jx − k) and defining Vj := span {φj,k : j, k ∈ Z} the
spaces Vj are indeed nested, Vj ⊂ Vj+1, if the scaling function is refinable, i.e., there exist
coefficients ak such that

φ(x) =
∑
k∈Z

akφ(2x− k), x ∈ R, (4.6.1)

which says V0 ⊂ V1 and implies the general case by dilation. One also needs to quantify
the stability of the translates φ(· − k). The wavelets are then obtained (as in the case of
the Haar basis) by identifying a basis {ψ(·− k) : k ∈ Z} for

W0 := V1 	 V0, (4.6.2)

to obtain then a multi-scale basisψj,k again by dilation and translation. For the resulting
collection Ψ to form a Riesz-basis for L2(R), say it is important how the complement in
(4.6.2) is formed. An orthogonal complement as in the Haar-case would be perfect.

The advantage of the above framework lies in the simplicity and convenience of the
pivotal role of dilation and translation and how this allows one to use Fourier techniques.

The disadvantage is that this works well on all of R (and Rd by tensor-products)
and also on the torus by periodization but not on more general domains arising in
applications.

It is therefore important to note that the framework based on dilation and translation
is by no means essential. Instead the following general notion of Multiresolution Spaces
which indeed applies to a much wider scope of practically relevant scenarios extracts
the essential features driving multi-scale analysis, see also [23].

Definition 4.6.1. LetΩ ⊂ Rd be a domain. A multiresolution approximation is a sequence
(Vj)j≥0 of spaces of functions defined onΩ which satisfies the following properties.

(i) Nestedness: One has Vj ⊂ Vj+1 for all j ≥ 0.

(ii) Denseness: For all 0 < p ≤ ∞, and all f ∈ Lp(Ω) or f uniformly continuous when
p =∞, there exists a sequence (fj)j≥0 with fj ∈ Vj such that limj→∞ ‖f− fj‖Lp = 0.

(iii) Generating functions: For each j ≥ 0, there exists a finite or countable family {ϕγ}γ∈Γj
of compactly supported functions from L∞(Ω) with finitely overlapping supports (any
x ∈ Ω is contained in at most finitely many supports) and such that Vj is the set of
functions of the form

g :=
∑
γ∈Γj

cγϕγ, (4.6.3)

where the cγ are real numbers.
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(iv) Support properties: For each j ≥ 0, there exists a family of domains {Sγ}γ∈Γj which is a
covering ofΩ in the sense that

|Ω \ ∪γ∈ΓjSγ| = 0, (4.6.4)

and such that
|supp(ϕγ) \ Sγ| = 0. (4.6.5)

The family FS := {Sγ}γ∈Γ with Γ :=
⋃
j≥0 Γj is shape preserving and satisfies

0 < inf
j≥0

inf
γ∈Γj

2jdiam(Sγ) ≤ sup
j≥0

sup
γ∈Γj

2jdiam(Sγ) <∞, (4.6.6)

and
sup
γ∈Γ

#Eγ <∞, (4.6.7)

where Eγ := {µ ∈ Γj : Sµ ∩ Sγ 6= ∅} for γ ∈ Γj.

(v) Local Lp-stability: For all 0 < p ≤ ∞, there exist constants 0 < cp ≤ Cp, such that for
all j ≥ 0, all g ∈ Vj, and all γ ∈ Γj, one has

cp2
j(d
2
−d
p
)‖c‖`p(Eγ) ≤ ‖g‖Lp(Sγ) ≤ Cp2

j(d
2
−d
p
)‖c‖`p(Eγ), (4.6.8)

for all vectors c = (cµ)µ∈Eγ .

Remark 4.6.1. Note that the scaling functions ϕγ are normalized in L2. If we replace for a
p 6= 2 the function ϕγ by ϕγ/‖ϕγ‖Lp(Ω) the factors 2j(

d
2
−d
p
) do not occur in (4.6.8).

Exercise 4.6.1. 1. WhenΩ is bounded the Vj are finite dimensional.

2. The local Lp-stability property (4.6.8) implies that the functions (ϕγ)γ∈Γj are linearly
independent ∑

γ∈Γj
cγϕγ = 0⇒ cγ = 0, γ ∈ Γj, (4.6.9)

and therefore constitute a basis of Vj.

3. Show that (4.6.8) implies

cp2
|γ|(d

2
−d
p
) ≤ ‖ϕγ‖Lp ≤ Cp2|γ|(

d
2
−d
p
)
, γ ∈ Γ. (4.6.10)

as well as the global stability property

cp2
j(d
2
−d
p
)‖c‖`p ≤ ‖

∑
γ∈Γj

cγϕγ‖Lp(Ω) ≤ Cp2j(
d
2
−d
p
)‖c‖`p , (4.6.11)

for all c = (cγ)γ∈Γj .
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For us the case p = 0 plays a pivotal role. Therefore, we assume in what follows that
the ϕγ are normalized in L2, i.e.,

‖ϕγ‖L2 = 1, γ ∈ Γ. (4.6.12)

Notational convention:
γ ∈ Γj ⇔ |γ| = j.

Example: γ = (j, k), |γ| = j denotes the dyadic level.

The definition of Vj+1 	 Vj relies crucially on the existence of a dual or biorthogonal
multiresolution which accompanies the given primal multiresolution (Vj)j∈N0 in the fol-
lowing sense.

Definition 4.6.2. Let (Vj)j≥0 be a multiresolution approximation on a domainΩ ⊂ Rd and let
1 ≤ p ≤∞. We say that a family {ϕ̃γ}γ∈ÊΓ of functions from Lp(Ω), or from the spaceM(Ω)
of Radon measure in the case p = 1, is a system of Lp-stable dual scaling functions if and only
if it satisfies the following properties.

(i) Finite overlapping and localization: for all γ ∈ Γ ,

|supp(ϕ̃γ) \ Sγ| = 0, (4.6.13)

where the Sγ are the sets introduced in Definition 4.6.1.

(ii) Lp bounds: there exists a constant C̃p > 0 such that one has

‖ϕ̃γ‖Lp(Ω) ≤ C̃p2|γ|(
d
2
−d
p
)
. (4.6.14)

In the case p = 1 the L1 norm is replaced by the dual norm

‖f‖M = sup{〈f, g〉M,C : g ∈ C(Ω̄), ‖g‖L∞ = 1}, (4.6.15)

where 〈·, ·〉M,C denotes the duality product between Radon measures and continuous
functions.

(iii) Biorthogonality:

〈ϕγ, ϕ̃µ〉 =
∫
Ω

ϕγ(x)ϕ̃µ(x)dx = δγ,µ, γ, µ ∈ Γj, j ≥ 0, (4.6.16)

where 〈·, ·〉 is 〈·, ·〉M,C in the case p = 1, assuming that the scaling functions ϕγ are
continuous.

Exercise 4.6.2. The value of p is fixed in the above definition. However, it is easy to check that
an Lp-stable dual system is also Lr-stable for any 1 ≤ r ≤ p.

Remark 4.6.2. Whether such multiresolution spaces are suitable for characterizing function
spaces relies on the validity of two types of inequalities: Berntein and Jackson inequalities,
similar to the characterization of approximation spaces as interpolation spaces.
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Canonical projectors The systems of dual scaling functions induce associated pro-
jectors in a natural way that will turn out to have near-best approximation properties.

Exercise 4.6.3. For the primal and dual scaling functions from Definitions 4.6.1, 4.6.2 and
1 ≤ p ≤∞ show that

Pjf :=
∑
γ∈Γj
〈f, ϕ̃γ〉ϕγ (4.6.17)

are projectors from Lp(Ω) onto Vj.

Remark 4.6.3. Lagrange interpolation and orthogonal projections are special cases of projectors.
The projectors (4.6.17) are special in that the the functions ϕ̃γ inducing the dual functionals are
also refinable. If for p = 2 (4.6.16) holds for ϕ̃γ = ϕγ, the Pj is the orthogonal projector onto
Vj.

Introducing the influence domains

Rγ := ∪{Sµ : µ ∈ Eγ}, (4.6.18)

we observe that the value of Pjf in Sγ depends only on the value of f in Rγ. The projec-
tors Pj are locally stable, as shown by the following result.

Assumption 4.6.1. The collection of sets {Sγ}γ∈Γ , {Rγ}Γ∈Γ , Γ :=
⋃
j∈N0 Γj, are uniformly shape

regular.

The first observation is that these projectors are (globally and locally) stable.

Theorem 4.6.1. Let (Vj)j≥0 be a multiresolution approximation on a domain Ω ⊂ Rd and let
1 ≤ p ≤∞. Assume that the dual system {ϕ̃γ}γ∈Γ is Lp ′-stable with p ′ the conjugate exponent
of p. Then one has for all f ∈ Lp(Ω), if p <∞, or f ∈ C(Ω̄), if p =∞,

‖Pjf‖Lp(Ω) ≤ C‖f‖Lp(Ω), j ≥ 0, (4.6.19)

where C depends on the stability constants Cp and C̃p ′ , and on the maximal number of supports
the dual scaling functions overlapping any given x ∈ Ω. One also has

‖Pjf‖Lp(Sγ) ≤ C‖f‖Lp(Rγ), |γ| = j, j ≥ 0. (4.6.20)

Proof. We know from (4.6.11) that

‖Pjf‖Lp(Ω) ≤ Cp2j(
d
2
−d
p
)‖c‖`p (4.6.21)

with c = (〈f, ϕ̃γ〉)γ∈Γj . Using Hölder’s inequality, we obtain.

|〈f, ϕ̃γ〉| ≤ ‖f‖Lp(S̃γ)‖ϕ̃γ‖Lp ′ ≤ ‖f‖Lp(S̃γ)C̃p ′2
j(d
2
− d
p ′ ). (4.6.22)

Combining these two estimates and using the finite overlapping properties of the dual
scaling functions we obtain (4.6.19). Applying (4.6.19) to fχRγ gives (4.6.20) since Pj(fχRγ) =
Pjf on Sγ.
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An immediate consequence of this stability is the so called Lebesgue-type inequality.

Exercise 4.6.4. Under the assumptions of Theorem 4.6.1 there exists for each p, 1 ≤ p ≤ ∞
(with C(Ω̄) in place of L∞(Ω)) a constant C̄p such that

‖f− Pjf‖Lp(Ω) ≤ C̄p inf
g∈Vj
‖f− g‖Lp(Ω), j ∈ N0. (4.6.23)

Give a bound for C̄p. That is, the Pj provide near-best (linear) approximations from the spaces
Vj.

We can now apply Theorem 4.5.1 with the following specifications:

• X = Lp(Ω),Ω ⊂ Rd a bounded domain;

• gj = Pjf, j ∈ N0.

Corollary 4.6.1. With the above specifications we have for 1 ≤ p ≤∞, 0 < q <∞, s > 0

‖f‖As/dq ((Σn);Lp(Ω))
∼ ‖P0f‖Lp(Ω) +

( ∞∑
j=1

2jsq‖(Pj+1 − Pj)f‖qLp(Ω)

)1/q
(4.6.24)

and
‖f‖As/d∞ ((Σn);Lp(Ω))

∼ ‖P0f‖Lp(Ω) + sup
j∈N

2js‖(Pj+1 − Pj)f‖Lp(Ω). (4.6.25)

Proof. Since Ω is bounded the cardinality of the supports Sγ, γ ∈ Γj scales (because of
finite overlap (4.6.7)) like #Γj ∼ 2dj. By (4.5.3) and (4.6.23) we have

‖f− Pjf‖Lp(Ω) ≤ C0σa2dj(f)p.

Taking Σn := Vj for a2dj = dimVj ≤ n < a2d(j+1) = a2d2dj = dimVj+1, r = s/d, the
claims (4.6.24), (4.6.25) forllow from Theorem 4.5.1.

Thus, the approximation spaces associated with the multiresolution (Vj)j∈N0 is char-
acterized as expected by the decay of the fluctuations ‖(Pj+1 − Pj)f‖Lp(Ω) between suc-
cessive resolution levels.

The next question is whether the approximation spaces are related to classical func-
tion spaces. This turns out to be true provided that the multiresolution satisfies certain
Bernstein- and Jackson-type inequalities.

Jackson-Inequality: The projectors Pj discussed above provide near-best approxima-
tions but how rapidly the approximation errors tend to zero requires more properties of
the multiresolution (Vj)j∈N0 . Specifically, this dependes solely on the order of exactness
of multiresolution (Vj)j≥0.

Definition 4.6.3. The multiresolution (Vj)j≥0 is said to have polynomial exactness of order
m, if and only if

Pm ⊂ Vj, (4.6.26)

for all j ≥ 0.
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We can then establish a Jackson-type-inequality.

Theorem 4.6.2. Let (Vj)j≥0 be a multiresolution approximation on a domain Ω ⊂ Rd such
that the spaces Vj have polynomial exactness of orderm. Then for all 1 ≤ p ≤∞,

inf
g∈Vj
‖f− g‖Lp(Ω) ≤ Cωm(f, 2−j)p, f ∈ Lp(Ω), (4.6.27)

for all j ≥ 0, where the constant C depends on m, p, the constants in (4.6.8) and (4.6.11), the
supremum in (4.6.7), and on the uniform shape parameter for the sets Sγ, Rγ, γ ∈ Γ .

Proof. Asuume that p < ∞ (the case p = ∞ is even simpler). Then for any γ ∈ Γj one
has for any polynomial g over Sγ

‖f− Pjf‖pLp(Sγ) . ‖f− g‖
p
Lp(Sγ)

+ ‖g− Pjf‖pLp(Sγ)
(4.6.26)
= ‖f− g‖p

Lp(Sγ)
+ ‖Pj(g− f)‖pLp(Sγ)

(4.6.20)
≤ (1+ C)‖f− g‖p

Lp(Ŝγ)
,

where
Ŝγ :=

⋃
{Sµ : µ ∈ Γj, |Sγ ∩ Sµ| > 0}.

By (4.6.7) and (4.6.6) one has diam Ŝγ . 2−j. By Whitney’s Theorem (see (2.3.12) and
(2.3.13)), we have

‖f− Pjf‖pLp(Sγ) . ωm(f, Ŝγ)p . ωm(f, 2
−j, Ŝγ)p, (4.6.28)

uniformly in j. Now use that only a uniformly bounded finite number of the Ŝγ overlap
at a given location and the fact that the modulus of smoothness is equivalent to its
averaged version (2.4.9), which is subadditive, summing over the local esitmates γ ∈ Γj
yields (4.6.27).

Corollary 4.6.2. If (4.6.26) holds one has for 0 < s < m,m from (4.6.26)

Bsq(Lp(Ω)) ⊆ As/dq ((Σn);Lp(Ω)) (4.6.29)

in the sense of a continuous embedding.

Proof. Noting that

‖(Pj+1 − Pj)f‖Lp(Ω) ≤ ‖Pj+1f− f‖Lp(Ω) + ‖f− Pjf‖Lp(Ω) . ωm(f, 2
−j,Ω)p,

and substituting these bounds into the right hand side of (4.6.24), (4.6.25) and using
Remark 2.3.6, 5., shows that

‖f‖As/dq . ‖f‖Bsq(Lp(Ω)), (4.6.30)

which confirms the claim.

Thus polynomial exactness of order m implies that Besov spaces of smoothness s <
m are contained in the approximation spaces.

We will see next that one even has equality in (4.6.29) provided that the multiresolu-
tion (Vj)j∈N0 satisfies in addition to the Jackson-type estimates also certain Bernstein-type
estimates.
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Bernstein type inequality:

Definition 4.6.4. The multiresolution (Vj)j≥0 (respectively the generating scaling functions)
is said to have smoothness of order sp in Lp(Ω) if and only if there exists an integer m̄ ≥ 1
and a constant C such that

‖∆m̄h ϕγ‖Lp(Ωnh) ≤ Cmin{1, 2|γ||h|}sp2|γ|(
d
2
−d
p
)
, h ∈ Rd, γ ∈ Γ. (4.6.31)

Exercise 4.6.5. Let p = 2, ϕj,k(x) := 2j/2χ[0,1)(2jx− k). What is the largest s2 in this case?

We begin with a Bernstein type inequality which controls “difference” quotions in Lp
by the Lp norm for functions in Vj (similar to the inverse estimates encountered earlier).

Theorem 4.6.3. Let (Vj)j≥0 be a multiresolution approximation on a domain Ω ⊂ Rd and let
0 < p ≤ ∞. If the primal scaling functions satisfy the smoothness condition (4.6.31) for some
sp > 0 and m̄ > sp, then

ωm̄(g, t)p ≤ C
(

min{1, 2jt}
)sp‖g‖Lp(Ω), g ∈ Vj, (4.6.32)

for all t > 0 and j ≥ 0, where C depends on m̄, d, p, on the supremum in (4.6.7), and on the
constants in (4.6.31) and (4.6.11).

Proof. We combine (4.6.31) with (4.6.10) applied to uγ = ∆m̄h ϕγ. This yields, for any
sequence c = (cγ)γ∈Γj and g =

∑
γ∈Γj cγϕγ ∈ Vj,

‖∆m̄h g‖Lp(Ω) = ‖
∑
γ∈Γj

cγ∆
m̄
h ϕγ‖Lp(Ω) ≤ Cmin{1, 2|γ||h|}sp2|γ|(

d
2
−d
p
)‖c‖`p , (4.6.33)

where C depends on m̄, d, p, the supremum in (4.6.7), and the constant in (4.6.31). It
follows that

ωm̄(g, t)p ≤ C
(

min{1, 2jt}
)sp
2
j(d
2
−d
p
)‖c‖`p , (4.6.34)

which, combined with the lower bound in (4.6.11) yields (4.6.32).

Remark 4.6.4. One easily derives from the definition of the Besov-seminorms (see Definition
2.3.1) the Bernstein type inequality

|g|
B
sp∞ (Lp(Ω)) ≤ C2spj‖g‖Lp(Ω), g ∈ Vj. (4.6.35)

Theorem 4.6.4. Let (Vj)j≥0 be a multiresolution approximation on a domain Ω ⊂ Rd and let
0 < q ≤∞, 1 ≤ p ≤∞. Assume that the spaces Vj have polynomial exactness of orderm, and
that the primal scaling functions satisfy the smoothness condition (4.6.31) for some sp > 0 and
m̄ > sp. If in addition 0 < s < min{sp,m}, one has

Bsq(Lp(Ω)) = As/dq ((Vj);Lp(Ω)), (4.6.36)
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with equivalent quasi-norms. The embedding and equivalence constants depend on p, q, s, sp,
m, and on the constants in (4.6.32) and (4.6.27). In particular, one has for the above range of
parameters

‖f‖Bsq(Lp(Ω)) ∼ ‖P0f‖Lp(Ω) +
( ∞∑
j=1

2jsq‖(Pj+1 − Pj)f‖qLp(Ω)

)1/q
, (4.6.37)

with the usuaql interpretation when q =∞.

Proof. In view of Corollaries 4.6.1, 4.6.2 and (4.6.30), we need only to show

‖f‖Bsq(Lp(Ω)) . ‖f‖As/dq . (4.6.38)

To see this,

ωm̄(f, 2
−j)p ≤ ωm̄(f− Pjf, 2−j)p +ωm̄(P0f, 2−j)p +

∑j
l=1ωm̄((Pl − Pl−1)f, 2

−j)p

. ‖f‖Lp(Ω) + 2
−jsp
∑j
l=0 2

lspσa2dl(f)Lp(Ω),

where the second inequality uses the Bernstein type inequality (4.6.32). By application
of the first Hardy’s inequality (4.5.6), we conclude that for any 0 < s < sp,

‖(2sjωm̄(f, 2−j)p)j≥0‖`q . ‖f‖Lp(Ω) + |f|As/dq
, (4.6.39)

which gives the continuous embedding (4.6.30).

Remark 4.6.5. Analogous statements can be proved also for 0 < p < 1 but with considerably
more work.

4.6.2 Wavelet-Based Characterization

The spaces
Wj := (Pj+1 − Pj)Vj+1 (4.6.40)

clearly satisfy
Vj+1 = Vj +Wj.

suppose that we have found for each level j a basis

Ψj := {ψλ : λ ∈ Λj}

which is Lp-stable in the sense of (4.6.11), i.e.,

2
j
(
d
2
−d
p

)
‖(dλ)λ∈Λj‖`p(Λj) ∼

∥∥∥∑
λ∈Λj

dλψλ

∥∥∥
Lp(Ω)

, w ∈Wj, (4.6.41)

with uniform constants. As before this means that we use the normalization

‖ψλ‖L2(Ω) = 1, λ ∈ Λ. (4.6.42)
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Then, given f each fluctuation (Pj+1 − Pj)f ∈Wj has a unique representation

(Pj+1 − Pj)f =
∑
λ∈Λj

dλ(f)ψλ. (4.6.43)

Inserting this in (4.6.37) yields the norm equivalence

‖f‖Bsq(Lp(Ω)) ∼ ‖P0f‖Lp(Ω) +
( ∞∑
j=1

2
jq
(
s+d

2
−d
p

)
‖(dλ(f))λ∈Λj‖q`p(Λj)

)1/q
, (4.6.44)

characterizing elements inBsq(Lp(Ω)) by the fact that the coefficient sequences (dλ(f))λ∈Λ
of its elements belong to a certain weighted sequence space.

