Prof. Dr. Wolfgang Dahmen – Felix Gruber

Exercise sheet 7 for Friday, Dec 9, 2016

To be handed in either at the beginning of the exercise session, or before Dec 9, 9:55 a.m. at the drop box in front of room 149.

Exercise 23. Let \mathbb{X} be a Banach space, and let $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}$ be a Schauder basis of \mathbb{X} for which there exists C>0 such that for any finite $\Gamma\subset\Lambda$, any real sequence $(d_{\lambda})_{{\lambda}\in\Lambda}$ and any sequence $(\varepsilon_{\lambda})_{{\lambda}\in\Lambda}$ with $\varepsilon_{\lambda}\in\{-1,1\}$, we have

$$\left\| \sum_{\lambda \in \Gamma} \varepsilon_{\lambda} d_{\lambda} \psi_{\lambda} \right\|_{\mathbb{X}} \le C \left\| \sum_{\lambda \in \Gamma} d_{\lambda} \psi_{\lambda} \right\|_{\mathbb{X}}.$$

Show that for any finite $\Gamma \subset \Lambda$ and any real sequences (c_{λ}) , (d_{λ}) with $|c_{\lambda}| \leq |d_{\lambda}|$,

$$\left\| \sum_{\lambda \in \Gamma} c_{\lambda} \psi_{\lambda} \right\|_{\mathbb{X}} \le C \left\| \sum_{\lambda \in \Gamma} d_{\lambda} \psi_{\lambda} \right\|_{\mathbb{X}}.$$

Hint: Write each c_{λ} as a convex combination of $-d_{\lambda}$ and d_{λ} , and repeatedly use convexity of the norm.

5 points

Exercise 24. Let $\Omega := [0,1]$ and $V_j := \operatorname{span}\{\chi_{I_{j,k}} \colon k = 0, \dots, 2^j - 1, \ I_{j,k} = [\frac{k}{2^j}, \frac{k+1}{2^j})\}$, where χ_I denotes the indicator function of the interval I. Use without proof that for any $f \in L_2(\Omega)$, we have

$$\lim_{j \to \infty} \inf_{g \in V_j} \|f - g\| \to 0,$$

in order to show that the Haar wavelet basis $\{\psi_{\lambda} \colon \lambda \in \Lambda\}$, where

$$\begin{split} \phi &= \chi_{[0,1]} \,, \quad \psi = \chi_{[0,\frac{1}{2})} - \chi_{[\frac{1}{2},1]} \,, \\ \psi_{-1,0} &= \phi \,, \quad \psi_{j,k} = 2^{j/2} \psi(2^j \cdot -k) \,, \\ \Lambda &= \{ (-1,0) \} \cup \{ (j,k) \colon k = 0, \dots, 2^j - 1 \,, \ j = 0, 1, 2, \dots \} \,, \end{split}$$

is an orthonormal basis of $L_2(\Omega)$.

5 points

Exercise 25. Let $\psi_{j,k}$ be defined as in Exercise 24. Estimate the quantity $|\langle f, \psi_{j,k} \rangle_{[0,1]}|$ when $f \in W^1(L_p((k2^{-j}, (k+1)2^{-j})))$, to see that the wavelet coefficient $|\langle f, \psi_{j,k} \rangle_{[0,1]}|$ is "small" when f is smooth on the support of $\psi_{j,k}$.

Hint: Use that $\psi_{j,k}$ is orthogonal to constants.

5 points

Exercise 26. Let \mathcal{H} be a Hilbert space, and let $\{\psi_{\lambda} : \lambda \in \Lambda\}$ be a Riesz basis of \mathcal{H} . Show that there exist $\tilde{\psi}_{\lambda} \in \mathcal{H}$ such that the following holds: every $f \in \mathcal{H}$ has a unique expansion

$$f = \sum_{\lambda \in \Lambda} \langle f, \tilde{\psi}_{\lambda} \rangle \psi_{\lambda} ,$$

we have $\langle \psi_{\lambda}, \tilde{\psi}_{\nu} \rangle = \delta_{\lambda\nu}$ for any $\lambda, \nu \in \Lambda$, and $\{\tilde{\psi}_{\lambda} : \lambda \in \Lambda\}$ is also a Riesz basis of \mathcal{H} .

6 points