Prof. Dr. Wolfgang Dahmen - Felix Gruber

Exercise sheet 2 for Friday, Nov 4, 2016

To be handed in either at the beginning of the exercise session, or before Nov 4, 9:55 a.m. at the drop box in front of room 149. You can come to the exercise session on Oct 28, 10:00 a.m. in case you have any questions regarding the lecture or this exercise.

Exercise 6. Let
$$\Omega = [0, 1]$$
,

$$\Sigma_n := \left\{ g \colon \exists \mathcal{P} \text{ partition of } \Omega \colon \# \mathcal{P} \le n, \ g = \sum_{I \in \mathcal{P}} c_I \chi_I \right\},\tag{1}$$

igpm

and $\sigma_n(f) := \inf_{g \in \Sigma_n} \|f - g\|_{L_{\infty}(\Omega)}$. Show that for r > 0, the approximation space

$$\mathcal{A}^r := \mathcal{A}^r \big((\Sigma_n), C(\Omega) \big) := \big\{ f \in C(\Omega) \colon \sup_n n^r \sigma_n(f) < \infty \big\}$$

is a linear space, and that

$$||f||_{\mathcal{A}^r} := ||f||_{L_{\infty}(\Omega)} + |f|_{\mathcal{A}^r},$$

where $|f|_{\mathcal{A}^r} := \sup_n n^r \sigma_n(f)$, is a quasi-norm on \mathcal{A}^r . Recall that to obtain the latter, it needs to be shown that for any $f, g \in \mathcal{A}^r$ and $\lambda \in \mathbb{R}$ we have

$$\|f\|_{\mathcal{A}^r} = 0 \Rightarrow f = 0, \quad \|\lambda f\|_{\mathcal{A}^r} = |\lambda| \|f\|_{\mathcal{A}^r}, \quad \|f + g\|_{\mathcal{A}^r} \le C(\|f\|_{\mathcal{A}^r} + \|g\|_{\mathcal{A}^r})$$

with some C > 0 that may depend on r, but not on f, g.

6 points

Exercise 7. Let $\Omega := [0, 1]$ and

 $W^{1}(L_{1}(\Omega)) := \{ f \in L_{1}(\Omega) : f' \in L_{1}(\Omega) \}, \quad \|f\|_{W^{1}(L_{1}(\Omega))} := \|f\|_{L^{1}(\Omega)} + \|f'\|_{L^{1}(\Omega)}.$

For the following, use without proof that $C^{\infty}(\Omega)$ is dense in $W^1(L_1(\Omega))$, that is, for each $f \in W^1(L_1(\Omega))$ there exists a sequence (f_n) in $C^{\infty}(\Omega)$ such that $||f - f_n||_{W^1(L_1(\Omega))} \to 0$.

(i) Show that every element of $W^1(L_1(\Omega))$ can be identified with a continuous function, and hence we can define

$$V(f,\Omega) := \sup_{0=x_0 < \dots < x_n = 1} \sum_{j=1}^n |f(x_j) - f(x_{j-1})|$$

for $f \in W^1(L_1(\Omega))$.

Hint: Show first that for $g \in C^1(\Omega)$, we have $\sup_{x \in \Omega} |g(x)| \leq ||g||_{W^1(L_1(\Omega))}$, then use this to show that every $f \in W^1(L_1(\Omega))$ is almost everywhere equal to the uniform limit of a sequence of continuous functions.

(ii) Let $f \in W^1(L_1(\Omega))$. Show that $f \in BV(\Omega)$ and

$$V(f,\Omega) = \int_{\Omega} |f'| \, dx$$

Hint: Use approximation by smooth functions. Note that for the integral of a continuous function $g \ge 0$, one has

$$\int_{\Omega} g \, dx = \sup \left\{ \int_{\Omega} \varphi \, dx \colon \varphi \in \Sigma_n \text{ for some } n \text{ such that } 0 \le \varphi \le g \right\}.$$

(iii) Show that $W^1(L_1(\Omega)) \neq BV(\Omega)$ by proving for a suitable element of $BV(\Omega)$ that it cannot have a weak derivative in $L^1(\Omega)$.

3+4+2=9 points

Exercise 8. Let $\Omega := [0, 1], 0 < s < 1$, and $f(x) := x^s$.

- (i) Show that $f \in \operatorname{Lip}(r, C(\Omega))$ if and only if $r \leq s$.
- (ii) Find the largest possible exponent $\alpha > 0$ such that for some C > 0, we have $e_n(f) \leq Cn^{-\alpha}$ for all $n \in \mathbb{N}$, and determine the corresponding C. Give an explicit expression for $\sigma_n(f)$ in terms of n.
- (iii) For $n \in \mathbb{N}$, determine explicitly a piecewise constant function in Σ_n as in (1) for which the minimum error $\sigma_n(f)$ is attained.

2+2+2=6 points