Remark 4.6.6. We highlight two important cases:

1. Let p = q = 2: then (4.6.44) simplifies to

‖f‖Hs(Ω) ∼ ‖f‖B22(L2(Ω)) ∼ |d0(f)|+
(∑
λ∈Λ

22s|λ||dλ(f)|
2
)1/2

, (4.6.45)

where we have used that Bs2(L2) = H
s, s ≥ 0 with equivalent norms, see Remark 2.3.6, 4.

2. Analogous statements hold when (Vj)j∈N0 is a multiresolution for some closed subspace
Hs of Hs(Ω) such as Hs0(Ω) defined as the closure of C∞

0 (Ω) with respect to ‖ · ‖Hs(Ω).

3. Let
1

τ
=
s

d
+
1

2
. (4.6.46)

Then (4.6.44) simplifies to

‖f‖Bsτ(Lτ(Ω)) ∼ ‖d(f)‖`τ(Λ), (4.6.47)

i.e., the Besov spaces on the Sobolev-embedding line for L2 are equivalent to `τ-sequence
spaces.

4. When normalizing theψλ in Lp instead of L2 the analogous relation to (4.6.47) holds with
2 replaced by p.

4.6.3 Riesz Bases for L2 and Hs

We emphasize that all these characterizations are valid for s > 0. A natural (and as will
be seen important) question is: what happens when s = 0. Specifically, under which
circumstances does (4.6.43) lead to a Riesz-basis for L2(Ω)?

Remark 4.6.7. A first simple affirmative answer of the last question is the case ϕ̃γ = ϕγ,
i.e., the dual scaling functions equals the primal one which means that the Pj are orthogonal
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projectors. Then, one easily checks that Pj+1 − Pj are also orthogonal projectors, so that in this
case

‖f‖2L2(Ω) =

∞∑
j=0

‖(Pj − Pj−1)f‖2L2(Ω).

The Haar basis is the simplest example for this situation.

As indicated before orthonormality is hard to realize practically basis functions which
simultaneously are orthonormal, compactly supported and have a higher non-trivial
smoothness.

For the construction of non-orthonormal bases which are Riesz-bases a so called dual
multiresolution plays a crucial role. The reason lies in the following facts:

Exercise 4.6.6. Let Vj ⊂ H be a nested sequence of closed subspaces with associated projectors
Qj : H→ Vj. Show that the following properties are equivalent:

1. The projectors commute
QjQk = QkQj, j, k ∈ N0. (4.6.48)

2. The operators Qj+1 −Qj are also projectors.

3. The ranges Ṽj := rangeQ∗j are also nested

Ṽj ⊂ Ṽj+1, j ∈ N0, (4.6.49)

where Q∗j are the adjoints of Qj.

Exercise 4.6.7. As an immediate consequence, if one of the above properties hold one has

(Qj+1 −Qj)
(
(Qk+1 −Qk)f

)
= ((Qj+1 −Qj)f)δj,k, j, k ∈ N0, (4.6.50)

and therefore

〈(Qj+1 −Qj)f, (Q∗l+1 −Q∗l )f)〉H = 〈(Qj+1 −Qj)f, (Q∗j+1 −Q∗j )f)〉Hδj,l, j, l ∈ N0
= 〈(Qj+1 −Qj)f, f)〉Hδj,l. (4.6.51)

Hence (with Q−1 = 0)

‖f‖2H =
〈∑
j∈N0

(Qj −Qj−1)f,
∑
l∈N0

(Q∗l −Q
∗
l−1)f

〉
=
∑
j∈N0

∑
j∈N0
〈(Qj −Qj−1)f, (Q∗j −Q∗j−1)f〉

≤
∑
j∈N0
‖(Qj −Qj−1)f‖H‖(Q∗j −Q∗j−1)f‖H

≤
(∑
j∈N0
‖(Qj −Qj−1)f‖2H

)1/2(∑
j∈N0
‖(Q∗j −Q∗j−1)f‖2H

)1/2
=
∥∥(‖(Qj −Qj−1)f‖H)j∈N0∥∥`2∥∥(‖(Q∗j −Q∗j−1)f‖H)j∈N0∥∥`2 . (4.6.52)
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Thus if we knew that either∥∥(‖(Qj −Qj−1)f‖H)j∈N0∥∥`2 . ‖f‖H or
∥∥(‖(Q∗j −Q∗j−1)f‖H)j∈N0∥∥`2 . ‖f‖H, (4.6.53)

we would conclude that

‖f‖H ∼
∥∥(‖(Qj −Qj−1)f‖H)j∈N0∥∥`2 , f ∈ H. (4.6.54)

Unfortunately, just based on the properties 1. to 3. above, one cannot conclude (4.6.53).
However, under additional information on the ranges Vj and Ṽj ofQj, Q∗j , respectively,
one can prove (4.6.54), see [22].

To relate these observations to the previous section, note that (4.6.51) can be viewed
as a biorthogonality relation.

Remark 4.6.8. Let p = 2. By (4.6.16), the adjoint of Pjf =
∑
γ∈Γj〈f, ϕ̃γ〉ϕγ is given by

P∗j f =
∑
γ∈Γj
〈f, ϕγ〉ϕ̃γ. (4.6.55)

Let
Ṽj := rangeP∗j = span {ϕ̃γ : γ ∈ Γj}. (4.6.56)

If the spaces Ṽj are also nested
Ṽj ⊂ Ṽj+1 (4.6.57)

then (Ṽj)j∈N0 satisfies all conditions of a multiresolution and is called dual multiresolution.
Clearly, (4.6.57) is equivalent to the refinability of the ϕ̃γ, i.e., one can write for γ ∈ Γj

ϕ̃γ =
∑
ν∈Γj+1

aγ,νϕ̃ν (4.6.58)

for some (aγ,ν)ν∈Γν ∈ `2(Γj+1).
Remark 4.6.9. When (4.6.57) (or equivalentyl (4.6.58)) hold all the statements in Exercise
4.6.6 apply to the projectors Qj = Pj. Thus, defining

Wj := (Pj+1 − Pj)Vj+1, W̃j := (P∗j+1 − P
∗
j )Ṽj+1, (4.6.59)

(4.6.50) implies the biorthogonality conditions

Wj ⊥ W̃k, j 6= k, W̃j ⊥ Vk, k ≤ j. (4.6.60)

It should be noted though that, given ϕγ, γ ∈ Γj, it is relatively easy to construct a
stable dual system in the sense of (4.6.16). It is not easy at all to ensure that the dual
system is also refinable, i.e., satisfies (4.6.58), see [30].

Theorem 4.6.5. Assume that (Vj)j∈N0 , (Ṽj)j∈N0 is a pair of dual multiresolutions for L2(Ω)
which have exactness orders m, m̃, respectively. Moreover assume that both multiresolutions
have smoothness (4.6.31) of orders 0 < s2, s̃2, respectively. Then, the following norm-equivalences
hold:
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1. For each 0 ≤ s < min {s2,m, m̄} there exist constants cs ≤ Cs such that (for 〈f, g〉 :=∫
Ω fgdx, P−1 := 0)

cs

∞∑
j=0

22sj‖(Pj − Pj−1)f‖2L2(Ω) ≤ ‖f‖2Hs(Ω) ≤ Cs
∞∑
j=0

22sj‖(Pj − Pj−1)f‖2L2(Ω), (4.6.61)

uniformly for f ∈ Hs(Ω).

2. For each 0 ≤ s < min {s̃2, m̃, ¯̃m} there exist constants c̃s ≤ C̃s such that

c̃s

∞∑
j=0

22sj‖(P∗j − P∗j−1)f‖2L2(Ω) ≤ ‖f‖2Hs(Ω) ≤ C̃s
∞∑
j=0

22sj‖(P∗j − P∗j−1)f‖2L2(Ω), (4.6.62)

uniformly for f ∈ Hs(Ω), where Cs/cs, C̃s/c̃s tend to infinity when s → s2, s̃2, respec-
tively.

In particular, one has (for s = 0)( ∞∑
j=0

‖(P∗j − P∗j−1)f‖2L2(Ω)

)1/2
∼
( ∞∑
j=0

‖(Pj − Pj−1)f‖2L2(Ω)

)1/2
∼ ‖f‖L2(Ω). (4.6.63)

Proof. (Sketch) For s > 0 (4.6.61), (4.6.62) immediately follow from Theorem 4.6.4. To
prove (4.6.63) we need the following lemma.

Lemma 4.6.1. For s < min {s2, s̃2} one has

‖g‖(Hs(Ω)) ′ ∼
( ∞∑
j=0

2−2js‖(P∗j − P∗j−1)g‖2L2(Ω)

)1/2
∼
( ∞∑
j=0

2−2js‖(Pj − Pj−1)g‖2L2(Ω)

)1/2
,

(4.6.64)
where the constants depend on the constants in (4.6.61), (4.6.62).

Proof of Lemma 4.6.1: Let us abbreviate

Djf := (Pj − Pj−1)f, D∗j f := (P∗j − P
∗
j−1)f, j ∈ N0.

Then

|〈f, g〉| =
∣∣∣〈 ∞∑

j=0

Djf,

∞∑
k=0

D∗kg
〉∣∣∣ (4.6.50)

=
∣∣∣ ∞∑
j=0

〈Djf,D∗j g〉
∣∣∣

=
∣∣∣ ∞∑
j=0

〈2sjDjf, 2−sjD∗j g〉
∣∣∣

≤
∞∑
j=0

2sj‖Djf‖L2(Ω)2
−sj‖D∗j g‖L2(Ω)

≤
( ∞∑
j=0

22sj‖Djf‖2L2(Ω)

)1/2( ∞∑
j=0

22sj‖D∗j g‖2L2(Ω)

)1/2
. (4.6.65)
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This shows that, in view of (4.6.61),

‖g‖(Hs(Ω)) ′ .
( ∞∑
j=0

2−2sj‖D∗j g‖2L2(Ω)

)1/2
. (4.6.66)

Interchaning the roles of Dj and D∗j , and using (4.6.62), shows that for s < s2, s̃2 also

‖g‖(Hs(Ω)) ′ .
( ∞∑
j=0

2−2sj‖Djg‖2L2(Ω)

)1/2
. (4.6.67)

To prove a converse etsimate, note first that since ϕγ, ϕ̃γ ∈ Hs(Ω), γ ∈ Γ . Thus, given
g ∈ (Hs(Ω)) ′, since Djg,D∗j g are well defined, we consider

fg :=

∞∑
j=0

2−2sjDjg,

and claim that fg ∈ Hs(Ω). In fact, again by (4.6.50) we have Dkfg = 2−2skDkg and
therefore

‖fg‖2Hs(Ω)

(4.6.61)
∼

∞∑
k=0

22sk‖Dkfg‖2L2(Ω)

=

∞∑
k=0

22sk2−4sk‖Dkg‖2L2(Ω)

=

∞∑
k=0

2−2sk‖Dkg‖2L2(Ω). (4.6.68)

Therefore

‖g‖(Hs(Ω)) ′ = sup
f∈Hs(Ω)

〈f, g〉
‖f‖Hs(Ω)

≥ 〈fg, g〉
‖fg‖Hs(Ω)

=

〈∑∞
j=0 2

−2sjDjg, g
〉

‖fg‖Hs(Ω)

=

∑∞
j=0 2

−2sj‖Djg‖2L2(Ω)

‖fg‖Hs(Ω)

(4.6.68)
∼

( ∞∑
j=0

2−2sj‖Djg‖2L2(Ω)

)1/2
, (4.6.69)

which finishes the proof. �

We return to the proof of Theorem 4.6.5. It is known from interpolation theory ([5])
that

[(Hs(Ω)) ′, Hs(Ω)] 1
2
,2 = L2(Ω). (4.6.70)
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Likewise for the weighted sequence spaces `r2 (see also (4.5.9))

‖d‖`s2 :=
( ∞∑

j=0

22sj|dj|
2
)1/2

,

one has
[`−s2 , `

s
2] 1
2
,2 = `2. (4.6.71)

By the norm equivalences (4.6.61), (4.6.62) and (4.6.64), the claim (4.6.63) follows.

The construction of wavelet-type Riesz basis consists now in constructing for each
level j, j ≥ 0, bases

Ψj := {ψλ : λ ∈ Λj}, Ψ̃j := {ψ̃λ : λ ∈ Λj},
for the complement spacesWj, W̃j where

Λj := {λ ∈ Λ : |λ| = j}, j ≥ 0,

with the following properties:

c̄‖dΛj‖`2(Λj) ≤
∥∥∥∑
λ∈Λj

dλψλ
∥∥∥

L2(Ω)
≤ C̄‖dΛj‖`2(Λj), (4.6.72)

(and analogously for Ψ̃j,) as well as

〈ψλ, ψ̃ν〉 = δλ,ν. (4.6.73)

Moreover, setting
ψγ = ϕγ, ψ̃γ := ϕ̃γ, γ ∈ Γ0 := Λ−1, (4.6.74)

(4.6.73) holds by definition. Moreover, the following facts follow immediately from
(4.6.60).

Proposition 4.6.1. The collections

Ψ :=
⋃
j≥−1

Ψj, Ψ̃ :=
⋃
j≥−1

Ψ̃j,

are biorthogonal Riesz bases for L2(Ω).

Exercise 4.6.8. Show that under the assumptions of Theorem 4.6.5

Ψs := {ψλ/‖ψλ‖Hs(Ω) : λ ∈ Γ0 ∪Λ} (4.6.75)

is a Riesz basis for Hs(Ω) (respectively some closed subspace of it) for

−min{s̃2, m̃, ¯̃m} < s < min{s2,m, m̄, }.

The statement remains true when ψλ/‖ψλ‖Hs(Ω) is replaced by 2−s|λ|ψλ.
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Comments 4.6.1. 1. Compare the pair Ψ, Ψ̃ with Exercise 4.2.2.

2. Constructing a Riesz for L2(Ω) is more “difficult” than for Hs(Ω), s > 0. The latter
requires controling only the primal multiresolution.

3. There are several concrete constructions of wavelet Riesz bases on realistic domains, see
[29] for multiresolutions generated by standard hierarchies of finite element spaces;
[24, 27] for wavelets on bounded intervals incorporating boundary conditions;
[10, 11, 25] for wavelets on bounded domains using isoparametric mappings to hyper
rectangles (see the figures below);
[26] for general compact manifolds.
(See [14, 12] for further reading).
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5 Adaptive Methods: General Background

5.1 Preliminary Remarks

Given a matrix A ∈ Rn×n and a vector b ∈ Rn, solvability of a linear system

Ax = b (5.1.1)

means in precise terms that for any b ∈ Rn there exists a unique x ∈ Rn satisfying
(5.1.1). Another way to say this is that A : Rn → Rn is a bijection, where the
domain and the range of the “operator” A are the same.

Formally, a PDE such as the Poisson equation with homogeneous Dirichlet
boundary conditions

−∆u = f in Ω, u|∂Ω = 0, (5.1.2)

may also be regarded as such a linear operator equation. However, the meaning
of solvability is now much less clear. It doesn’t make any sense to say “for any
right hand side” f which is now an element of some infinitely dimensional space
F, say. So a first question is what is a “suitable” choice for F – giving rise to the
next question: what is the meaning of “suitable”?

Of course, one can avoid these uncomfortable questions by jumping directly
to a discretization of (5.1.2) and worrying only about the invertibility of the re-
sulting matrix. However, as we know, this is only seemingly a solution because
what happens when the underlying mesh size tends to zero? For that reason
one formulates the concept of well-posedness.

5.2 Well-Posed Problems

We concentrate first on linear operator equations: given a linear operator F and a
right hand side f find u such that

Fu = f, (5.2.1)

where we had F = −∆ in (5.1.2). Obviously, there is important information
missing, namely for f in which normed linear space F? Moreover, even if we
provide such an F for which a unique solution u exists, any computational ap-
proach will only approximate u based on perturbed information of f (e.g. due
to round-off). Therefore, the problem is only meaningful if we can quantify the
effect of perturbing the data on the variation of the solution. The latter can only
be quantified if we also choose a norm for measuring exactness of the solution,
which means we also prescribe a normed linear space X where we seek the so-
lution.

Definition 5.2.1. The problem (5.2.1) is called well-posed, if for each f ∈ F there esists
a unique u ∈ X satisfying (5.2.1) depending continuously on f.
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Recall that for linerar operators continuity is equivalent to boundedness, so
continuous dependence of u ∈ X on the data f ∈ F just means that

‖u‖X ≤ C‖f‖F (5.2.2)

holds for some constant C independent of f ∈ F. An equivalent way to say this
is that

F ∈ L(X,F), F−1 exists in L(F,X). (5.2.3)

Remark 5.2.1. A first part of the problem is to actually identify a pair of spaces X,F
for which infinite dimensional problem is well-posed.

Remark 5.2.2. One cannot expect to develop numerical methods without accounting
for the choice of X,F. This is particularly crucial when developing adaptive methods.

Note that in general the spaces X and F are different. More precisely, this is the
case when the operator F has nonzero order such as the Laplace operator lower-
ing smoothness by the order two. (There are for instance integral operators of
the second kind which map cartain spaces X onto themselves but for differen-
tial operators one has X 6= F to guarantee well-posedness. This is in contrast
to the finite dimensional case (5.1.1). Nevertheless this shows by the fact that
for decreasing meshsizes the stiffness matrices for (5.1.2) are known to grow in-
creasingly ill-conditioned which is the prize for ignoring the different metrics on
X and F in a well-posed infinite dimensional formulation.

Remark 5.2.3. The particular relevance of well-posedness for adaptivity can be seen
as follows: suppose uH ∈ XH ⊂ X is an approximation to the solution u of Fu = f.
An adaptive method would try to determine next a refined trial space Xh ⊃ XH that
reduces the error at the expense of possibly few additional degrees of freedom. Unfortu-
nately, since u is unknown, one cannot extract corresponding information directly from
the error u− uH. However, uH being now given, the residual

f− FuH = F(u− uH)

is, in principle, known.

To exploit residuals for error estimation note the following: boundedness and
bounded invertibility (5.2.2) give

‖F(uH) − f‖F = ‖F(uH − u)‖F ≤ ‖F‖L(X,F) ‖uH − u‖X
which implies

‖F‖−1L(U,F) ‖f− F(wH)‖F ≤ ‖u− uH‖X =
∥∥F−1(F(u− uH))

∥∥
X

≤
∥∥F−1∥∥L(F,U) ‖F(uH) − f‖F ,
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and hence

(‖F‖L(X,F))−1‖f− FuH‖F ≤ ‖u− uH‖X ≤ ‖F−1‖L(F,X)‖f− FuH‖F. (5.2.4)

Thus, the smaller the condition number

κX,F(F) := ‖F‖L(X,F)‖F−1‖L(F,X) (5.2.5)

of F ∈ L(X,F) is, the tighter is the error ‖u − uH‖X estimated by the residual
‖f − FuH‖F in F. Again, an improper choice of X,F may entail large or infinite
condition numbers.

Remark 5.2.4. Essentially all rigorously founded adaptive methods are based on a pos-
teriori bounds for the residuals ‖f − FuH‖F. Deriving such bounds may be nontrivial
and the subsequent discussions address scenarios where this can be done. More pre-
cisely, we will discuss two formally different frameworks which, however, use in essence
this same paradigm.

5.3 Stable Variational Formulations

Remark 5.3.1. For the residual to estimate the error well it is important that κX,F(F)
be small – quantified well-posedness. In this case we talk about stability, although
it is usually hard to prescribe a concrete bound for κX,F(F) to mathematically define
stability. The notion of stability is therefore more of a guideline.

We address now the issue of identifying “good pairs” of spaces X,F in the
above sense. A very powerful strategy for this task is to contrive a variational
formulation of a (linear or nonlinear) operator vequation

F(u) = f (5.3.1)

To explain this, assume first, as before, that F is a linear operator. Look for a
Hilbert space U (which is to host the solution – “trial space”) and a possibly
different Hilbert space V (“test space”) so that for all w ∈ U, F(v) is a bounded
linear functional on V, i.e., F(v) ∈ V ′, the normed dual of V. Hence the dual
pairing

〈F(w), v〉 = (F(w))(v)

is well defined for any w ∈ U, v ∈ V.

Remark 5.3.2. 〈z, v〉 = z(v) does not stand for a scalar product but for the action of a
functional z ∈ V ′ on v ∈ V. This notation is motivated by the fact that in many cases
(not always!) this action can be expressed by an `2-inner product. The scalar products
on U,V are denoted by 〈·, ·〉U, 〈·, ·〉V.
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Recall that V ′ is endowed with the norm ‖z‖V ′ := sup
v∈V

〈z,v〉
‖v‖V

so that

‖F(v)‖V ′ = sup
v∈V

〈F(w), v〉
‖v‖V

<∞ .
In particular,

A(v,w) := 〈F(w), v〉, (w, v) ∈ U× V, (5.3.2)

is then a well-defined bilinear form on U× V. In this case F ∈ L(U,V ′), i.e., the
weak formulation of the problem suggests taking F = V ′.

One can also look at it the other way around, taking the bilinear form as the
starting point. Then F : FU→ V ′ is induced by (5.3.2) by the Riesz-Representation
Theorem.

Definition 5.3.1. The problem: Given f ∈ V ′, find u ∈ U so that

A(u, v) = 〈f, v〉 ∀ v ∈ V, (5.3.3)

is called a (U,V)-stable variational formulation of (5.3.1) if F, defined by (5.3.2), is
an isomorphism from U onto V ′. In this case (5.2.5) takes the form

κU,V ′(F) := ‖F‖L(U,V ′) ‖F−1‖L(V ′,U) <∞ . (5.3.4)

Clearly, (5.2.2) becomes now

‖u‖U = ‖F−1f‖U ≤ ‖F−1‖L(V ′,U)‖f‖V ′ , (5.3.5)

i.e., C = ‖F−1‖L(V ′,U) in (5.2.2).

5.4 Babuška-Nečas-Theory

There is a well known criterion for stability, due to Babuška-Nečas. (see Numa
IV).

Theorem 5.4.1. (5.3.4) holds if the following is true:

(i) continuity of A(·, ·) : U× V→ R: ∃ Ca <∞ such that

|A(w, v)| ≤ Ca ‖w‖U ‖v‖V , (w, v) ∈ U× V . (5.4.1)

(ii) inf-sup-condition: ∃ cα > 0 such that

inf
v∈V

sup
w∈U

A(w, v)

‖w‖U ‖v‖V
≥ cα . (5.4.2)
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(iii) For all w ∈ U there exists v ∈ V such that A(w, v) 6= 0.
Corollary 5.4.1. If the bilinear form A(·, ·) is continuous on U× U, i.e., (5.4.1) holds
for V = U, and if A(·, ·) is in addition coercive on U, i.e.,

A(w,w) ≥ cα‖w‖2U, w ∈ U, (5.4.3)

then the operator F induced by A(·, ·) through 〈Fw, v〉 = A(w, v), w, v ∈ U, satisfies
(5.4.7), (5.4.8) and hence (5.4.9). Such problems are briefly called U-elliptic.

To illustrate these facts let us consider again the simplest possible example.

Example 5.4.1. Return to the Poisson problem (5.1.2)

F(u) = −∆u = f inΩ,
u = 0 on ∂Ω .

(5.4.4)

Then

a(v,w) =

∫
Ω

(−∆v)wdx =

∫
Ω

∇v · ∇wdx ∀ v,w ∈ C∞
0 (Ω)

is (by closure) well defined on H10(Ω)×H10(Ω). So here U = V = H10(Ω), where

H10(Ω) = C∞
0 (Ω)

H1

,

‖v‖2H1(Ω) = ‖v‖
2
L2(Ω) + ‖∇v‖

2
L2(Ω) .

By Cauchy-Schwarz the bilinear form a(·, ·) is continuous,

|a(v,w)| ≤ ‖v‖H1 ‖w‖H1 . ( Ca = 1) (5.4.5)

Moreover, by the Poincaré inequality there exists α > 0 such that

a(v, v) ≥ cα ‖v‖2H1 . (5.4.6)

The estimates (5.4.5) and (5.4.6) imply conditions (i), (ii) and (iii) in Theorem 5.4.1.

To see that Theorem 5.4.1 implies (5.3.4) note the boundedness of F as a map-
ping into V ′ follows from the boundedness of the bilinear form (5.4.1):

‖F(w)‖V ′ = sup
v∈V

〈F(w), v〉
‖v‖V

= sup
v∈V

A(w, v)

‖v‖V
(5.4.1)
≤ sup

v∈V

Ca ‖w‖U ‖v‖U
‖v‖V

= Ca ‖w‖U ,

which yields
‖F‖L(U,V ′) ≤ Ca . (5.4.7)
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On the other hand, by (5.4.2), we have

‖F(w)‖V ′ = sup
v∈V

〈F(w), v〉
‖v‖V

≥ cα‖w‖U.

This implies

‖F−1‖L(V ′,U) ≤
1

cα
, (5.4.8)

which gives indeed

κU,V ′(F) ≤
Ca

cα
. (5.4.9)

Note that (5.2.4) becomes

‖F‖−1L(U,V ′) ‖f− F(uH)‖V ′ ≤ ‖u− uH‖U ≤
∥∥F−1∥∥L(V ′,U) ‖f− F(uH)‖V ′ . (5.4.10)

Remark 5.4.1. The spaces F = V ′ hosting the data are in such a variational framework
typically dual spaces. Dual norms are usually not easy to evaluate. Thus, an adaptive
scheme based on using a posteriori information in terms of residuals in such a dual
norm, has to address this issue and we shall learn how to deal with this in at least two
different ways.

5.5 Nonlinear Problems

Idea: A problem is called stable if its linearizations are stable:
Find again X, Y such that F : U→ V ′ is well defined by

〈F(u), v〉 = 〈f, v〉, v ∈ V . (5.5.1)

Motivation: R : R→ R, search for xwith R(x) = 0. Newton’s method converges
well if the tangent has a nonvanishing slope, i.e., the Jacobian is nonsingular.

The same here: Consider

R(u) := F(u) − f .

What does it mean to say: The “derivative” does not vanish near the solution?

Consider the Fréchet derivative of R at v defined by

〈DR(v)w, z〉 := lim
t→0

1

t
〈R(v+ tw) − R(v), z〉

= lim
t→0

1

t
〈F(v+ tw) − F(v), z〉

= 〈DF(v)w, z〉 ∀z ∈ V .
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The Fréchet derivative is (for each v) a linear mapping from U to V ′. We call
(5.5.1) stable in the neighborhood N of a solution u if DF(w) : U → V ′ is an
isomorphism for each w ∈ N , i.e., for each w ∈ N there exist cw, Cw such that

cw ‖z‖U ≤ ‖DF(w)z‖V ′ ≤ Cw ‖z‖U ∀ z ∈ U . (5.5.2)

5.6 Examples of Stable Variational Formulations

We collect the relevant facts without proof.

5.6.1 Saddle Point Problems

Poisson’s equation gives rise to a coercive bilinear form. Its weak formulation
can be understood as first order conditions for the minimization of the “energy”
functional

J(v) :=
1

2
a(v, u) − 〈f, v〉 .

If such a minimization problem is subjected to constraints one obtains a saddle
point problem, losing coercivity! In the context of constrained optimization
saddle point problems arise under the name of Karush-Kuhn-Tucker conditions.

The weak formulation of saddle point problems: given Hilbert spaces X,M
and bilinear forms

a(·, ·) : X× X→ R, b(·, ·) : X×M→ R,

with data [f, g] ∈ X ′ ×M ′, find [u, p] ∈ X×M =: U such that

a(u, v) + b(v, p) = 〈f, v〉 ∀ v ∈ X ,
b(u, q) = 〈g, q〉 ∀q ∈M ,

(5.6.1)

which is equivalent to

Â([u, p], [v, q]) = 〈f, v〉+ 〈g, q〉 ∀[v, q] ∈ U = X×M = V, (5.6.1a)

where

Â(·, ·) : (X×M)× (X×M)→ R ,
Â([u, p], [v, q]) := a(u, v) + b(v, p) + b(u, q) .

Defining the linear operators A : X→ X ′, B : X→M ′, B∗ : M→ X ′ by

〈Av,w〉 := a(v,w), 〈Bv, q〉 := b(v, q〉 = 〈v, B∗q〉
(5.6.1) can be written as

F([u, p]) =

(
A B∗

B 0

)[
u
p

]
=

[
f
g

]
=: f̃ ∈ X ′ ×M ′ = U ′ . (5.6.1b)

Note that (5.6.1a) is a non-coercive, indefinite problem.
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Theorem 5.6.1 ([9, 7]). (5.6.1) has a unique solution [u, p] if there exist constants
Ca, Cb <∞, α,β > 0, such that

|a(v,w)| ≤ Ca ‖v‖H ‖w‖X , |b(v, q)| ≤ Cb ‖v‖X ‖q‖M ∀v,w ∈ X, q ∈M ,

(5.6.2)

|a(v, v)| ≥ cα ‖v‖2X ∀v ∈ Y = {v ∈ X : b(v, q) = 0 ∀q ∈M} = Ker(B) ,
(5.6.3)

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X ‖q‖M
≥ cβ . (5.6.4)

Moreover (5.6.1) is stable, i.e.,

c̃ ‖[v, q]‖U ≤ ‖F([v, q])‖U ′ ≤ C̃ ‖[v, q]‖U ∀[v, q] ∈ U = X×M (5.6.5)

where ‖[v, q]‖2U = ‖v‖2X + ‖q‖2M, c̃ = c̃(Ca, Cb, cα, cβ), C̃ = C̃(Ca, Cb, cα, cβ) and
κU,U ′(F) ≤ C̃

c̃
.

In fact, one can show that (5.6.2)–(5.6.4) implies the validity of the assump-
tions of Theorem 5.4.1 (see for example [7]).

Example 5.6.1. Stokes system:

−∆u+∇p = f inΩ
divu = 0 inΩ

u = 0 on ∂Ω

 a(u, v) =

∫
Ω

∇u : ∇v dx, b(v, q) = −

∫
div v qdx

X = H10(Ω)d, M = L2,0(Ω) = {v ∈ L2(Ω) :

∫
Ω

v dx = 0}

Y = {v ∈ H10(Ω)d : div v = 0 weakly}

One can show that the onditions of Theorem 5.6.1 are satisfied.

Example 5.6.2. Fictitious domain method Let Ω ⊂ � where Ω is complicated or
moves and � is simple.
Question: How to deal with “moving” boundary conditions?
Idea: Find [u, p] ∈ U := H1(�)×H− 1

2 (Γ := ∂Ω) such that

〈∇u,∇v〉︸ ︷︷ ︸
a(u,v)

+ 〈γv, p〉Γ︸ ︷︷ ︸
b(v,q)

= 〈f, v〉 ∀v ∈ H1(�) ,

〈γu, q〉Γ = 〈g, q〉Γ ∀q ∈ H− 1
2 (Γ) ,

(5.6.6)

99



where γ : H1(�)→ H
1
2 (Γ) is the trace map. It is essentially a consequence to the Trace

Theorem, that a classical solution of (5.6.6) solves

−∆u = f inΩ
u = g on ∂Ω

and that (5.6.6) satisfies the assumptions of Theorem 5.6.1.

Example 5.6.3. Mixed formulation

−div(a∇u) = f inΩ
u = 0 on ∂Ω

Write this as a first order system:

a−1q = −∇u
q := −a∇u

This gives rise to the variational formulation: Find [q, u] ∈ U := L2(Ω)d × H10(Ω)
such that

〈a−1q, r〉+ 〈r,∇u〉 = 0 ∀ r ∈ L2(Ω)d ,

−〈q,∇v〉 = 〈f, v〉 ∀ v ∈ H10(Ω) .
(5.6.7)

Here

a(q, r) =

∫
Ω

a−1q · r dx, b(u, r) =

∫
Ω

r · ∇udx

X = L2(Ω)d, M = H10(Ω)

We claim that (5.6.7) also satisfies the conditions in Theorem 5.6.1, see for example [7].

5.6.2 Quasilinear Equations

Consider the nonlinear equation

−∆u+ u3 = f inΩ,
u = 0 on ∂Ω .

(5.6.8)

Claim: For d ≤ 3, U = V = H10(Ω) is still appropriate. Show first that F(v) ∈(
H10(Ω)

) ′
= H−1(Ω) for v ∈ H10(Ω) (so that 〈F(v), w〉 is defined for allw ∈ H10(Ω)

).
To this end, note

〈F(v), w〉 = 〈∇v,∇w〉+ 〈v3, w〉 .
We want to show that

|〈F(v), w〉| ≤ C(v) ‖w‖H1 .
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Clearly |〈∇u,∇w〉| ≤ ‖v‖H1 ‖w‖H1 . Furthermore∣∣〈v3, w〉∣∣ ≤ ∫
Ω

|v|
3
|w| dx =

∫
Ω

|v|
2
|vw| dx

≤
(∫

Ω

|v|
4
dx

) 1
2
(∫

Ω

|v|
2
|w|

2
dx

) 1
2

≤ ‖v‖2L4(Ω) ‖v‖L4(Ω) ‖w‖L4(Ω) = ‖v‖
3
L4(Ω) ‖w‖L4(Ω) .

(5.6.9)

Here we invoke a Sobolev embedding theorem (see Figure 1). For d ≤ 3 one has

H10(Ω) ⊆ L4(Ω) , (5.6.10)

that is ‖v‖L4(Ω) ≤ C ‖v‖H1(Ω) ∀v ∈ H10(Ω) .

Combining (5.6.9) with (5.6.10) yields∣∣〈v3, w〉∣∣ ≤ C ‖v‖3H1(Ω) ‖w‖H1(Ω) .

This gives

|〈F(v), w〉| ≤
(
‖v‖H1(Ω) + C ‖v‖

3
H1(Ω)

)
‖w‖H1(Ω) (5.6.11)

which implies

F(v) ∈ H−1(Ω) .

To show stability, determine DF(v): For z ∈ H10(Ω)

〈F(v+ tw) − F(v), z〉 = 〈∇(v+ tw),∇z〉− 〈∇v,∇z〉+ 〈(v+ tw)3, z〉− 〈v3, z〉
= t〈∇w,∇z〉+ 3t〈v2w, z〉+ 3t2〈vw2, z〉+ t3〈w3, z〉 .

Hence
1

t
〈F(v+ tw) − F(v), z〉 t→0→ 〈∇w,∇z〉+ 3〈v2w, z〉 ,

and thus
〈DF(v)w, z〉 = 〈∇w,∇z〉+ 3〈v2w, z〉 . (5.6.12)

Question: Is DF(v)w ∈ H−1(Ω)?
By the same argument as before we conclude that

|〈DF(v)w, z〉| ≤ ‖w‖H1(Ω) ‖z‖H1(Ω) + 3C ‖v‖
2
H1(Ω) ‖w‖H1(Ω) ‖z‖H1(Ω) ,

and therefore

‖DF(v)w‖H−1(Ω) = sup
z∈H10(Ω)

〈DF(v)w, z〉
‖z‖H1(Ω)

≤
(
1+ 3C ‖v‖2H1(Ω)

)
‖w‖H1(Ω) , (5.6.13)
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that is, DF(v) : H10(Ω)→ H−1(Ω) is bounded.
Moreover,

〈DF(v)w,w〉 = |w|
2
H1(Ω) + 3

∫
Ω

v2w2 dx ≥ |w|
2
H1(Ω)

Poincaré
≥ CΩ ‖w‖2H1(Ω) ,

and thus

‖DF(v)w‖H−1(Ω) = sup
z∈H10(Ω)

〈DF(v)w, z〉
‖z‖H1(Ω)

≥ 〈DF(v)w,w〉‖w‖H1(Ω)

≥ CΩ ‖w‖H1(Ω) .

Hence (5.5.2) holds with cv = CΩ, Cv =
(
1+ 3C ‖v‖2H1(Ω)

)
.

5.6.3 Boundary Integral Equations

For details on this topic see [40]. Motivation: Exterior domain problems.
Solve

−∆U = 0 inΩc = R3\Ω
U = f on ∂Ω =: Γ

U(x)→ 0, |x|→∞ (5.6.14)

Obstruction: The domain is unbounded.

Idea: Transform the problem into an equivalent one living on Γ (dimension re-
duction).
Let

E(x, y) := 1

4π |x− y|

where |x− y| is the Euclidean norm and define

(Vv)(x) :=

∫
Γ

E(x, y)v(y)dΓy, x ∈ Γ .

(singular integral operator / single layer potential operator)
Find u such that

Vu = f on Γ , (5.6.15)

(integral equation of the first kind) – note that f lives on Γ . Then one can show
that

U(x) :=

∫
Γ

E(x, y)u(y)dΓy, x ∈ Ωc

solves (5.6.14). Here

a(u, v) = 〈Vu, v〉Γ ,

U = V = H− 1
2 (Γ), U ′ =

(
H− 1

2 (Γ)
) ′

= H
1
2 (Γ) ,
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so this is an operator of order −1.
Alternative: Rewrite (5.6.14) as integral equation of the second kind (double

layer potential). Define

(Kv)(x) :=
∫
Γ

∂

∂ny
E(x, y)v(y)dΓy

=

∫
Γ

1

4π

nTy(x− y)

|x− y|3
v(y)dΓy, x ∈ Γ .

Consider

Lu :=

(
1

2
+K

)
u = f on Γ .

Then
U(x) :=

∫
Γ

K(x, y)u(y)dΓy, x ∈ Ωc

solves (5.6.14).
Here one has

A(u, v) = 〈u,Lv〉Γ , L2(Γ) = U = U ′ = V ′ = V .

One can show that
L : L2(Γ)→ L2(Γ)

is an isomorphism. L has order zero, hence linear systems are uniformly well
conditioned independent of the discretization.

5.6.4 High-Dimensional Elliptic Problems

Parametric PDEs: are PDEs involving coefficients which depend on additional
parameters. Such parameters could describe shapes and typically arise in de-
sign or optimization problems where one seeks “optimal parameters”. Another
important problem source concerns problems where coefficients exhibit such
a fine scale structure that a direct numerical resolution is too costly. For in-
stance, in porous media flow exact permeability (diffusion) coefficients in Darcy
flow to represent the porosity are out of reach. One possibility is to view such
coefficients as random fields. Expanding such random fields in suitable bases
(Karhunen-Loewe expansion) yields coefficients that depend in principle even
on infinitely many parameters. This is a central issue in “Uncertainty Quantifi-
cation”. A typical model problem reads as follows (see [2]):

Let I = {1, . . . , d} or I = N in the finite or infinite dimensional case, a given
index set and consider the affinely parametrized diffusion problem of the form

F(y)u := −div
(
a(y)∇u

)
= f, a(y) := ā+

∑
j≥1
yjθj, (5.6.16)
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with homogeneous Dirichlet boundary conditions, posed in the weak sense on a
spatial domainΩ. Such models arise, for instance, when parametrizing random
diffusion coefficient fields modeling the permeability in porous media flow. We
require that the expansion of the diffusion coefficient a(y) satisfies the uniform
ellipticity assumption ∑

j≥1
|θj(x)| ≤ ā(x) − α, x ∈ Ω, (5.6.17)

for some α > 0. This implies that for X = H10(Ω), there exist 0 < r ≤ R < ∞
such that

〈F(y)v,w〉 ≤ R‖v‖X‖w‖X and 〈F(y)v, v〉 ≥ r‖v‖2V , v,w ∈ X, y ∈ Y,
(5.6.18)

which implies in particular that F(y) is boundedly invertible uniformly in y ∈
Y , with

‖F(y)‖L(X ′,X) ≤ r−1, y ∈ Y. (5.6.19)

Moreover, writing briefly L2(Y) = L2(Y ;dµ) for a given probability measure µ
onY , we can define the operator F : U := X×L2(Y) = L2(Y ;V)→ U ′ = V ′×L2(Y)
by

a(v,w) := 〈Fv,w〉U =

∫
Y

∫
Ω

〈F(y)v,w〉dxdµ(y), v,w ∈ U, (5.6.20)

The problem
a(u, v) = f(v), v ∈ U, (5.6.21)

is again well-posed over U.
The particular challenge of this type of problems lies in the fact that the solu-

tions u are now functions of the spatial variables x ∈ Ω and also of the (possibly
infinitely many) parametric variables y ∈ Y , see [2].

5.6.5 Space-Time Variational Formulation of Parabolic Problems

Model problem: u = u(x, t)

∂tu = ∆u in DT := Ω× [0, T ]

u = 0 on ∂Ω× [0, T ]

u(·, 0) = u0 onΩ
(5.6.22)

which gives rise to the variational formulation∫
DT

∂tuv− ∆uvdxdt = 0 ∀v ∈ test space V .
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Question: What is the right test space V? Integration by parts yields∫
Ω

u(x, T) v(x, T)dx−

∫
Ω

u0(x) v(x, 0)dx−

∫
DT

u∂tv dxdt+

∫
DT

∇xu(x, t)·∇xv(x, t)dxdt = 0 .

Suppose v(·, T) = 0, then it follows that∫ T
0

∫
Ω

(∇xu(x, t) · ∇xv(x, t) − u(x, t)∂tv(x, t)) dxdt−
∫
Ω

u0(x) v(x, 0)dx = 0 .

So appropriate spaces are

V := H10,ΓT (DT) where ΓT = ∂Ω× [0, T) ∪Ω× {T }

U := L2([0, T), H
1
0(Ω))

with the norms

‖u‖2U =

∫ T
0

‖u(·, t)‖2H1 dt, ‖v‖V = ‖v‖H1(DT ) .

Then (5.6.1) takes the form

A(u, v) = l(v), v ∈ H10,ΓT (DT) = V , (5.6.23)

where

l(v) =

∫
Ω

u0(x) v(x, 0)dx, A(u, v) =

∫
DT

∇xu · ∇xv− u∂tv dxdt . (5.6.24)

One can show continuity of A(·, ·) by using Cauchy-Schwarz:

|A(v,w)| ≤ C ‖v‖U ‖w‖V ,

inf-sup stability will be shown later.

Comments 5.6.1.

a) One has to verify that l ∈ V ′. This requires that the trace of v on Ω × {0} is well-
defined as a function in L2(Ω). Then

|l(v)| =

∣∣∣∣∫
Ω

u0v dx

∣∣∣∣ ≤ ‖u0‖L2(Ω) ‖v(·, 0)‖L2(Ω)

≤ ‖u0‖L2(Ω) ‖v(·, 0)‖
H
1
2
00(Ω)

≤ C ‖u0‖L2(Ω) ‖v‖H1(DT ) .

b) Dirichlet condition: u(x, 0) = u0(x) is a natural boundary condition.
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Remember:

H10(Ω) := C∞
0

H1

,

Hs0(Ω) := C∞
0

Hs

.

An alternative to define spaces with zero trace is

Hs00(Ω) :=
{
v ∈ Hs(Ω) : χΩv ∈ Hs(Rd)

}
where χΩv extends v to 0 outside ofΩ.

Hs00(Ω) 6= Hs0(Ω) for s ∈ 1
2
+ N0 .

5.6.6 What About Transport?

Now regard the convection-diffusion equation

−ε∆u+ b · ∇u+ cu = f inΩ,
u = 0 on ∂Ω .

(5.6.25)

Assume

c(x) −
1

2
divb(x) ≥ 0, x ∈ Ω,

‖c‖L∞ ≤ C0, ‖b‖L∞ ≤ C1 .
Choose again U = V = H10(Ω). Then (5.6.25) has a unique weak solution in
H10(Ω),

A(u, v) =

∫
Ω

ε∇u · ∇v+ (b · ∇u)v+ cu vdx, U = H10(Ω) = V .

One can show

A(v, v) =

∫
Ω

ε |∇v|2 +
(
c−

1

2
divb

)
v2 dx ≥ εCΩ ‖v‖2H1(Ω)

as well as continuity

|A(u, v)| ≤ C ‖b‖L∞︸ ︷︷ ︸
Ca

‖u‖H1 ‖v‖H1 .

But for ‖b‖L∞ � ε (convection – dominated case) one has

κH10(Ω),H10(Ω)(A) ≤
C ‖b‖L∞
CΩε

� 1 .

So in theory this is stable but it is not well conditioned; the constants matter!
Here other spaces are needed. In such cases one will end up with U 6= V.
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5.7 A Road Map for Adaptive Wavelet Schemes

In this section we discuss a first adaptive paradigm that can be applied to all
examples discussed before. In all cases one proceeds along the following steps.
However, we concentrate on symmetric formulations, i.e., U = V.

(I) Verify that
F(u) = f (5.7.1)

gives rise to a stable variational formulation in the following sense: find
a Hilbert space U such that for each f ∈ U ′ the problem

〈F(u), v〉 = 〈f, v〉 v ∈ U

has a unique solution u ∈ U, depending continuously on the data f ∈ U ′.
In other words, F should have the mapping properties

κU,U ′(F) ≤ κ or κU,U ′(DF(w)) ≤ κ, w ∈ N (u), when F is nonlinear.

(II) Find a Riesz basis Ψ = {ψλ : λ ∈ Λ} ⊂ U for U and write (I) as an equivalent
infinite system (transformation step)

F(u) = f (5.7.2)

where the unknown u ∈ U is expressed as

u =
∑
λ∈Λ

uλψλ, u = (uλ)λ∈Λ

and F(·) is the corresponding (nonlinear) operator in wavelet representa-
tion.

(III) Show that the stability of the variational formulation combined with the
Riesz-basis property imply that (5.7.2) is well-conditioned in `2(Λ), that is

DF(w) : `2(Λ)→ `2(Λ)

is an isomorphism for each w ∈ `2(Λ).
(Note: The transformation gains us something because: Before we had U →
U ′, for example H1 → H−1, so this changed smoothness which results in a bad
condition; you have to precondition)

(IV) Contrive an “idealized” iteration

un+1 = un + Cn(f − F(un)) (5.7.3)

on `2(Λ) that converges with a guaranteed error reduction per step∥∥un+1 − u
∥∥
l2
≤ ρ ‖un − u‖l2 (5.7.4)

for some ρ ∈ (0, 1). Cn is a preconditioner.
(Note: So far everything is infinite-dimensional and hence not computable)
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(V) Develop “computable” versions of (5.7.3) by applying F only approximately
within suitable error tolerances.

(VI) Prove that the perturbed scheme converges with “optimal complexity”.
Recall that for a given Riesz basis Ψ the error of best n-term approxima-
tion is given by

σn(u)U := min
#Γ≤n;dλ∈R

∥∥∥u−
∑
λ∈Γ
dλψλ

∥∥∥
U
,

and behaves like σn(u)`2(Λ) when u is the array of expansion coefficients
of u, see Exercise 4.4.2).

Dream-Theorem. If the solution u of (5.7.1) belongs to

As∞((Σn),U) = {v ∈ U : sup
n∈N

nsσn(v)U = |v|As∞ <∞} ,

then for any target accuracy ε > 0 the scheme outputs a finite sequence u(ε)
such that u(ε) =

∑
λ∈Λ u

ε
λψλ satisfies

‖u− u(ε)‖U ≤ ε, # supp{u(ε)} = #(uελ)λ∈Λε . ε
− 1
s |u|

1
s

As∞ (5.7.5)

and
#operations . ε−

1
s |u|

1
s

As∞ .

Note that supnsσn = c < ∞ means σn . n−s. In order to obtain an error
of order ε as in (5.7.5), in general n ∼ ε−

1
s coefficients are required. In this

sense, the above is the best one can expect.

5.8 Transformation to Equivalent Problem in `2(Λ) (II), (III)

We consider first linear problems. Suppose we have found a Hilbert space U
such that the problem: find u ∈ U such that

A(u, v) = 〈f, v〉 ∀ v ∈ U, (5.8.1)

for the linear operator equation

Au = f

(that is A(u, v) = 〈Au, v〉) is stable, i.e.,

κU,U ′(A) <∞.
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This means that there are constants ca, Ca such that the mapping property (MP)
holds:

ca ‖v‖U ≤ ‖Av‖U ′ ≤ Ca ‖v‖U , v ∈ U, (MP)

and that Ψ = {ψλ : λ ∈ Λ} ⊂ U is a Riesz basis for U, i.e., there exist constants
cΨ, CΨ such that the norm equivalence (NE) holds:

cΨ ‖v‖`2 ≤
∥∥∥∥∥∑
λ∈Λ

vλψλ

∥∥∥∥∥
U

≤ CΨ ‖v‖`2 , (NE)

where v = (vλ)λ∈Λ ∈ `2(Λ).
Theorem 5.8.1. Let A := (A(ψν, ψλ))λ,ν∈Λ, f = (〈f, ψλ〉)λ∈Λ. Then (5.8.1) is equiva-
lent to

Au = f , (5.8.2)

and
u =
∑
λ∈Λ

uλψλ

solves (5.8.1). Moreover, when the mapping property (MP) and the norm equivalence
(NE) hold then (5.8.2) is `2(Λ)−stable, that is A : `2(Λ) → `2(Λ) is an isomorphism.
More precisely

cac
2
Ψ ‖v‖`2 ≤ ‖Av‖`2 ≤ CaC

2
Ψ ‖v‖`2 , v ∈ `2(Λ) . (5.8.3)

Remark 5.8.1. While A : U → U ′ typically changes regularity, the representation A
does not, i.e., (5.8.2) is well-conditioned as a mapping from a space onto itself, i.e., for
the same metric in domain and range.

Proof. We know u ∈ U has a unique representation u =
∑

λ∈Λ uλψλ with the
sequence u = (uλ)λ∈Λ. To prove the first part of the assertion, since Ψ is a basis,
we have

A(u, v) = 〈f, v〉 ∀v ∈ U⇔ A(u,ψλ) = 〈f, ψλ〉 ∀λ ∈ Λ

⇔ A

(∑
ν∈Λ

uνψν, ψλ

)
= 〈f, ψλ〉 ∀λ ∈ Λ

⇔ ∑
ν∈Λ

A(ψν, ψλ)uλ = 〈f, ψλ〉 ∀λ ∈ Λ

⇔ (Au)λ = 〈f, ψλ〉 ∀λ ∈ Λ⇔ Au = f

which proves (5.8.2).
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To establish stability (5.8.3), we apply the result from Exercise 4.2.2 in Section
4.2, namely:

1

CΨ
‖w‖`2 ≤

∥∥∥∥∑
λ∈Λ

wλψ̃λ︸ ︷︷ ︸
=:w

∥∥∥∥
U ′
≤ 1

cΨ
‖w‖`2 , (NE’)

where wλ = 〈w,ψλ〉 (since 〈ψλ, ψ̃ν〉 = δλν) and hence

1

CΨ
‖(〈w,ψλ〉)λ∈Λ‖`2 ≤ ‖w‖U ′ ≤

1

cΨ
‖(〈w,ψλ〉)λ∈Λ‖`2 .

Now

‖v‖`2
(NE)
≤ c−1Ψ

∥∥∥∥∑
λ∈Λ

vλψλ︸ ︷︷ ︸
=:v

∥∥∥∥
U

(MP)
≤ c−1Ψ c

−1
a ‖Av‖U ′

(NE ′)
≤ c−1a c

−2
Ψ ‖(〈Av,ψλ〉)λ∈Λ‖`2 = c

−1
a c

−2
Ψ ‖Av‖`2

yields the left inequality of (5.8.3).
For the upper bound recall: Av =

∑
λ∈Λ〈Av,ψλ〉ψ̃λ. Since by (MP),

‖Av‖U ′ ≤ Ca ‖v‖U ,

one concludes

‖Au‖`2 = ‖(〈Av,ψλ〉)λ∈Λ‖`2
(NE ′)
≤ CΨ ‖Av‖U ′

(MP)
≤ CΨCa ‖v‖U

(NE)
≤ C2ΨCa ‖v‖`2 ,

which completes the proof.

Remark 5.8.2. Under the hypotheses of Theorem 5.8.1 one has

cac
2
Ψ‖u − v‖`2 ≤ ‖f − Av‖`2 ≤ CaC2

Ψ‖u − v‖`2 , v ∈ `2(Λ), (5.8.4)

i.e., errors are equivalent to residuals, both in the same `2-metric. The bounds are the
better the smaller CaC2Ψ

cac2Ψ
.

Exercise 5.8.1.

a) Suppose (5.8.1) is the variational formulation of the Poisson problem with U =
H10(Ω) (−∆u = f inΩ,u = 0 on ∂Ω). Let Ah denote the standard FE stiffness
matrix for a Galerkin discretization with respect to a finite element space on a quasi-
uniform mesh with mesh size h. How does κ2(Ah) grow with decreasing mesh size
h?
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b) Suppose you have a Riesz basis Ψ for H10(Ω). For any Λh ⊂ Λ, #Λh = N, let
ΨΛh = {ψλ : λ ∈ Λh} ⊂ H10(Ω). Let UΛh = span{ψλ : λ ∈ Λh} ⊂ U and use this as
a trial space for the Galerkin scheme. Let AΨh = (a(ψν, ψλ))λ,ν∈Λh ∈ RN×N be the
corresponding stiffness matrix. Show that

κ2(A
Ψ
h) ≤

CaC
2
Ψ

cac
2
Ψ

. (5.8.5)

Exercise 5.8.2. Suppose one employs Galerkin schemes for a U-elliptic problem based
on a multiresolution hierarchy (Un)n∈N of trial spaces. Suppose further that Ψ is a
Riesz basis for U and that the trial spaces in the multiresolution hierarchy are spanned
by subsets of Ψ. Describe a preconditioner for the Galerkin stiffness matrices An with
respect to the standard scaling bases for the spaces Un, so that the Euclidean condition
numbers remain uniformly bounded.

The same principles work also when F(u) = f, with nonlinear F. Then

〈F(u), v〉 = 〈f, v〉, v ∈ U (5.8.6)

is equivalent to
F(u) = f (5.8.7)

where F(u) = (〈F(u), ψλ〉)λ∈Λ.

Exercise 5.8.3.

1. If (5.8.6) is stable, that is (5.3.4) holds, then one obtains

cwc
2
Ψ ‖v‖`2 ≤ ‖DF(w)v‖`2 ≤ CwC

2
Ψ ‖v‖`2 ∀v ∈ `2(Λ) (5.8.8)

for all w in the stability region.

2. Identify DF(w)v and specify this for F(v) = v3.

5.9 Idealized Iteration (IV)

The idea is to solve the infinite system (5.8.2) iteratively. Since A is well-conditioned
one expects that such iterations reduce the error in each step by a fixed factor.
Such an iteration serv es only as a conceptual starting point. At this point it is
idealized since the involved infinite arrays cannot be computed (exactly).

Goal: Contrive an iterative scheme realizing a guaranteed fixed error reduction
per step:

‖uk+1 − u‖l2 ≤ ρ‖uk − u‖l2 , k = 0, 1, 2, ... (5.9.1)
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for some fixed ρ ∈ (0, 1). We’ll see that this is possible because of (5.8.3). We
will discuss several example classes. The starting point is a fixed point ansatz

u = u + C(f − F(u))

which holds trivially for any isomorphism C : `2 → `2. This gives

un+1 = un + Cn(f − F(un)) , n = 0, 1, 2, ... . (5.9.2)

Here the matrices Cn (that could but do not have to depend on n,un) play the
role of a preconditioner. For a given problem we have to find Cn such that (5.9.1)
holds.

We discuss a few examples:

U-elliptic problems: Let F(u) = Au where A(·, ·) is symmetric and U-elliptic
(for example Poisson problem)

Claim: Cn = C = αI for some suitable α > 0 (relaxation parameter) satisfies
(5.9.1) (Richardson scheme, simplified gradient descent).

To see this: A is by definition symmetric and, as a Gramian, positive definite.
More precisely, as shown earlier

‖A‖ := ‖A‖L(`2,`2) = sup
v∈l2

‖Av‖l2
‖v‖l2

(5.8.3)
≤ CaC

2
Ψ =: CA, (5.9.3)

and, again by (5.8.3), ∥∥A−1
∥∥ ≤ c−1A , cA := cac

2
Ψ .

Then (5.9.2) reads:

un+1 = un + α(f − Aun) = (I − αA)un + αf =: Φ(un)

and

Φ(v) −Φ(w) = ‖(I − αA)(v − w)‖l2
≤ ‖I − αA‖︸ ︷︷ ︸

=:ρ

‖v − w‖l2

So we need to show ρ < 1. Thus we have to find α such that the spectral
radius fulfills σ(I − αA) < 1. We know that λmin(A) ≥ cA and λmax(A) ≤ CA.
Consequently σ(I − αA) ⊂ [1− αCA, 1− αcA]. Hence we need

1− αCA ≥ −ρ and 1− αcA ≤ ρ⇔ αCA − 1 ≤ ρ and 1− αcA ≤ ρ

⇔ 1− ρ

cA
≤ α ≤ 1+ ρ

CA
.
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α is optimal if
1− ρ

cA
= α =

1+ ρ

CA

which is equivalent to

ρ =
CA − cA

CA + cA
=

CA
cA

− 1
CA
cA

+ 1
≥ κ2(A) − 1

κ2(A) + 1
(5.9.4)

and

α =
1+ ρ

CA
= ... =

2

CA + cA
=

2

CaC
2
Ψ + cac

2
Ψ

(5.9.5)

Indefinite problems: Let F(u) = Au, suppose the operator A satisfies the map-
ping property (MP) but is not positive definite (example: Stokes). In this case
I − αA has eigenvalues > 1 and hence is no contraction, but A : `2 → `2 is still
an isomorphism satisfying

cac
2
Ψ ‖v‖`2 = cA ‖v‖`2 ≤ ‖Av‖`2 ≤ CA ‖v‖`2 = CaC

2
Ψ ‖v‖`2 ,

and
Au = f ⇔ ATA︸︷︷︸

=:B

u = ATf︸︷︷︸
=:f̃

. (5.9.6)

This is still well-conditioned because

‖Bv‖`2 = sup
w

wTBv
‖w‖`2

≥ vtBv
‖v‖`2

=
vTATAv
‖v‖`2

= ‖Av‖2`2 ‖v‖`2 ≥ c
2
A

‖v‖2`2
‖v‖`2

= c2A ‖v‖`2 .

Conversely

‖Bv‖`2 = ‖A
TAv‖`2 ≤ ‖AT‖L(`2,`2)︸ ︷︷ ︸

≤CA

‖Av‖`2︸ ︷︷ ︸
MP ofA
≤ CA‖v‖`2

≤ C2A ‖v‖`2 .

So one still gets stability of B = ATA, however with the condition squared. Now
apply case (i) to

un+1 = un + α̃AT︸︷︷︸
=Cn

(f − Aun)︸ ︷︷ ︸
= α̃(ATf − ATAun)

= α̃(f̃ − Bun)
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with a suitable α̃,

α̃ =
2

C2A + c2A
.

Although squaring works in principle the quantitative performance gets worse.

Saddle point problems: Sometimes one can do better than “squaring” the prob-
lem. Consider the saddle point problem

a(u, v) + b(v, p) =〈f, v〉 ∀ v ∈ X ,
b(u, q) =〈g, q〉 ∀q ∈M .

(5.9.7)

Assume that (5.6.2) and (5.6.4) hold (continuity and inf-sup-condition = MP).
Furthermore assume the somewhat stronger condition

a(v, v) ≥ ca ‖v‖2X , v ∈ X . (5.9.8)

(Remember: Originally we had this for v ∈ Ker(b), this would be technically
more complicated but also sufficient. This can be found in [20]). Then

A : X→ X ′ , 〈Au, v〉 := a(u, v) is an isomorphism on X→ X ′ ,
B : X→M ′ , 〈Bu, q〉 := b(u, q) .

Recall here U = X×M.
Now suppose ΨX = {ψX

λ ∈ ΛX} , ΨM = {ψM
ν : ν ∈ ΛM} are Riesz bases for X and

M, respectively. As before

u =
∑
λ∈ΛX

uλψ
X
λ , u = (uλ)λ∈ΛX ∈ `2(ΛX) ,

p =
∑
λ∈ΛM

pλψ
M
λ , p = (pλ)λ∈ΛM ∈ `2(ΛM) ,

and hence (5.9.7) is by Theorem 5.8.1 equivalent to(
A BT
B 0

)(
u
p

)
=

(
f
g

)
. (5.9.9)

Instead of squaring we use block elimination:
The first line in (5.9.9) gives

Au + BTp = f ⇔ u = A−1f − A−1BTp . (5.9.10)

Applying this to the scond line in (5.9.9) yields

g = Bu = BA−1f − BA−1BTp ⇒ BA−1BTp = BA−1f − g .

Hence (5.9.9) is equivalent to
Sp = f̃ , (5.9.10a)

where S := BA−1BT is the Schur complement and f̃ := BA−1f − g.
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Lemma 5.9.1. There exist constants cS, CS (depending on ca, cb, Ca, Cb) such that

cS ‖q‖`2(ΛM) ≤ ‖Sq‖`2(ΛM) ≤ CS ‖q‖`2(ΛM) . q ∈ `2(ΛM). (5.9.11)

Proof. Obviously S is symmetric and bounded because A−1 and B are bounded.
Moreover,

qTSq = qTBA−1BTq = (BTq)TA−1(BTq) ≥ C−1
A (BTq)T(BTq)

≥ C−1
A (qTq)min

q ′

(‖BTq ′‖`2(ΛM)

‖q ′‖`2(ΛM)

)2
.

(5.9.12)

Since for q ′ =
∑

λ∈ΛM
q ′λψ

M
λ , w =

∑
λ∈ΛX

wλψ
X
λ one has

‖BTq ′‖`2(ΛM) = sup
w

(q ′)TBw
‖w‖`2(ΛX)

≥ sup
w

b(w,q ′)

c−1
ΨX‖w‖X

≥ cbcΨX‖q ′‖M

≥ cbcΨXcΨM‖q ′‖`2(ΛM), (5.9.13)

where we have used the inf-sup condition (5.6.4) in the second but last step.
Inserting this into (5.9.12), yields

qTSq ≥ C−1
A cbcΨXcΨM(qTq),

which yields

‖S−1‖ ≤ CA

cbcΨXcΨM
. (5.9.14)

Hence, the system (5.9.10a) can be solved with the aid of the simple Richardson
iteration (Cn = αI in (5.9.2)) with a suitable damping factor α > 0

How to make use of (5.9.10a) ?

Uzawa iteration: In principle, the iteration

pk+1 = pk + α(f̃ − Spk)

converges for suitable αwith fixed ρ < 1.

Problem: There is an inverse in S. Hence an explicit (approximate) application
of S has to be avoided. To that end, go back to the fixed point iteration

p = p + C (BA−1f − g︸ ︷︷ ︸
=f̃

−BA−1BTp︸ ︷︷ ︸
=Sp

)

︸ ︷︷ ︸
=BA−1(f − BTp) − g

(5.9.10)
= Bu − g

= p + C(Bu − g)

This leads to the so called Uzawa iteration:
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Algorithm 5.9.1.

1. Choose an initial guess p0.

2. Solve u0 = A−1(f − BTp0), i.e., solve Au0 = f − BTp0.

3. Given pk,uk, set
pk+1 = pk + C(Buk − g) . (5.9.15)

4. Solve Auk+1 = f − BTpk+1.

Comments 5.9.1.

• S is not needed explicitly.

• Each iteration step requires an elliptic solve

Auk =
(
f − BTpk

)
,

but at each stage in a practical realization of an iterative solver you need only few
steps to update the approximation to u.

• Then just update pk to pk+1

Error reduction:

pk+1 − p = pk + C(Buk − g) − (p + C (Bu − g)︸ ︷︷ ︸
=0

)

= pk − p + CB(uk − u) . (5.9.16)

Now, using (5.9.10) and step 4. in Algorithm 5.9.1, we obtain

A(u − uk) = f − BTp − f + BTpk = BT(pk − p)⇒ (u − uk) = A−1BT(pk − p)
(5.9.16)⇒ pk+1 − p = pk − p + CBA−1BT(p − pk) = (I − CS)(pk − p) .

So we have a contraction for suitable C.

We summarize the above findings as follows.

Remark 5.9.1. In all the above cases of the linear problem

F(u) = f

(of elliptic, indefinite, or saddle point type) we have identified a preconditioner C such
that the iteration

uk+1 = uk + C(f − F(uk)), k ∈ N0,

116



(where C may depend on uk) gives rise to a fixed error reduction in each step by a factor
ρ < 1. In fact, we have shown in all cases that

‖I − CF‖ ≤ ρ, k ∈ N0, (5.9.17)

where ‖ · ‖ is the spectral norm. In terms of the residual R(v) = f − F(v), this can be
equivalently expressed as

‖v − w + C(R(v) − R(w))‖`2 ≤ ρ‖v − w‖`2 (5.9.18)

Semilinear elliptic problems: Recall:

F(u) := −∆u+ u3 = f inΩ,
u = 0 on ∂Ω .

General format:
〈F(u), v〉 = a(u, v) + 〈G(u), v〉 ,

where a(·, ·) is U-elliptic (here U = H10(Ω)) and G : U → U ′ with the following
properties:

(P1)

‖G(v) −G(w)‖U ′ ≤ CG(max{‖v‖U , ‖w‖U}) ‖v−w‖U , v,w ∈ U

(For fixed x, t = v(x), s = w(x)) we have G(t) − G(s) = G ′(ξ)(t − s) for
some ξ ∈ [t, s], CG(t) increases for increasing t). This latter property is
generalized as follows:

(P2) G is monotone, i.e.,

〈v−w,G(v) −G(w)〉 ≥ 0 ∀v,w ∈ U .

In the example this follows immediately from the structure of G(t) = t3,∫
Ω

(v(x) −w(x))(G(v(x)) −G(w(x)))dx
for fixed x
 (t− s)(t3 − s3) ≥ 0 .

One can show that (5.5.2) (stability) follows from (P1) and (P2) with Cw = (Ca+
CG(‖w‖U)) and cw = CΩ (Poincaré constant).

As before, transform the problem into

F(u) = f

with

F(u) = Au + G(u), A = (a(ψν, ψλ))λ,ν∈Λ,
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and
G(v) = (〈G(v), ψλ〉)λ∈Λ .

So
〈F(u), v〉 = 〈f, v〉 , v ∈ U,

is equivalent to
R(u) := f − Au − G(u) = 0 . (5.9.19)

Remark 5.9.2. One has (monotonicity in Riesz coordinates)

(v − w)T(G(v) − G(w)) ≥ 0 , v,w ∈ `2(Λ) .
Proof. Expand the arguments in U (using the dual Riesz basis Ψ)

v−w =
∑
λ∈Λ

(vλ −wλ)ψλ,

and the images in the range U ′ (using Ψ̃)

G(v) −G(w) =
∑
λ∈Λ
〈G(v) −G(w), ψλ〉ψ̃λ.

Substituting these expansions, yields

0
(P2)

≤ 〈v−w,G(v) −G(w)〉
=

∑
λ,ν∈Λ

(vλ −wλ) 〈ψλ, ψ̃ν〉︸ ︷︷ ︸
δλν

(G(v) − G(w))ν

=
∑
λ∈Λ

(vλ −wλ) (G(v) − G(w))λ

= (v − w)T (G(v) − G(w)) ,

which confirms the monotonicity of the nonlinear operator G on `2(Λ).

Remark 5.9.3. Note that to compute the coefficient arrays G(v) = (〈G(v), ψλ〉)λ∈Λ
one only needs the primal basis functions ψλ. The dual basis functions ψ̃λ are never
used in computations, only in the analysis.

Remark 5.9.4. The concept of monotonicity for nonlinear operators generalizes coer-
civity of linear operators. (convince yourself).

Now study the simplest iteration for (5.9.19) (Richardson)

un+1 = un + αR(un) , n = 0, 1, 2, ... (5.9.20)

with suitable α.
Because of the nonlinearity we need first a priori bounds on the solution and a

neighbourhood on which linearizations are well-conditioned. For this purpose
we need several preparations.
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Exercise 5.9.1. The monotonicity of G implies positive semi-definiteness of the lin-
earization DG(w) for each w, i.e.,

vTDG(w)v ≥ 0, v ∈ `2(Λ).

Exercise 5.9.2. The operator −R is strictly monotone, i.e.,

〈w− v, R(v) − R(w)〉 ≥ ca‖w− v‖2U, w, v ∈ U. (5.9.21)

Next we carry some properties on the the function space side over to the `2(Λ)
side.

(a) The analog of (P1) in Riesz coordinates is

‖G(v) − G(w)‖`2
def.
= ‖(〈G(v) −G(w), ψλ〉)λ∈Λ‖`2

NE ′

≤ CΨ ‖G(v) −G(w)‖U ′
(P1)
≤ CΨCG(max{‖v‖X , ‖w‖X}) ‖v−w‖U
≤ C2ΨCG(max{‖v‖U , ‖w‖U})︸ ︷︷ ︸

=:Ĉ(max{‖v‖`2 ,‖w‖`2 })

‖v − w‖`2 .

Thus

‖G(v) − G(w)‖`2 ≤ Ĉ(max{‖v‖`2 , ‖w‖`2}) ‖v − w‖`2 . (5.9.22)

(b) Bound ‖u‖`2 :

‖u − v‖`2 ‖R(v)‖`2
Cauchy-Schwarz

≥ (u − v)T(R(v) − R(u)︸ ︷︷ ︸
=0

)

= (u − v)T(A(u − v) + G(u) − G(v))
Remark 5.9.2
≥ (u − v)TA(u − v)

Rayleigh quotient
≥ cA ‖u − v‖2`2 ,

where cA = cac
2
Ψ. Hence

‖u − v‖`2 ≤ c
−1
A ‖R(v)‖`2 . (5.9.23)

In particular for v = 0 we have

‖u‖`2 ≤ c
−1
A ‖R(0)‖`2 = c

−1
A ‖f‖`2 . (5.9.24)
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Thus, defining
Bδ(u) = {v : ‖v − u‖`2 ≤ δ},

we conclude that

‖v‖`2 ≤ ‖u‖`2 + c−1A ‖R(v)‖`2
≤ c−1A

(
‖f‖`2 + ‖R(v)‖`2

)
≤ c−1A

(
‖f‖`2 + max

ṽ∈Bδ(u)
‖R(ṽ)‖`2

)
. (5.9.25)

(c) Bound for Ĉ(max{‖v‖`2 , ‖w‖`2}) over a neighborhood of u:

Remark 5.9.5. Given any δ > 0, let

ζ(δ) := c−1A

(
‖f‖`2 + max

v∈Bδ(u)
‖R(v)‖`2

)
. (5.9.26)

Then we infer from (5.9.25) that

max
v,w∈Bδ(u)

Ĉ(max{‖v‖`2 , ‖w‖`2}) ≤ Ĉ(ζ(δ)) =: C∗(δ) (5.9.27)

(d) Main preparation for error reduction: Recall:

un+1 = un + αR(un)

un+1 − u = un − u + α(R(un) − R(u))︸ ︷︷ ︸
for error reduction:
estimate this term

.

Hence, we need to consider quantities of the form w − v + α(R(w) − R(v),
compare with the linear case (5.9.18) in Remark 5.9.1.

Remark 5.9.6. One has

v − w + C(R(v) − R(w)) = (I − CM(v,w))(v − w), (5.9.28)

with

M(v,w) =

∫ 1
0

A +DG(w + s(v − w))ds . (5.9.29)

(DG = linearization =̂ derivative).
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Proof. Consider g(t) := G(w + t(v − w)). Then

g(1) = G(v), g(0) = G(w)

which gives

G(v) − G(w) = g(1) − g(0) =
∫ 1
0

g ′(s)ds =
∫ 1
0

DG(w + s(v − w))(v − w)ds

and therefore

R(v) − R(w) = −

(
A +

∫ 1
0

DG(w + s(v − w))ds

)
(v − w),

confirming the claim.

Next we analyze the mapping properties of M(v,w) and show first coerciv-
ity. In fact, by monotonicity of G,

(v − w)TM(v,w)(v − w) ≥ λmin(A) ‖v − w‖2`2 + (v − w)T(G(v) − G(w))

≥ λmin(A) ‖v − w‖2`2
≥ cA ‖v − w‖2`2 . (5.9.30)

As for an upper bound, we have

‖M(v,w)(v − w)‖`2 = ‖A(v − w) + G(v) − G(w)‖`2
(5.9.22)
≤ (CA + Ĉ(max{‖v‖`2 , ‖w‖`2})) ‖v − w‖`2

for v,w∈Bδ(u)
≤ (CA + C∗(δ)) ‖v − w‖`2 . (5.9.31)

Now fix the initial guess u0 (for example u0 = 0). Then (5.9.23) yields

‖u − u0‖`2 ≤ c−1A ‖R(u0)‖`2 =: δ0 , (5.9.32)

and hence
u0 ∈ Bδ0(u) .

Now we can establish error reduction in the idealized iteration (5.9.20).

Proposition 5.9.1. For

0 < α <
2cA

(CA + C∗(δ0))2

ρ = ρ(α) :=
(
1− 2αcA + α2(CA + C∗(δ))2

) 1
2 < 1

(5.9.33)

the iteration
un+1 = un + αR(un)

satisfies (5.9.1), i.e., ‖uk+1 − u‖`2 ≤ ρ‖uk − u
¯
‖`2 , with ρ from (5.9.33).
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Proof. By (5.9.28)

un+1 − u = un − u + α(R(un) − R(u)︸ ︷︷ ︸
=0

) = (I − αM(un,u)) (un − u) .

Thus by (5.9.30) and (5.9.31)

‖u1 − u‖2`2 =
∥∥(I − αM(u0,u)

)
(u0 − u)

∥∥2
`2

= (u0 − u)T
(
I − αM(u0,u)

)T (I − αM(u0,u)
)
(u0 − u)

= ‖u0 − u‖2`2 − 2α(u
0 − u)TM(u0,u)(u0 − u) + α2

∥∥M(u0,u)(u0 − u)
∥∥2
`2

≤ ‖u0 − u‖2`2 − 2αcA‖u0 − u‖2`2 + α
2(CA + C∗(δ))2‖u0 − u‖2`2

=
(
1− 2αcA + α2(CA + C∗(δ))2

)
‖u0 − u‖2`2

= ρ2‖u0 − u‖2`2 .
Hence

u1 ∈ Bδ0(u) .
The assertion follows by repetition.

Corollary 5.9.1. For any v,w ∈ Bδ0(u) one has

‖v − w + α(R(v) − R(w))‖`2 ≤ ρ ‖v − w‖`2 (5.9.34)

for ρ from (5.9.33), see Remark 5.9.1 for the linear case.

Proof. Follows from Remark 5.9.6 and Proposition 5.9.1.

Comments 5.9.2. C = αI was the simplest choice that works for a monotone nonlin-
earity G. Further choices are

Cn := αDF(u)T

or Cn := αDF(un)T (Gauß-Newton)
or Cn := DF(un)−1 (Newton’s Method)

for any fixed u and suitable α.

Remark 5.9.7. In all those cases (for suitable Bδ0(u)) one can find 0 < β < ∞ and
ρ = ρ(δ0) < 1 such that

‖u − v‖`2
(5.9.23)
≤ β ‖CR(v)‖`2 , v ∈ Bδ0(u) (5.9.35)

and
‖v − w + C(R(v) − R(w))‖`2 ≤ ρ ‖v − w‖`2 , (5.9.36)

see Remark 5.9.1 for the linear case.

For details see [17].
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5.10 A Convergent Perturbation (V)

Given a variational problem with (MP) and a Riesz basis for the energy space
(NE), we have seen that one can always find an iteration in `2(Λ) that converges
with a fixed error reduction ρ per step. But even in the simplest version with
Cn = αI such an iteration cannot be implemented numerically because even
when un has finite support, R(un) = f − F(un) has in general infinite support:
The idealized iteration

un+1 = un + Cn(f − F(un)) = un + R(f,F,Cn,un) (5.10.1)

is not computable because

• f is in general infinitely supported

• even if #(supp un) <∞, F(un) has in general infinite support, the 〈F(un), ψλ〉
might all be different from 0.

Idea: Do not work with the full load vector f and with the exact F(u) but only
with finitely supported approximations so that each iteration has finite support.
This is a perturbation of the ideal iteration.

1. Question: How to dynamically perturb the ideal iteration so as to still con-
verge to u with “optimal” complexity (dream-theorem)?

2. Question: How to realize these perturbations?

To answer the first question we first completely ignore how to determine such
approximations and assume that appropriate routines are available. Instead we
first wish to see only which tolerances are sufficient in each iteration.

Assumption 5.10.1. We assume at this point that we have two routines available,

• COARSE[v, η]→ vη such that

‖v − vη‖`2 ≤ η , #vη <∞ . (5.10.2)

• RES[f,F,C,v, η]→ rη such that

‖R(f,F,C,v) − rη‖`2 ≤ η , (5.10.3)

where R(f,F,C,v) = C(f − F(v)).

• We have an initial guess u0 with a bound

‖u − u0‖`2 ≤ δ0 , (5.10.4)

see (5.9.23).
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Then we consider the following scheme:

Algorithm 5.10.1.

SOLVE[F, f,u0, ε]→ u(ε) ∈ `2(Λ)
(i) ChooseM∗, b such that 1+b

M∗
≤ 1

2
, ρ ∈ (0, 1),

set u = u0, δ = δ0 (see (5.10.4))
{wk}

∞
k=0 such that

∑∞
k=0wk = 1.

(ii) If δ ≤ ε stop and output u(ε) = u;
else set v0 := u, k = 0.

(ii.1) Set ηk := wkρkδ and
compute rk := RES[f,F,C,vk, ηk].

(ii.2) If

β
(
ηk + ‖rk‖`2

)
≤ δ

M∗
(5.10.5)

(β from (5.9.35))
set ṽ := vk and go to (iii),
else: Set vk+1 = vk + rk, set k+ 1→ k, go to (ii.1).

(iii) COARSE[ṽ, bδ
M∗

]→ u, δ
2
→ δ, go to (ii).

Proposition 5.10.1. For any ε > 0 the scheme SOLVE[F, f,u0, ε] terminates after
finitely many steps and outputs a finitely supprted sequence u(ε) ∈ `2(Λ) satisfying

‖u − u(ε)‖`2 ≤ ε . (5.10.6)

Proof. When entering (ii) for the jth time, let us denote the input u by uj. More-
over let uk := uk(u) be the exact iterates for uk+1 = uk + C(f − F(uk)), that is

uk+1 = uk + R(f,F,C,uk)

with initial guess u0 = u. Suppose we have shown that
∥∥u − uj

∥∥
`2
≤ εj = 2−jδ0

(induction assumption, which is true for j = 0). We wish to show now that the
output ū = ūj+1 of step (iii) in Algorithm 5.10.1 satisfies ‖u − ūj+1‖`2 ≤ εj+1 =
2−j−1δ0.

We compare first the perturbed iterates vk in (ii.2) with the exact iterates uk

vk+1 − uk+1 = vk − uk + (rk − R(f,F,C,uk))

= vk − uk + (rk − R(f,F,C,vk))︸ ︷︷ ︸
‖·‖≤ηk

+R(f,F,C,vk) − R(f,F,C,uk) .
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By (5.10.3)

‖vk+1 − uk+1‖`2 ≤ ηk + ‖vk − uk + R(f,F,C,vk) − R(f,F,C,uk)︸ ︷︷ ︸
(5.9.36)
= C(R(vk)−R(uk))

‖`2 . (5.10.7)

When F is linear we can use Remark 5.9.1. When F is the above nonlinear oper-
ator we would like to invoke Corollary 5.9.1, (5.9.34) or (5.9.36). An additional
slight complication is that we need to show that the iterates remain in a suffi-
ciently small neighborhood of the solution. To this end, let us assume that ρ is
the error reduction on the ideal scheme belonging to the neighborhood B2δ0(u).
So in order to invoke (5.9.36) we need to show that vk+1 stays in B2δ0(u). To see
this we know by assumption

‖u − uj‖`2 ≤ εj = 2−jδ0
‖u − uk(uj)‖`2 ≤ ρk‖u − uj‖`2 ≤ ρkεj ≤ δ0 (5.10.8)⇒ uk(uj) ∈ Bδ0(u) .

Also we have v0 = uj ∈ Bδ0(u). Assuming that vk ∈ B2δ0(u), we can apply
(5.10.7) and (5.9.36) (or (5.9.34)) to obtain

‖vk+1 − uk+1‖`2 ≤ ηk + ρ‖vk − uk‖`2 ≤ ηk + ρ
(
ηk−1 + ρ‖vk−1 − uk−1‖`2

)
,

and repeating this argument gives

‖vk+1 − uk+1‖`2 ≤
k∑
l=0

ηk−lρ
l =

k∑
l=0

wk−lρ
k−lδρl .

Taking ρ̂ := max{ρ, ρ} ∈ (0, 1), we have (since δ = 2−jδ0 = εj)

‖vk+1 − uk+1‖`2 ≤ εjρ̂k (5.10.9)

and also, by (5.10.8),

‖vk+1 − u‖`2 ≤ ‖vk+1 − uk+1‖`2 + ‖uk+1 − u‖`2 ≤ εjρ̂k + εjρk+1 ≤ 2εjρ̂k ≤ 2δ0 .

Hence vk+1 ∈ B2δ0(u). The rest follows by induction (εj ≤ ε0 = δ0).
To see when (5.10.5) is satisfied (i.e., the residual has been reduced enough),

note vk+1 = vk + rk. Hence

‖rk‖`2 ≤ ‖vk+1 − u‖`2 + ‖vk − u‖`2 ≤ 2εjρ̂k + 2εjρ̂k−1 ≤ 4εjρ̂k−1 (5.10.10)⇒ β
(
ηk + ‖rk‖`2

)
≤ βεj(wkρ̂k + 4ρ̂k−1) = βεjρ̂k−1(wkρ̂+ 4) .

Hence, setting

K := argmin
k

{
β(wkρ̂+ 4)ρ̂

k−1 ≤ 1

M∗

}
(5.10.11)
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we obtain that (5.10.5) holds after at most K steps.
Next let us see how accurate vk is after branching to (iii). We have

‖u − vk‖`2 = ‖u − ṽ‖`2
(5.9.35)
≤ β‖CR(vk)‖`2 ≤ β

(
‖CR(vk) − rk‖`2 + ‖rk‖`2

)
≤ β

(
ηk + ‖rk‖`2

)
≤ δ

M∗
=
εj

M∗
.

Therefore, by (5.10.2), we obtain for ū = ūj+1

‖u − u‖`2 ≤ ‖u − ṽ‖`2 + ‖ṽ − u‖`2 ≤
δ

M∗
+
bδ

M∗

=
1+ b

M∗
δ ≤ δ

2
=
εj

2
= εj+1 = 2

−j−1δ0 ,

which advances the induction.
Hence, we have shown that one has for all j

‖u − uj‖`2 ≤ εj = 2−jδ0 . (5.10.12)

Thus the target accuracy ε is reached after d
∣∣log

2
ε
∣∣+ log

2
δ0e steps.

5.11 Complexity (VI)

It remains to see what the computational complexity of computing the sequences
uj, and eventually u(ε), is. There are two issues:

(a) What is the role of COARSE?

(b) The computational complexity of SOLVE is determined by the cost of com-
puting the approximate residuals rk in step (ii.1). So what are the conditions
on the realization of RES?

We first discuss (a):
One has to distinguish the linear and nonlinear case. In the latter case the output
of COARSE has to satisfy certain constraints on the structure of the support.
This is not necessary when F = A is linear. Therefore we first consider the linear
case where we have no constraints on supp vη in (5.10.2). Hence COARSE can
be realized by the operator Cη from Exercise 4.5.3 based on thresholding, that is
for # supp v <∞,

COARSE[v, η]→ vη := Cηv. (5.11.1)

More precisely, sort entries by decreasing size of absolute values; starting with
the smallest entries discard them as long as the sum of their squares is at most
η2

v (v∗1, ..., v
∗
N) , |v∗i | ≥ |v∗i+1| .
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Pick the largest l such that (v∗N)
2 + ...+ (v∗N−l)

2 ≤ η2. Then

vη =
(
v∗j
)N−l−1

j=1
.

Obviously, vη satisfies

‖v − vη‖`2 ≤ η
and ‖v − w‖`2 ≤ η ⇒ # supp w ≥ # supp vη .

(5.11.2)

Theorem 5.11.1 (Coarsening Lemma). Let u,v ∈ `p(Λ) so that

‖u − v‖`p ≤ δ . (5.11.3)

Fix some a > 0 and set η := (1+ a)δ. Then

‖u − Cηv‖`p ≤ (2+ a)δ = η+ δ ≤ 2η . (5.11.4)

Moreover, whenever u ∈ w`τ (= Ar∞) , 1
τ
= r+ 1

p
, we have

#(suppCηv) ≤ 2a− 1
r δ−

1
r ‖u‖

1
r

Ar∞ ≤ 2
(
2+ a

a

) 1
r

‖u‖
1
r

Ar∞ ‖u − Cηv‖−
1
r

`p
(5.11.5)

and
‖Cηv‖Ar∞ ≤ C ‖u‖Ar∞ , C = C(r, p, a) , (5.11.6)

or equivalently
‖Cηv‖w`τ ≤ C ‖u‖w`τ , C = C(r, p, a) . (5.11.7)


Recall: Optimal rate of best n-term approximation ≈ δ− 1r ‖u‖

1
r

w`τ
; Exercise 4.5.5

σn(ε)(u)`p ∼ ε ⇒ |u|Ar∞ = sup
n>0

nrσn(u)`p ≥ n(ε)rσn(ε)(u)`p ∼ n(ε)rε

⇒ n(ε) ≤ ε− 1r |u|
1
r

Ar∞


Proof. (5.11.4) by triangle inequality.

To prove (5.11.5), let
n = n(aδ) (5.11.8)

be the smallest n such that σn(u)`p ≤ aδ. By definition σn(aδ)(u)`p ≤ aδ and
σn(aδ)−1(u)`p > aδ. Hence

|u|Ar∞ = sup
n>0

nrσn(u)`p ≥ (n(aδ) − 1)rσn(aδ)−1(u)`p ≥ (n(aδ) − 1)raδ

⇒ (aδ)−
1
r |u|

1
r

Ar∞ ≥ (n(aδ) − 1)

⇔ n(aδ) ≤ (aδ)−
1
r |u|

1
r

Ar∞ + 1 .
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Note

n(aδ) > 0 ⇔ aδ < ‖u‖`p ⇔ 1 <

(
‖u‖`p
aδ

) 1
r

.

Employing aµ + bµ ≤ c(µ)(a+ b)µ for µ = 1
r
, yields

n(aδ) ≤ (aδ)−
1
r

(
|u|

1
r

Ar∞ + ‖u‖
1
r

`p

)
≤ (aδ)−

1
rC(r)

(
|u|Ar∞ + ‖u‖`p

) 1
r

,

with

C(r) ≤
{
1, r < 1 ⇔ 1

r
> 1

2, r > 1 → 1
2
(aµ + bµ) ≤

(
a+b
2

)µ by concavity
.

Then
n(aδ) ≤ 2(aδ)− 1r ‖u‖

1
r

Ar∞ . (5.11.9)

Denoting by Λ(aδ) = suppCaδu one has Caδu = PΛ(aδ)u, i.e., Caδ is just the
projection operator onto Λ(aδ). Hence∥∥v − PΛ(aδ)v

∥∥
`p
=
∥∥(I− PΛ(aδ))(v − u) + (I− PΛ(aδ))u

∥∥
`p

≤
∥∥(I− PΛ(aδ))(v − u)

∥∥
`p
+
∥∥(I− PΛ(aδ))u∥∥`p︸ ︷︷ ︸

σn(aδ)(u)`p≤aδ

≤ ‖v − u‖`p︸ ︷︷ ︸
≤δ by assumption

+aδ

≤ (1+ a)δ = η .

So PΛ(aδ)v realizes
∥∥v − PΛ(aδ)v

∥∥
`p
≤ η. By (5.11.2), one obtains

n(aδ) = # suppPΛ(aδ)v ≥ # suppCηv ,

and by (5.11.9)
# suppCηv ≤ 2(aδ)−

1
r ‖u‖Ar∞ , (5.11.10)

which is the first part of (5.11.5).
By (5.11.4)

η+ δ = (2+ a)δ =

(
2+ a

a

)
aδ ≥ ‖u − Cηv‖`p

⇒ a

2+ a
‖u − Cηv‖`p ≤ aδ ,

which is the second part of (5.11.5).
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It remains to prove the stability estimate (5.11.7). To this end, note that (5.11.5)
holds with a uniform constant for all a ≥ a0 as long as a0 > 0 is fixed. Therefore
consider

a = al = 2
l, ηl := (1+ 2l)δ, vl := Cηlv

l, l = 0, . . . , | log2(‖v‖`2/δ)|.

Then we know from (5.11.5) that

#(supp vl) ≤
⌈

2δ−1/r2−l/r‖u‖1/r
Ar∞
⌉
=: ml. (5.11.11)

To prove (5.11.7) it suffices to show that

|Cηv|Ar∞ = sup
n∈N

nrσn(Cηv)`2 . ‖u‖Ar∞ . (5.11.12)

Since #(suppCηv|lem0 we have σn(Cηv)`2 = 0 for n > m0 so that we only need
to consider n = ml for l in the above range. Then

mr
lσml(Cηv)`2 ≤ mr

l‖Cηv − Cηlv‖`2
≤ mr

l‖v − Cηlv‖`2 ≤ mr
lηl

≤ 2r(1+ 2−l‖u‖Ar
|
infty,

which completes the proof.

Corollary 5.11.1. In summary, we have shown that if COARSE[v, η]→ vη is realized
by Cη and if we know that ‖u − v‖`2 ≤ δ, then for η = (1 + a)δ, a > 0 fixed,
vη := COARSE[v, η] satisfies

‖u − vη‖`2 ≤ (2+ a)δ

#(supp vη) . η−
1
r ‖u‖

1
r

w`τ
, ‖vη‖w`τ . ‖u‖w`τ

(5.11.13)

where 1
τ
= r+ 1

2
.

Proof. Follows from Theorem 5.11.1 for p = 2.

The relevance of Theorem 5.11.1 can be explained as follows: Suppose one
has an approximation v of some unknown function u and suppose one knows
that ‖u − v‖`2 ≤ δ (in Algorithm 5.10.1 this is v = vk). Then coarsening (the
given sequence) v with a somewhat coarser accuracy yields an approximation
to u which is optimal in the Ar∞-class sense. The input to step (iii) of SOLVE
plays exactly this role.

The next observation is that when the computation of rk, or more generally,
of RES[f,F,C,v, η], has a comparable complexity, then one obtains the dream
theorem. So we proceed as follows:
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1. Formulate certain sparsity conditions on the routine RES;

2. show that under these conditions one indeed obtains the dream theorem;

3. then, for a given variational problem realize the routine RES with the de-
sired properties.

As for (i), we require that RES so that is has the following properties analo-
gous to the routine COARSE.

Definition 5.11.1. The routine RES[f,F,C,v, η] is called s∗-computable if for any
finitely supported input v the output

rη = RES[f,F,C,v, η]

satisfies for any 0 < s < s∗ and u ∈ As∞((Σn), `2(Λ))
(
= w`τ(Λ),

1
τ
= s+ 1

2

)
‖rη‖As∞ ≤ C

(
‖v‖As∞ + ‖u‖As∞

)
#(supp rη) ≤ Cη−

1
s

(
‖v‖

1
s

As∞ + ‖u‖
1
s

As∞
)

# flops(rη) ≤ C (#(supp v) + #(supp rη))

(5.11.14)

for F linear and
‖rη‖As∞ ≤ C

(
‖v‖As∞ + ‖u‖As∞ + 1

)
#(supp rη) ≤ Cη−

1
s

(
‖v‖

1
s

As∞ + ‖u‖
1
s

As∞ + 1
)

# flops(rη) ≤ C (#(supp v) + #(supp rη))

(5.11.14a)

for F nonlinear for some C independent of u,v and depending on s only as s→ s∗.

Theorem 5.11.2. Given the system

F(u) = f ,

assume that (5.9.35), (5.9.36) hold and COARSE satisfies (5.11.13). If in addition RES
is s∗-computable, then the following is true:
The output u(ε) produced by SOLVE[f,F,C,u0, ε] satisfies for each ε > 0

‖u − u(ε)‖`2 ≤ ε
and

#(supp u(ε)) ≤ Cε− 1s
(
‖u‖

1
s

As∞ + 1
)
, ‖u(ε)‖As∞ ≤ C ‖u‖As∞ (5.11.15)

whenever u ∈ As∞ for some 0 < s < s∗.
Moreover

# flops (u(ε)) . ε−
1
s ‖u‖

1
s

As∞ ∼ n(ε)

where n(ε) is minimal such that σn(ε)(u)`2 ≤ ε.
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Proof. The first part follows directly from Proposition 5.10.1. Now consider the
rest of the assertion.

Bounding sparsity norms and supports: We have already shown that after at
most K inner iterations in step (ii) one branches to (iii) COARSE. Again denote
by j the number of times an approximation enters (ii). First we assume that
our initial guess has been already subjected to COARSE ending up with the
bound δ0. Therefore we can assume by (5.11.13) that u = u0 satisfies, for some
0 < s < s∗, j = 0,

‖uj‖As∞ . ‖u‖As∞ , # supp uj . ε−
1
s

j ‖u‖
1
s

As∞ . (5.11.16)

Idea: Show by induction that this remains true for a fixed uniform constant for
j+ 1.

So suppose (5.11.16) holds for j. Since RES is s∗-computable we conclude that
r0 = RES[f,F,C,uj, η0] satisfies

‖r0‖As∞ ≤ C
(
‖uj‖As∞ + ‖u‖As∞ + 1

)
#(supp r0) ≤ Cη−

1
s

0

(
‖uj‖

1
s

As∞ + ‖u‖
1
s

As∞ + 1
)

# flops(rn) ≤ C(# supp uj + #(supp r0))

≤ Cη−
1
s

0

(
‖uj‖

1
s

As∞ + ‖u‖
1
s

As∞ + 1
)
.

Notice η0 ∼ εj, by (5.11.16)
∥∥uj
∥∥
As∞ . ‖u‖As∞ . Hence

‖r0‖As∞ ≤ C
(
‖u‖As∞ + 1

)
#(supp r0) ≤ Cε−

1
s

j

(
‖u‖

1
s

As∞ + 1
)

# flops(r0) ≤ Cε−
1
s

j

(
‖u‖

1
s

As∞ + 1
)
.

So v1 := uj + r0 has an analogous bound (that is satisfies (5.11.16)).
Repeating this argument, shows that ṽ = vk (k ≤ K) satisfies (5.10.5) and

‖ṽ‖As∞ ≤ CK
(
‖u‖As∞ + 1

)
#(supp ṽ) ≤ CKε−

1
s

j

(
‖u‖

1
s

As∞ + 1
)

# flops(ṽ) ≤ CKε−
1
s

j

(
‖u‖

1
s

As∞ + 1
)
,

(5.11.17)

i.e., the total computational work in (ii) stays proportional to ε−
1
s

j

(
‖u‖

1
s

As∞ + 1
)

.

131



Remark 5.11.1. The constant CK could grow in each step of the inner loop (ii) in Algo-
rithm 5.10.1. However, we already know that the inner cycle has at most a fixed uniform
number K of steps. Thus, when exiting to step (ii) the coarsening step COARSE resets
the constant according to the coarsening lemma. This ensures a uniform control of all
constants.

Now when ṽ enters (iii) we know

‖u − ṽ‖`2 ≤
εj

M∗
.

By (5.11.13) in Corollary 5.11.1 we know that for b > 1 and b+1
M∗
≤ 1

2
the next

input for (ii)

COARSE
[

ṽ,
bεj

M∗

]
=: uj+1

satisfies

‖uj+1‖As∞ ≤ C ‖u‖As∞
# supp uj+1

# flops(uj+1)

}
≤ Cε−

1
s

j+1

(
‖u‖

A
1
s∞ + 1

)
,

where C is independent of K and CK but depends only on s, as s tends to 0, s∗.
This advances the induction over j.

Bounding the computational work: It remains to estimate the total computa-
tional work. To that end, recall: εj = 2−jδ0 and let j0 be the smallest integer so
that εj0 = 2

−j0δ0 ≤ ε. Then 2 2−j0δ0 > ε and

work in jth block (ii) =: wj ≤ CK

(
‖u‖

1
s

As∞ + 1
)

︸ ︷︷ ︸
=:C(u)

ε
− 1
s

j

Thus

total work ≤
j0∑
j=0

wj ≤
j0∑
j=0

C(u)ε−
1
s

j

= C(u)
j0∑
j=0

(2−jδ0)
− 1
s = C(u)δ−

1
s

0

j0∑
j=0

2
j
s

︸ ︷︷ ︸
= 2

j0+1
s −1

2
1
s −1

∼2
j0
s

∼ C(u)
(
δ02

−j0
)− 1

s ∼ C(u)ε−
1
s

j0
∼ C(u)ε−

1
s

which yields (5.11.15).
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Comments 5.11.1. (i) Thus, under Assumption 5.10.1 and under the assumption that
the routine RES is s∗-computable for some s∗ = s∗(Ψ), Algorithm 5.10.1 is class-
optimal for s < s∗. This means when the solution u belongs to As∞((Σn),U) (meaning
that the coefficient sequence u belongs to As∞((Σn), `2(Λ)), see Exercise 4.4.2) then the
algorithm outputs for any given target accuracy ε an approximate solution at class-
optimal complexity ∼ ε−1/s.

(ii) One can derive from Remark 4.6.6, 3. that for U = H1(Ω) (or H10(Ω)) and

1

τ
=
t

d
+
1

2

one has (with t = ds)
‖u‖B1+dsτ (Lτ))

∼ ‖u‖`τ(Λ), (5.11.18)

since now the base space is H1 and not L2. We also know from Theorem 4.5.4, Remark
4.5.1, and Exercise 4.5.3, that

As∞((Σn),U) =̂As∞((Σn), `2) =̂w`τ(Λ) ⊃ `τ(Λ),

i.e., whenever the solution u belongs to the Besov space B1+tτ (Lτ)) it is approximated
with accuracy ε with optimal rate ε−1/s. It has been shown in [21] that the solutions
to elliptic boundary value problems on Lipshitz domains have in general higher Besov
regularity than Sobolev regularity, which means that an adaptive method realizes the
same target accuracy at a strictly better rate.

(iii) Now it remains to construct for a given problem routines RES which are indeed
s∗-computable for possibly high s∗. This will be done in the next section.

6 Realization of RES

6.1 Overview:

Every realization of RES hinges on the following ingredients

(i) Approximation of data f = (〈f, ψλ〉)λ∈Λ
(ii) Application of preconditioner C

(iii) Application of F.

(i): The point of view taken here is that the data are known completely (being pro-
vided by the user), and f is computed in a preprocessing step whose complexity
is not counted for the performance of SOLVE!
Why? There is no way to estimate in general the complexity of approximating
any given function without any a priori knowledge about it. Therefore the pre-
processing has typically the following structure:

133



Fix any final target tolerance ε̂ such that for some finite index setΛf(f, ε̂) ⊂ Λ,
f̂ := f|Λf satisfies

‖f − f̂‖`2 ≤ ε̂ (6.1.1)

The claim is that this implies a certain accuracy of the output of SOLVE[̂f,F,C, ε].
To see this, denote by û the exact solution of

F(û) = f̂ (as opposed to F(u) = f) .

Then, by (5.9.35)

‖u − û‖`2 ≤ β ‖CR(û)‖`2 , û ∈ Bδ0(u) .

Now
R(û) = f − F(û) = f − f̂ ,

so that

‖u − û‖`2 ≤ β ‖C‖L(`2,`2)
∥∥∥f − f̂

∥∥∥
`2

≤ β ‖C‖L(`2,`2) ε̂ .

Therefore, whenever seeking only a target accuracy ε ≥ 2β ‖C‖L(`2,`2) ε̂ =: 2ε̂0,
say, one can work with the perturbed data, for η ≥ 2ε̂0. So one could use a
routine

DATA[f, η]→ fη such that ‖f − fη‖`2 ≤ η (6.1.2)

to be realized as follows

fη := COARSE[̂f, η− ε̂] .

Then
‖f − fη‖`2 ≤ ‖f − f̂‖`2︸ ︷︷ ︸

≤ε̂

+ ‖f̂ − fη‖`2︸ ︷︷ ︸
≤η−ε̂

≤ η .

(ii): The application of C depends on its particular structure. In general it re-
quires approximate application of an infinite matrix. This is treated under (iii).

For now we consider the simplest case

C = αI

for some α > 0.

(iii): the application of the operator in Riesz coordinates is a crucial ingredient
which we discuss now in a little more detail.
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6.2 Near-sparsity of operator representations

We show next that the representation

F(u) = (〈f(u), ψλ〉)λ∈Λ
is for a wide range of operators F and certain multilevel-type Riesz bases Ψ nearly
sparse in the sense that many entries of F(u) are so small that they can be re-
placed by zero without affecting the mapping properties of F.

The key properties of the Riesz bases for which the sparsity effect holds are
the following:

• Ψ ⊂ U satisfies the norm equivalencees (NE) for the underlying trial space
U, see Section 4.6.3.

• Multilevel-locality of the basis functions ψλ ∈ Ψ, i.e.,

diam (Sλ) ∼ 2
−|λ|, λ ∈ Λ, (LOC)

uniformly in λ. Here the indices λ encode different types of information,
namely the dyadic refinement level |λ|, the spatial location x(λ) (e.g. the
center of gravity of the support Sλ), and the “type” e(λ) of the function ψλ
(typically needed for spatial dimension d > 1).

• Cancellation property: Suppose that U is a closed subspace of Ht(Ω). Then
inner products with the ψλ annihilate smooth parts. More precisely, there
exists an integer m̃ ∈ N such that for 1 ≤ p ≤∞

|〈v,ψλ〉| . 2−|λ|

(
m̃+t+d

2
−d
p

)
|v|Wm̃(Lp(Sλ)), v ∈Wm̃(Lp(Ω)). (CP)

Here are some comments:

(NE): We have seen that the relevant Hilbert spaces are Sobolev spaces, or closed
subspaces of Sobolev spaces (e.g. determined by homogeneous boundary con-
ditions) or by Cartesian products of such spaces. Thus, it suffices to consider the
case where the (infinite dimensional) trial space U is such a (closed subspace of
a) Sobolev space Ht(Ω) (whose intersection with L2(Ω) is dense in L2(Ω)). Fur-
thermore, recall from Exercise 4.6.8 that a wavelet-type Riesz-basis for U can
then be obtained by rescaling an L2-Riesz Ψ◦, basis provided that Ψ◦ ⊂ U. More
precisely, we have shown in Theorem 4.6.5 the following:

Remark 6.2.1. The collections

Ψs = {ψsλ : λ ∈ Λ}, ψsλ =
ψ◦λ

‖ψ◦λ‖Hs(Ω)

∼ 2−s|λ|ψ◦λ, (6.2.1)

form Riesz bases for the whole scale of spaces U ∩ Hs(Ω), −s̃2 < s < s2, including U
when t ∈ (−s̃2, s2).
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Exercise 6.2.1. Show that properly rescaled Haar basis functions form a Riesz basis for
Hs(0, 1), for − 1

2
< s < 1

2
.

(LOC): Regarding the structure of the multilevel index sets recall the Haar basis
onΩ = (0, 1):

Ψ := {ψλ , λ ∈ Λ} , Λ = {(−1, 0), (j, k) : k = 0, ..., 2j − 1, j = 0, 1, 2, ...}

where

φ(x) := χ[0,1](x) =: φ0,0(x) =: ψ−1,0

φj,k(x) := 2
j
2φ
(
2jx− k

)
, ‖φj,k‖L2(0,1) = 1 , j ∈ N0 , k = 0, .., 2j − 1

ψ0,0(x) := φ(2t) − φ(2t− 1)

ψj,k(x) := 2
j
2ψ(2jx− k) .

Here we have λ = (j, k), |λ| = j, x(λ) = k.
Analogously, one can construct a Haar basis on Ω = (0, 1)2, using tensor

products

φj,(k1,k2)(x, y) := φj,k1(x)φj,k2(y), Vj = span{φj,k : 0 ≤ k1, k2 ≤ 2j − 1}

To span orthogonal complementsWj such that Vj+1 = Vj ⊕Wj, observe

dimVj+1︸ ︷︷ ︸
=22(j+1)

= dimVj︸ ︷︷ ︸
=22j

+dimWj ⇒ dimWj = 3 · 22j .

Hence we need three types of wavelets

ψj,(1,0),k(x, y) = ψj,k1(x)φj,k2(y)

ψj,(0,1),k(x, y) = φj,k1(x)ψj,k2(y)

ψj,(1,1),k(x, y) = ψj,k1(x)ψj,k2(y) .

So we get the index structure

Λ = {λ = (j, e,k) : e ∈ {0, 1}d,k ∈ {0, ..., 2j − 1}d, j = −1, 0, 1, ...} .

Again |λ| = j is the level of λ, e denotes the type, and k the spatial shift.
Clearly we have

diam(suppψλ) =
√
2 2−2|λ| =

√
2 2−|λ| ∼ 2−|λ| .

This should suffice at this point to illustrate the index structure and multilevel-
locality (LOC). Since the Haar functions are discontinuous they will not form a
Riesz basis for smoother spaces such as H1(Ω).
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To obtain Riesz bases for spaces Hs(Ω), s ≥ 1/2, one needs smoother basis
functions. The following considerations refer to the type of multilevel Riesz
bases discussed in Section 4.6.3. For concrete constructions of such bases for re-
alistic domains, see e.g. [10, 11, 24, 25, 26, 27, 29]. Here we only need to assume
in the sequel the following key properties shared by all these constructions (see
also the discussion of the Haar basis in Section 4.2):

(CP): The Haar basis functions have been shown to satisfy the cancellation prop-
erty (CP) for m̃ = 1which was derived using a vanishing moment, see Exercise
4.2.4. This can be generalized as follows.

Remark 6.2.2. The Riesz bases constructed in Section 4.6.3 rely on a pair of dual
multiresolution sequences and associated dual pairs of bases Ψ, Ψ̃, see Remark 4.6.8.
Moreover, the two multiresolution sequences are required to have some polynomial ex-
actness m, m̃, respectively, see Definition 4.6.3, (4.6.26). In this case the primal basis
functions ψλ have vanishing moments of order m̃, i.e.,

〈v,ψλ〉 = 0, ∀ v ∈ Pm̃, |λ| ≥ 1. (VM)

Proof. Since any polynomial g ∈ Pm̃(Sλ) can be represented as a linear combina-
tion of the scaling functions generating the dual multiresolution space Ṽ|λ| and
since by Remark 4.6.9, the ψλ are orthogonal to Ṽ|λ| which yields (VM).

Proposition 6.2.1. Assume that the dual multiresolution approximation (Ṽj)j∈N0 cor-
responding to the dual Riesz basis has exactness order m̃. and that primal basis Ψ is
a Riesz basis for (a closed subspace U of) Ht(Ω) = Bt2(L2(Ω)). Then the cancellation
properties (CP) of order m̃ hold:

|〈v,ψλ〉| . 2−|λ|

(
m̃+t+d

2
−d
p

)
|v|Wm̃(Lp(Sλ)), v ∈Wm̃(Lp(Ω)), 1 ≤ p ≤∞. (6.2.2)

Proof. By Remark 6.2.2, one has vanishing moments of order m̃ (VM). Hence,

|〈v,ψλ〉| = inf
p∈Pm̃−1

|〈v− P,ψλ〉|
Hölder
≤ inf

p∈Pm̃−1

‖v− P‖Lp(Sλ) ‖ψλ‖Lq(Sλ) , (6.2.3)

where 1
p
+ 1

q
= 1. Now we use the fact that the ψλ are obtained by rescaling an

L2-Riesz basis Ψ◦ = {ψ◦λ}λ∈Λ, i.e., ψλ = 2−t|λ|ψ◦λ ∼ ψ◦λ/‖ψ◦λ‖Ht(Ω) (Exercise 4.6.8).
From (4.6.41) and (4.6.42) we know that

‖ψ◦λ‖Lq(Sλ) ∼ 2
|λ|(dq−

d
2 ) = 2|λ|(

d
2
−d
p) ⇒ ‖ψλ‖Lq(Sλ) ∼ 2|λ|(

d
q
−d
2
−t). (6.2.4)

Next we invoke Whitney’s Theorem (Deny-Lions) (3.1.6)

inf
P∈Πm̃−1

‖v− P‖Lp(Sλ) ≤ C(p, d, m̃)diam(Sλ)
m̃ |v|Wm̃(Lp(Sλ))

. (6.2.5)

The claim follows from combining (6.2.4), (6.2.5) and (LOC) with (6.2.3).
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We begin with the simplest case of a linear operator

F(u) = Au (6.2.6)

where
A = (a(ψν, ψλ))λ,ν∈Λ.

Assumption 6.2.1.

1. We assume in what follows that F : Ht → (Ht) ′ =: H−t is an isomorphism, where
Ht is a closed subspace of Ht(Ω), determined e.g. by homogeneous boundary
conditions. This covers all operators discussed in Section 5.4, in particular also
the global boundary integral operators in Section 5.6.3.

2. Ψ is a Riesz basis for U = Ht satisfying (NE), (LOC), and (CP). More specifically,
Ψ is of multilevel-type as discussed in Theorem 4.6.5, i.e., rescaled versions of Ψ
are still Riesz bases for the spaces Hs(Ω) ∩ Ht for some s in a neighborhood of t,
see (6.2.4).

Key-estimate: Under the above assumptions on Ψ the following type of decay esti-
mates hold: There exist σ > d

2
, β > d such that

|〈ψλ, Fψµ〉| .
2−σ
∣∣|λ|−|µ|

∣∣(
1+ 2min{|µ|,|λ|}dist (Sλ, Sµ)

)β , λ, µ ∈ Λ. (6.2.7)

where σ andβ depend on the smoothness and order of (CP), respectively. Such estimates
have actually been established in many different contexts, see e.g. [4, 42, 37, 38, 41, 23]

Remark 6.2.3. There are two types of decay-effects. The numerator in (6.2.7) shows
that entries of Aλ,ν are the smaller the larger the level-distance of the basis functions.
The algebraic decay in the denominator is relevant when the operator F is global, i.e.,
a(ψλ, ψλ ′) does not necessarily vanish when Sλ ∩ Sλ ′ = ∅, for instance, when F is a
boundary integral operator. This is illustrated in Figure 10.
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Figure 10: Left: scaling function (FE) representation of the single layer potential opera-
tor, right: wavelet representation (the darker the blue the smaller the entries

Discussion: We indicate next how estimates of the above type come about.
We consider first the regime of mutually overlapping basis functions:

|Sλ ∩ Sµ| > 0. (6.2.8)

We wish to show that |aλ,µ| gets small when the level difference ||λ| − |µ|| in-
creases. The following simple argument applies to differential as well as inte-
gral operators and uses only their mapping properties. To be specific, suppose
that F has the following additional continuity properties, namely that there ex-
ists a positive r such that

‖Fv‖H−t+s(Ω) . ‖v‖Ht+s(Ω), v ∈ Ht+s(Ω) ∩ U, 0 ≤ |s| < r, (6.2.9)

which holds for the examples in the previous sections. Without loss of general-
ity let |λ| > |µ|.

Remark 6.2.4. For instance, when t = 1 piecewise linear wavelets have such access
regularity, namely ψλ ∈ H

3
2
−δ(Ω) for every positive δ, i.e., r = 1/2 in this case.

Then, since Fψµ is a continuous linear functional on Ht−s(Ω) we derive from
(6.2.9)

|〈ψλ, Fψµ〉| ≤ ‖ψλ‖Ht−s(Ω)‖Fψµ‖H−t+s(Ω) . ‖ψµ‖Ht+s(Ω)‖ψλ‖Ht−s(Ω). (6.2.10)

Whenever
s < r, t+ s < s2, t− s > −s̃2, (6.2.11)

we can invoke the norm equivalences from Theorem 4.6.5 and (6.2.4) to con-
clude that

|〈ψλ, Fψµ〉| . 2−s
∣∣|λ|−|µ|

∣∣
, λ, µ ∈ Λ. (6.2.12)
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Hence, entries with overlapping wavelets still decay with increasing level dif-
ference and the strength of this decay depends essentially on the smoothness of
the wavelets.

This is in general only a crude estimate and to illustrate the basic mechanism
we consider next the case

Fu = −div(a∇u),
where a is a possibly variable but smooth diffusion coefficient. Note that when
ψλ has vanishing moments of order m̃ (see (VM)) its gradient ∇ψλ has even
vanishing moments of order m̃+ 1 so that for |λ| ≥ |µ|, say,

|〈ψλ, Fψµ〉| = |〈a∇ψµ,∇ψλ〉|
≤ infg∈Pm̃+1

‖a∇ψµ − g‖L2(Sψλ )‖∇ψλ‖L2(Ω)

. 2−ζ|λ||a∇ψµ|Hζ(Ω),

provided that a∇ψµ ∈ Hζ(Ω). When both a and ∇ψλ have uniformly bounded
Hζ-norms we obtain

|a∇ψµ|Hζ(Ω) . 2
ζ|µ|2−

d
2

∣∣|µ|−|λ|

∣∣
, (6.2.13)

to arrive at
|〈a∇ψµ,∇ψλ〉| . 2−(ζ+d

2
)

∣∣|µ|−|λ|

∣∣
, λ, µ ∈ Λ, (6.2.14)

which is again of the form (6.2.12) for s = ζ+ d
2
, see (6.2.7).

When F is a differential operator as above, and hence local, |Sλ∩Sµ| = 0 already
implies aλ,µ = 0. This is no longer true, of course, when F is an integral operator.
We illustrate the key mechanisms for operators of the form

(Fu)(x) =

∫
Γ

K(x, y)u(y)dΓy, (6.2.15)

where the kernel K is smooth except on its diagonal and satisfies

|∂αx∂
β
yK(x, y)| . dist (x, y)−(d+2t+|α|+|β|). (6.2.16)

This covers, in particular, the the cases considered inSection 5.6.3. Accordingly
we assume again that F : U→ U ′ is an isomorphism and U is a closed subspace
of Ht(Γ). To see how the cancellation properties play in this case note first that

〈ψλ, Fψµ〉 = 〈K,ψλ ⊗ψµ〉, (6.2.17)

which suggests to apply estimates like (6.2.2) separately with respect to x and
y. To be a bit more precise let Pλ,m̃ be an L∞-bounded projector of L∞(Sλ) to
Pm̃|Sλ and denote by Ix, Iy the identity operator with respect to the variables
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x, y, respectively. Writing (Pλ,m̃ ⊗ IyK)(x, y) := (Pλ,m̃K(·, y))(x), we consider the
Boolean sum

(Pλ,m̃ ⊕ Pµ,m̃)K := (Pλ,m̃ ⊗ Iy)K+ (Ix ⊗ Pµ,m̃)K− (Pλ,m̃ ⊗ Pµ,m̃)K. (6.2.18)

One readily checks that, on the one hand,

K− (Pλ,m̃ ⊕ Pµ,m̃)K = (Ix − Pλ,m̃)⊗ (Iy − Pµ,m̃)K, (6.2.19)

i.e., errors multiply, while, on the other hand, one still has by (VM)

〈(Pλ,m̃ ⊕ Pµ,m̃)K,ψλ ⊗ψµ〉 = 0. (6.2.20)

Since therefore |〈ψλ, Fψµ〉| = |〈K − (Pλ,m̃ ⊕ Pµ,m̃)K,ψλ ⊗ ψµ〉|, we can invoke the
estimates from (6.2.3), (6.2.5) for q = 1, p = ∞ for both variables separately to
conclude on account of (6.2.16) that

|〈ψλ, Fψµ〉| .
2−(|λ|+|µ|)

(
t+m̃+d

2

)
dist (Sλ, Sµ)d+2t+2m̃

=
2−
∣∣|λ|−|µ|

∣∣(t+m̃+d
2

)
(
2min{|µ|,|λ|}dist (Sλ, Sµ)

)d+2t+2m̃ . (6.2.21)

The rightmost reformulation in (6.2.21) shows an algebraic decay in terms of
the scaled distance between the two wavelet supports measured by multiples
of the larger support diameter.

In summary, (6.2.12) and (6.2.21) indicate that the typical bound for the entries
〈ψλ, Fψµ〉 of the wavelet representation has the claimed form (6.2.7)

|〈ψλ, Fψµ〉| .
2−σ
∣∣|λ|−|µ|

∣∣(
1+ 2min{|µ|,|λ|}dist (Sλ, Sµ)

)β , for some σ >
d

2
, β > d, λ, µ ∈ Λ.

where σ and β depend on the smoothness and order of vanishing moments of
the wavelets, respectively.

There are still infinitely many pairs of wavelets satisfying (6.2.8). Obviously,
it is desirable to have σ in (6.2.7) as large as possible. Unfortunately, the above
argument requires a global smoothness of the wavelets to ensure a strong decay
with respect to level differences. Using structural properties of F these estimates
can be refined for certain wavelet families. For instance, when F is a partial
differential operator with constant coefficients, such as the Laplacian, and when
the wavelets are piecewise polynomials there are more and more indices |λ| >
|µ| for which Sλ is such that ψµ|Sλ ∈ Pm, i.e., ψλ “sees” only a polynomial part of
Fψµ so that, by (VM), 〈ψλ, Fψµ〉 = 0. This observation can be extended to more
generality.

Remark 6.2.5. In the above form the estimates (6.2.7) result from what is sometimes
called “first compression”. A so called “second compression” was introduced and ana-
lyzed by Reinhold Schneider resulting in significantly improved estimates for |〈ψλ, Fψµ〉|
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for a wide range of pseudo-differential operators and spline wavelet bases for overlapping
supports Sλ, Sµ, see e.g. [38, 28]. Best possible values for σ and β for spline wavelets
and many relevant differential and singular integral operators have been determined in
[34, 35].

6.3 Compressible matrices

Let us denote by

Mσ,β :=
{

B ∈ RΛ×Λ : |bλ,µ| . 2
−σ

∣∣|λ|−|µ|

∣∣(
1+ 2min{|µ|,|λ|}dist (Sλ, Sµ)

)−β} (6.3.1)

the set of matrices satisfying (6.2.7), assuming always that as above

σ >
d

2
, β > d. (6.3.2)

Some important properties of this class are conveniently derived with the aid of
the following simple version of the Schur-Lemma.

Lemma 6.3.1. Let B = (bλ,λ ′)λ,λ ′∈Λ ∈ RΛ×Λ. If there exists a sequence (ωλ)λ∈Λ with
positive entries and a finite C such that∑

λ ′∈Λ
|bλ,λ ′ |ωλ ′ ≤ Cωλ,

∑
λ∈Λ

|bλ,λ ′ |ωλ ≤ Cω ′λ, λ, λ ′ ∈ Λ, (6.3.3)

then one has
‖B‖ ≤ C (6.3.4)

where C is the constant from (6.3.3) (‖ · ‖ := ‖ · ‖L(`2,`2)).
Proof: Let D denote the diagonal matrix with entries dλ,λ ′ = ωλδλ,λ ′ , λ, λ ′ ∈
Λ. Then (6.3.3) just says that ‖DBD−1‖L(`∞,`∞) ≤ C and ‖DBD−1‖L(`1,`1) ≤ C,
whence ‖B‖ = ‖DBD−1‖ ≤ C, by interpolation. �

For convenience we abbreviate

d(λ, λ ′) = 2min{|λ|,|λ ′|}dist (Sλ, Sλ ′). (6.3.5)

Thus, d(λ, λ ′) expresses the distance with the diameter of the lower level basis
function as the unit.

Observe first that, under the assumptions (6.3.2) all elements of Mσ,β are
bounded in `2(Λ).

Proposition 6.3.1. Every B ∈Mσ,β defines a bounded operator on `2(Λ).
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Proof. We apply Schur’s lemma with the weights ωλ = 2−|λ|d/2, λ ∈ Λ. To es-
tablish the first inequality in (6.3.3), let λ ∈ Λ and let |λ| = j. Then, using
boundedness of the domain and the fact that β > d one arrives at the estimate∑

|λ ′|=j ′

(1+ d(λ, λ ′))−β . 2dmax{0,j ′−j}.

With this estimate we obtain for the summation in space,

ω−1
λ

∑
λ ′∈Λ

ωλ ′ |bλ,λ ′ | . 2d|λ|/2
∑
j ′≥0

2−dj
′/22−σ|j−j

′|
∑
|λ ′|=j ′

(1+ d(λ, λ ′))−β

.
∑
j ′≥j

2−d(j
′−j)/22−σ(j

′−j)2d(j
′−j) +

∑
0≤j ′<j

2−d(j
′−j)/22σ(j

′−j)

.
∑
l≥0
2−(σ−d/2)l <∞.

A symmetric argument confirms the second estimate in (6.3.3) proving that B is
bounded.

The perhaps most important consequence of the decay properties (6.3.1) is a
systematic way of sparsitying the matrices inMσ,β while controling the error in
the spectral norm. The first step is a truncation in scale, defining for any given
J ∈ N the scale-compressed matrix B̃J := (b̃λ,λ′)λ,λ′∈∇ by

b̃λ,λ′ :=

{
bλ,λ′ , ||λ|− |λ ′|| ≤ J/d,
0, else. (6.3.6)

The second step is a truncation in space provided by the new matrix BJ :=
(b ′λ,λ′)λ,λ′∈∇ where

b ′λ,λ′ :=

{
b̃λ,λ′ , d(λ, λ

′) ≤ 2J/d−||λ|−|λ ′||γ(||λ|− |λ ′||),
0, else,

(6.3.7)

Here γ(n) is also a polynomially decreasing sequence such that
∑

n γ(n)
d <∞.

Specifically, we take γ(n) := (1+ n)−2/d.

Proposition 6.3.2. Assume that B ∈Mσ,β, so that (6.3.2) is valid and let

s∗ := min
{
σ

d
−
1

2
,
β

d
− 1

}
. (6.3.8)

Then, given any s < s∗, the matrices BJ, defined by (6.3.6) and (6.3.7) satisfy

NJ := #{nonzero entries in the rows/columns of BJ} ≤ C2J, (6.3.9)
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and
‖B − BJ‖ ≤ C2−Js, J ∈ N, (6.3.10)

where the constant C depends on s but is independent of J. Moreover this result also
holds for s = s∗ provided σ− d/2 6= β− d.

Proof. We employ Lemma (6.3.1) to estimate first ‖B − B̃J‖. To that end, we fix
J > 0 choose the same weights ωλ = 2

−|λ|d/2 as in the proof of Proposition 6.3.1.
Then, as before, we obtain for any λ ∈ Λ and |λ| = j

ω−1
λ

∑
λ′

ωλ ′ |bλ,λ ′ − b̃λ,λ ′ | = ω−1
λ

∑
{λ ′ : |j−|λ ′||>J/d}

ωλ ′ |bλ,λ ′ |

.
∑
l>J/d

2−(σ−d/2)l

. 2−(σ−d/2)J/d . 2−Js,

which shows that
‖B − B̃J‖ . 2−Js, (6.3.11)

holds uniformly in J.
It remains to bound ‖B̃J−Bj‖ to take the spatial truncation into account. Note

first, that we can immediately estimate the maximal number NJ of non-zero
entries in each row and column of BJ by

NJ .
dJ/de∑
l=0

[2J/d−lγ(l)]d2ld . 2J, (6.3.12)

which confirms (6.3.9). In view of (6.3.11), it remains only to prove that ‖BJ −
B̃J‖ . 2−Js. In order to estimate the spectral norm ‖BJ − B̃J‖, we use again the
Schur lemma with the same weights. For each j′ and λ ∈ Λ, we have∑

{λ ′ : d(λ,λ ′)>R}

(1+ d(λ, λ ′))−β . R−β+d2dmax{0,|λ ′|−|λ|},

Therefore, for any λ ∈ Λ,

ω−1
λ

∑
λ ′

ωλ ′ |b
′
λ,λ ′ − b̃λ,λ ′ | .

[J/d]∑
l=0

2−(σ−d/2)l[2J/d−lγ(l)]−(β−d)

= 2−sJ[2−J(β−d−ds)/d
J∑
l=0

2[(β−d)−(σ−d/2)]lγ(l)−(β−d)].

In the case where (β − d) < (σ − d/2) (resp.(β − d) > (σ − d/2)), the factor
on the right of 2−sJ is bounded by C2−J(β−d−ds)/d (resp. C2−J(σ−d/2−ds)/d) with C a
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constant independent of J and λ. Thus, when β − d 6= σ − d/2, we obtain the
desired estimate of ‖BJ − B̃J‖ for all s ≤ s∗. On the other hand, when β − d =
σ− d/2, this factor is still bounded by a fixed constant provided s < s∗.

As shown in the next section the estimates (6.3.9) and (6.3.10) form the basis
for an efficient approximate application of B. To that end, a slightly different
balance between accuracy and sparsity, based on the following simple observa-
tion, turns out to be more convenient.

Lemma 6.3.2. Assume that B ∈ Mσ,β and s∗ is defined by (6.3.8). Then for every
s < s∗ there exists summable sequences of positive numbers (αn)n≥0, (βn)n≥0 and
matrices Bj, j ≥ 0 such that

‖B − Bj‖ ≤ βj2−sj, j ≥ 0, (6.3.13)

and
#{entries per row/column of Bj} ≤ αj2j, j ≥ 0. (6.3.14)

In fact, for any a, b < 1, according to Proposition 6.3.2, . 2aJ = 2(a−1)J2J

entries per row and column suffice, to provide accuracy. 2−saJ = 2sa(b−1)J2−sabJ.
Clearly, choosing a, b sufficiently close to one and s sufficiently close to s∗ we
may stlll bring s̃ = abs as close to s∗ as we wish while the entries αj := 2(a−1)j,
βj = 2

sa(b−1)j still exhibit exponential decay.

Definition 6.3.1. The matrix B is called s∗-compressible if there exists a sequence
(Bj)j≥0 of matrices as well as summable sequences (αj)j≥0, (βj)j≥0 satisfying (6.3.13)
and (6.3.14). Moreover, we define

‖B‖∗ := min max
{
‖(αj)j≥0‖`1(N0), ‖(βj)j≥0‖`1(N0)

}
. (6.3.15)

Denoting by Cs∗ the set of s∗-compressible matrices, we have shown that
Mσ,β ⊂ Cs∗ when s∗ is defined by (6.3.8).

6.4 Efficient application of compressible matrices

The envisaged approximate application of an s∗-compressible matrix A to a se-
quence v ∈ `2(Λ) is adaptive, hence nonlinear, in that it combines apriori knowl-
edge about the matrix with a posteriori information about the input sequence.
This latter information is used through the following decomposition of v. Let
v2j denote a best 2j-term approximation to v and the sections

v[j] := v2j − v2j−1 , j ≥ 0, v2−1 := 0. (6.4.1)

Obviously, v[j] is comprized of the 2j−1st to 2jth largest (in modulus) entries of v
and

‖v[j]‖`2 ≤ σ2j(v) + σ2j−1(v) ≤ (1 + 2s)2−js|v|As , j ≥ 0, (6.4.2)
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where here and below

As = As∞((Σn), `2(Λ)), with Σn := {v ∈ `2(Λ) : ‖v‖`0(Λ) ≤ n}, (6.4.3)

where
‖v‖`0(Λ) = #(supp (v)), (6.4.4)

is, of course, not really a norm.
The idea is now to intertwine the telescopic expansions

A =
∑
j≥0

Aj − Aj−1, (A−1 := 0), v =
∑
j≥0

v[j], (6.4.5)

to generate for each J ∈ N and approximation

wJ :=

J∑
j=0

AJ−jv[j]. (6.4.6)

Since

Av − wJ =

J∑
j=0

(A − AJ−j)v[j] + A(v − v2J) (6.4.7)

one immediately arrives at the error estimate

‖Av − wJ‖`2 ≤
J∑

j=0

βJ−j2−s(J−j)‖v[j]‖`2 + ‖A‖σ2J(v). (6.4.8)

Obviously, the right hand side decreases when J increases. Specifically, when
v has a finite support one can compute the quantities ‖v[j]‖`2 and find for any
given target accuracy η > 0 the smallest J = J(η) such that

‖A‖∗
J∑
j=0

2−s(J−j)‖v[j]‖`2 + ‖A‖σ2J(v) ≤ η. (6.4.9)

We have thus described a computable routine

APPLY[A,v, η]→ wη

with the following property: for every finitely supported input v and any given
target accuracy η > 0 the output wη is given by wη := wJ(η), defined in (6.4.6),
and satisfies

‖Av − wη‖`2 ≤ η. (6.4.10)
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Remark 6.4.1. The computation of the quantities ‖v[j]‖ requires sorting the entries of v
which scales like #(supp v) log

(
#(supp v)

)
. replacing exact sorting by quasi-sorting,

i.e., collecting all entries of v such that αj ≤ |vλ| < αj−1 for some fixed α ∈]0, 1[,
in some arbitrary order, amounts to a cost that stays proportional to #(supp v) at the
expense of an additional constant factor in the error bound (6.4.8). In all complexity
estimates to come we tacitly assume the application of such a strategy to attribute linear
cost to sorting tasks. Moreover, we assume that each entry in A can be computet by
a uniformly bounded number of operations. This is, for instance, the case when the
coefficients in the underlying PDE are constant or polynomial.

Under this latter provision the properties of the rountine APPLY[A,v, η] can
be stated as follows.

Proposition 6.4.1. Assume that A ∈ Cs∗ . Then the following statements hold:

1. If v ∈ As and s < s∗ we have

#supp wη . η
−1/s‖v‖1/s

As , η > 0. (6.4.11)

2. When v has finite support the number of operations required to compute wη is
bounded by

ops(wη) . #supp v + η−1/s‖v‖1/s
As . (6.4.12)

3. The output wη = APPLY[A,v, η] is stable in As, i.e.,

|wη|As . |v|As , η > 0, (6.4.13)

with constants independent of η > 0. and v.

4. For every s < s∗ the matrix A takes As boundedly into itself.

Proof. In view of (6.3.14) we infer from (6.4.6) that for any J ∈ N

#supp wJ ≤
J∑
j=0

αj2
J−j2j ≤ ‖A‖∗2J. (6.4.14)

On the other hand, invoking (6.4.2), one has

‖Av − wJ‖`2 ≤ (1+ 2s)
∑
k≤J
βJ−k2

−s(j−k)2−ks|v|As + ‖A‖2−Js|v|As

≤ ((1+ 2s)‖A‖∗ + ‖A‖)2−Js|v|As . (6.4.15)

Thus, denoting by J ′ the smallest integer for which ((1+2s)‖A‖∗+‖A‖)2−J ′s|v|As ≤
ηwe conclude that ((1+2s)‖A‖∗+‖A‖)2−J ′s|v|As > 2−sη. Since J(η) ≤ J ′ we also
have

((1+ 2s)‖A‖∗ + ‖A‖)2−J(η)s|v|As > 2−sη.
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From this and invoking (6.4.14), we deduce that

(#supp wη)
s ≤ 2J(η)s < 2s((1+ 2s)‖A‖∗ + ‖A‖)|v|Asη−1. (6.4.16)

which gives (6.4.11).
Under the provision spelled out in Remark 6.4.1 the bound (6.4.12) is then an

immediate consequence.
To confirm (6.4.13) it suffices to exhibit for each j ∈ N a w̃j with #supp w̃j ≤

C2j such that ‖wη − w̃j‖`2 ≤ C2−sj|v|As . In view of (6.4.14), it suffices to consider
j ≤ J(η). Of course, natural candidates are w̃j := wj, j ≤ J(η), defined by (6.4.6).
The claim (6.4.13) follows now immediately from (6.4.14) and (6.4.15).

Taking J arbitrary, the same ergument shows that |Av|As . |v|As which com-
pletes the proof.

Proposition 6.4.1 and Corollary 5.11.1 imply the following fact.

Corollary 6.4.1. For operator representations A of the class considered above, and
C = αI, the routine

RES [f,A,v, η]→ rη, defined by

α
(

COARSE [̂f, α−1cη] − APPLY [A,v, η/2]
)
, (6.4.17)

with preprocessed right hand side f̂ according to (6.1.1) (and ε̂ small enough), and c
chosen so that

c ≤ 1
2
−
ε̂

η
,

is s∗-computable whenever A is s∗-compressible. Hence the complexity bounds from
Theorem 5.11.2 hold for Algorithm 5.10.1 applied to Au = f.

6.5 A Numerical Example – the Stokes Problem

Consider the Stokes system in Example 5.6.1. The following results are obtained
with the Uzawa technique, see Algorithm 5.9.1. This works as follows:

• In this case the residual evaluation RES refers to the Schur complement
problem (5.9.10a).

• The application of F = S involves now an approximate elliptic solve in step
2. of Algorithm 5.9.1, and the update in step 3. requiring an approximate
application of B.

• The fact that the resulting residual realization is s∗-computable follows
from Corollary 6.4.1 above, applied to the elliptic subproblem (also us-
ing Proposition 6.4.1), combined with the properties of the routine APPLY
from Proposition 6.4.1 for the matrix B.
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Recall from Algorithgm 5.9.1 the ideal iteration

pk+1 = pk + α(B(uk − g), where Auk = f − BTpk. (6.5.1)

The residual approximation can then be realized as follows:

RES[A,B, f,g,pk,uk, η]→ rη
1. choose η1, . . . , η5 such that

η4 + ‖B‖(η3 + ‖A−1‖(η1 + η2)) + η5 ≤ α−1η. (6.5.2)

2. compute
w := COARSE[f, η1] − APPLY[BT ,pk, η2]

3. Define SOLVE[A,w, η] as in Algorithm 5.10.1 and compute

ū := SOLVE[A,w, η3]

4. compute
rη := α

{
APPLY[B, ū, η4] − COARSE[g, η5]

}
Exercise 6.5.1. Show that

‖RES[A,B, f,g,pk,uk, η] − α(B(uk − g)‖`2 ≤ η.
Exercise 6.5.2. Using the properties of COARSE, APPLY and the results on Algo-
rithm 5.10.1, and noting that all the accuracy tolerances ηi are proportional to η, show
that RES is s∗-computable for the compressibility limits of A and B.

This gives the following result, see also [20].

Corollary 6.5.1. The complexity bounds from Theorem 5.11.2 hold for the above Uzawa-
variant of Algorithm 5.10.1 applied to the Stokes problem, see also [20].

The theoretical results are illustrated by some numerical experiments, see
Tabel 1. Velocity and pressure components are depicted in Figure 11. Both show
a singularity at the reentrant corner.

ρx :=
‖x − xΛ‖`2
‖x − x#Λ‖`2

, rx :=
‖x − xΛ‖`2
‖x‖`2

,

Table 2 illustrates an important point. It is well-known from Brezzi’s theory
that (as a saddle-point problem is indefinite) its finite dimensional Galerkin for-
mulation is not automatically stable. The finite dimensional trial spaces spaces
for velocity and pressure have to satisfy the LBB-condition (Ladyzhenskaya
Babuska Brezzi condition), see [9]. In the following test the wavelet bases for
velocity and pressure are chosen in such a way that the linear spans of fixed fi-
nite truncations would generate trial spaces that violate the LBB-condition. As
shown this does not affect the convergence of the adaptive scheme. In this sense
adaptivity stabilizes.
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Figure 11: Exact solution for the first example. Velocity components (left and middle) and
pressure (right). The pressure functions exhibits a strong singularity

It #Λu ρu ru #Λv ρv rv #Λp ρp rp

1 33 1.04 0.6838 34 1.04 0.6744 768 130.35 1.0024
2 84 1.26 0.3427 83 1.24 0.3447 768 130.40 1.0028
3 193 1.32 0.1530 184 1.31 0.1541 768 15.37 0.5234
4 446 1.29 0.0821 450 1.29 0.0897 929 4.15 0.2218
5 1070 1.27 0.0434 1065 1.27 0.0456 1211 2.58 0.1034

Table 1: Results for the first example. Sizes of the adaptive approximations, ratio to
best N-term approximation and relative error.

Exercise 6.5.3. Explain why this does not entail any contradiction to existing theory.

6.6 Adaptive Application of Nonlinear Operators

When the operator is nonlinear the scheme RES requires a substitute for the
adaptive matrix application. Roughly speaking, given a finitely supported v ∈
`2(Λ), produce a sparse accuracy controled approximation to G(v). It turns out
that in the nonlinear case parsity of the input with nonzero entries in arbitrary
positions cannot be preserved.

Subsets of Λ with Tree-Structure: Roughly speaking when an entry of

G(u) = (〈G(u), ψλ〉)λ∈Λ
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It #Λu ρu ru #Λv ρv rv #Λp ρp rp

3 5 1.00 0.7586 5 1.00 0.7588 243 2.23810 0.1196
4 20 1.13 0.4064 24 1.45 0.3979 262 2.08107 0.0612
5 61 1.47 0.2107 77 1.79 0.2107 324 2.72102 0.0339
6 178 1.33 0.1060 198 1.52 0.1306 396 2.81079 0.0209
7 294 1.19 0.0533 286 1.46 0.0744 674 2.21371 0.0108
8 478 1.25 0.0271 531 1.46 0.0362 899 1.83271 0.0071

Table 2: Results with piecewise linear trial functions for velocity and pressure - LBB
condition is violated

say 〈G(u), ψλ〉, is large, available estimates do not allow one to recognize entries
〈G(u), ψµ〉with |µ| ≤ λ and |Sλ ∩ Sµ| > 0, as small.

Sparsity statements about such entries can only be established when the index
sets under consideration are somewhat constraints. An appropriate constraint
turns out to be tree-structure.

Definition 6.6.1. A subset Γ ⊂ Λ has tree-structure if

λ ∈ Γ ⇒ {µ ∈ Λ : |µ| ≤ |λ|, Sµ ∩ Sλ| > 0} ⊆ Γ. (6.6.1)

Figure 12 illustrates such an index set.
Next, the standard coarsening operator Cη needs to be repolaced by a tree-

coarsening operator
Cη,T : v→ vη

which should have the following properties:

• vη has tree structure

• ∃C∗ such that
#(supp vη) ≤ C∗#T

(
v,
η

C∗

)
,

where T(v, ε) is the best tree-approximation with accuracy ε:∥∥v − v|T(v,ε)
∥∥
l2
≤ ε,

• One has the error estimate

‖v − vη‖l2 ≤ η.

This is a version of the Coarsening Lemma (Corollary 5.11.1) based on the Tree
Algorithm 3.2.1, see [17]. This requires providing some local error functionals
(recall Sλ := suppψλ)

eλ = eλ(v) :=
∑

λ ′∈Λ,|Sλ ′∩Sλ|>0,|λ ′|≥|λ|
v2
λ ′ , (6.6.2)
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representing the “energy” of v “over” Sλ. One can show that for U ⊆ H1(Ω)

eλ(v) . inf
P∈Pm̃
‖v − P‖2

H1(Ŝλ), Ŝλ =
⋃

{Sλ ′ : |λ ′| = |λ|, |Sλ ∩ Sλ ′ | > 0},

where m̃ is the order of cancellation properties (CP) (respectively, vanishing
moments (VM)). One can than verify all the above properties.

Remark 6.6.1. Tree-structured index sets can be viewed as analogs to locally refined
partitions.

Adaptive Evaluation of Nonlinear Operators: As a substitute for APPLY[A, ·, ·]
we need an adaptive nonlinear approximate evaluation scheme:

EVAL[F,v, η]→ wη such that vη has tree-structure and satisfies

‖F(v) − wη‖`2 ≤ η. (6.6.3)

Main Goal: construct such a scheme that is in addition s∗-computable and gives
rise a residual approximation RES satisfying the properties in Definition 5.11.1.

A central ingredient is: given v, predict and compute the significant entries of
F(v). A typical result for nonlinear operators F with a fixed power growth reads
as follwos.

Theorem 6.6.1. There exists a positive number γ > d/2 depending on F, the underly-
ing energy space U, the spatial dimension d, the cancellation properties (CP) of Ψ such
that

|〈ψλ, F(v)〉| = |F(v)λ| . sup
Sµ∩Sλ 6=∅

|vµ|2−γ(|λ|−|µ|). (6.6.4)

For details and proofs, see [18].

Remark 6.6.2. This result shows why a tree-structure is relevant. If |µ| > |λ| the bound
becomes meaningless. It provides best information when λ is a leaf of the tree or close to
a leave, see also Figure 13 for an illustration.

The estimates (6.6.4) can be used to predict for a given input v and a given
accuracy tolerance η > 0 a tree-structured index set Γη ⊂ Λ with the following
properties.

Theorem 6.6.2. For v and η > 0 and Γη as above, one has

‖F(v) − F(v)|Γη‖`2 ≤ η. (6.6.5)

Moreover, let s∗ := 2γ−d
2d

. Then, for v ∈ As((Σ)n, `2(Λ)) and 0 < s < s∗ one has

#(Γη) . η−1/s‖v‖1/s
As + #Λ0, ‖F(v)‖As . 1 + ‖v‖As . (6.6.6)

with constants independent of v.
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One can then construct EVAL according to (6.6.3) such that the resulting resid-
ual approximation scheme RES is indeed s∗-computable for nonlinearities cov-
ered by the above results. As a consequence the assertions in Theorem 5.11.2
are valid for all such cases.
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Figure 12: Iinput sequence with active coefficients under tree-structure constraints.
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Figure 13: Resulting significant coefficients after application of a nonlinear mapping.

6.7 Can Coarsening be Avoided?

We finally discuss a version of Algorithm 5.10.1 where the use of COARSE is
avoided, see [33] for all details.
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This is done for the restricted problem class of symmetric positive definite
operator representations A = AT . On easily shows that |||v||| :=

(
vTAv

)1/2 is an
equivalent norm on `2(Λ) and

‖A−1‖−1/2‖v‖`2 ≤ |||v||| ≤ ‖A‖1/2‖v‖`2 , v ∈ `2(Λ),

(cf. the energy norm for elliptic problems). For simplicity we abbreviate in what
follows

‖ · ‖`2(Λ) =: ‖ · ‖.
The basic point of view is slightly different. Rather than thinking of a simple

Richardson iteration it was first proposed in [15] to successively solve defect
problems. It can be reinterpreted as a version of the general iteration

un+1 = un + C(f − Aun), n = 0, 1, 2, . . . , (6.7.1)

for the following particular “procedural” preconditioner C. Suppose that v is a
current approximation with finite support, find a possibly small “grown” index
set Γ ⊃ suppv which carries the “bulk” of the residual f−Av, i.e., for some fixed
θ ∈ (0, 1]

‖PΓ(f − Av)‖ ≥ θ‖f − Av‖, (6.7.2)

where PΓw replaces all entries of w outside Γ by zero. Then one can show (using
in particular the energy norm |||·|||) that (see [33, Lemma 1.2])

‖uΓ − v‖ ≤ (1 − κ(A)−1θ2)‖u − v‖, (6.7.3)

where uΓ is the Galerkin solution in `2(Γ)

PΓ(AuΓ) = PΓf.

That means that the increased subspace `2(Γ) ⊂ `2(Λ) provides a Galerkin solu-
tion with strict error decay. This is sometimes referred to as saturation property.

In terms of (6.7.1), this can be interpreted as follows:

1. given un, find Γn+1 ⊃ supp un =: Γn such that (6.7.2) holds;

2. define the finite submatrix

AΓ := (Aλ,λ ′)λ,λ ′∈Γ

and solve the Galerkin problem

AΓw = PΓf ⇔ (Aw)Tv = fTv, v ∈ `2(Γ); (6.7.4)

3. set
un+1 = un + w = un+1 + A−1

Γ PΓ(f − Aun). (6.7.5)
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Thus, the preconditioner C = Cn = A−1
Γ PΓ corresponds to the solution of a

defect problem on the fixed subspace `2(Γ).
The reason why such “support growing” strategy could result in an optimal

complexity is given by the following Lemma from [33].

Lemma 6.7.1. Let θ ∈ (0, κ(A)−1/2), v ∈ `2(Λ) and assume that
u ∈ As = As∞((Σn), `2(Λ) = w`τ(Λ), 1τ = s + 1

2
. Then the smallest set Γ ⊇ supp v

with (6.7.2)
‖PΓ(f − Av)‖ ≥ θ‖f − Av‖

satisfies
#(Γ \ supp v) . ‖f − Av‖−1/s|u|1/s

As . (6.7.6)

This says that the growth-complexity scales with the optimal rate of the cur-
rent error ‖u − v‖ ∼ ‖f − Av‖whenever u ∈ As.

In practice, one cannot determine the optimal growth-set Γn+1 because the
residual is in general infinitely supported. The idea is now to find a near-
optimal growth-set using approximations to f (coarsening a prprocessed array)
and an approximate application of A to the given approximation, using e.g. the
APPLY routine. A successively grown support set is accepted if either the ap-
proximate residual is below a desired threshold or one has found some bulk of
it.

GROW[v, ξ̄, η]→ [Γ, ξ] according to the following steps:

1. choose constants 0 < α < ω, α+ω
1−ω

< κ(A)−1/2, set ζ := 2ωξ̄
1−ω

2. do ζ/2→ ζ, r = COARSE[f, ζ/2] − APPLY[A,v, ζ/2] = RES[A, f,v, ζ]
until ξ := ‖r‖+ ζ ≤ η or ζ ≤ ω‖r‖

3. if ξ > η
determine a set Γ ⊃ supp v with (up to a fixed constant factor) minimal
cardinality such that ‖PΓr‖ ≥ α‖r‖
else Γ = ∅
endif

Obviously, the output depends on the choice of the parameter ξ̄ that should
ideally lie within or is not far from the interval 1−ω

1+ω
‖f−Av‖, ‖f−Av‖, for a more

detailed discussion, see [33, §2]).
One can then show that the estimate ξ for the current residual scales in the

right way, namely
α−ω

1+ω
ξ ≤ ‖PΓ(f − Av)‖, #(Γ \ supp v) . ξ−1/s|u|1/s

As . (6.7.7)

see [33, Theorem 2.4].
The next ingerdient is the approximate solution of the defect problem Aw =

f − Av projected to `2(Γ).
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GALSOLVE[Γ, fΓ ,v, δ, η]→ vΓ

1. set fΓ = PΓf, δ should satisfy δ ≥ ‖fΓ − Av‖
2. Fix a system matrix for Γ : choose J such that the compressed matrix AJ

satisfies
σ := ‖A − AJ‖‖A−1‖ ≤ η

3η+ 3δ

set B := PΓ
1
2
(AJ + AT

J )|`2(Γ)
set r0 := fΓ − PΓ

(
APPLY[A,v, η/3]

)
3. approximately solve Bw = r0, i.e., find w̄ such that ‖r0 − Bw̄‖ ≤ η

3
(e.g.

using conjugate gradients)
set vΓ = v + w̄

With these prerequisites one can formulate the following adaptive scheme.

Algorithm 6.7.1.

1. Fix target accuracy ε > 0 and an estimate ξ−1 for ‖f‖; take the parameters α,ω
as in GROW and choose

γ ∈
(
0,
1

6
κ(A)−1/2

α−ω

1+ω

)
, β > 0

set k = 0, vk = 0

2. while for [Γk+1, ξk] := GROW[vk, βξk−1, ε], ξk > ε, do

fk+1 := PΓk+1
(

COARSE[f, γξk]
)

vk+1 := GALSOLVE[Γk+1, fk+1,vk, (1 + γ)ξk, γξk]

k+ 1→ k

Theorem 6.7.1. [33] Algorithm 6.7.1 terminates with an approximation v̄ to u such
that ‖f − Av̄‖ ≤ ε (hence ‖u − v̄‖ ≤ ‖A−1‖ε). Moreover, when u ∈ As for some
s < s∗ (the compressibility limit of A) then one has

#(supp v̄) . ε−1/s|u|1/sAs

and the number of operations remains bounded by an absolute constant multiple of
ε−1/s|u|1/sAs .

This result can be extended to semi-linear problems but ne needs very fine sti-
mates for the involved constants. As mentioned earlier, a currently hot context
where such methods in coefficient space are very relevant are high dimensional
or parameter dependent PDEs.
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