

Exercise sheet 11 for Friday, Jan 20, 2017

To be handed in either at the beginning of the exercise session, or before Jan 20, 9:55 a.m. at the drop box in front of room 149.

Exercise 36. Let \mathbb{X}, \mathbb{Y} be Banach spaces, and let $F: \mathbb{X} \to \mathbb{Y}'$ be a bounded linear operator.

- (i) Show that if there exists $\alpha > 0$ such that $||Fx||_{\mathbb{Y}'} \ge \alpha ||x||_{\mathbb{X}}$ holds for all $x \in \mathbb{X}$, then range $(F) = \{Fx \colon x \in \mathbb{X}\} \subseteq \mathbb{Y}'$ is closed.
- (ii) Show that if F has a bounded inverse F^{-1} and there exists $\alpha > 0$ such that for all $x \in \mathbb{X}$, we have $||Fx||_{\mathbb{Y}'} \ge \alpha ||x||_{\mathbb{X}}$, then $||F^{-1}||_{\mathbb{Y}' \to \mathbb{X}} \le \alpha^{-1}$.

3+2=5 points

Exercise 37. Let $\Omega := (0,1)$ and $\mathbb{X} := H_0^1(\Omega)$, and let $\varepsilon > 0$ and $\beta \in \mathbb{R}$. Let the operator $F : \mathbb{X} \to \mathbb{X}'$ be defined by $\langle Fu, v \rangle = a(u, v)$ for all $u, v \in \mathbb{X}$, where

$$a(u,v) := \varepsilon \int_{\Omega} u' \, v' \, dx + \beta \int_{\Omega} u' \, v \, dx.$$

Show that F is an isomorphism and determine the condition number $||F||_{\mathbb{X}\to\mathbb{X}'}||F^{-1}||_{\mathbb{X}'\to\mathbb{X}}$. Hint: Use integration by parts to show that $a(u,u) > \varepsilon ||u||_{\mathbb{X}}^2$.

5 points

Exercise 38. Let $d \in \mathbb{N}$ and let Ω be a domain in \mathbb{R}^d . Let $a \in L_{\infty}(\Omega)$ with a > 0 a.e. such that $a^{-1} \in L_{\infty}(\Omega)$.

(i) Show that for any $f \in H^{-1}(\Omega) = (H_0^1(\Omega))'$, the variational problem of finding $[q, u] \in L_2(\Omega)^d \times H_0^1(\Omega)$ such that

$$\int_{\Omega} a^{-1}q \cdot r \, dx + \int_{\Omega} r \cdot \nabla u \, dx = 0 \qquad \text{for all } r \in L_2(\Omega)^d,$$
$$\int_{\Omega} q \cdot \nabla v \, dx = -\langle f, v \rangle \qquad \text{for all } v \in H_0^1(\Omega)$$

has a unique solution that depends continuously on f.

(ii) Show that u as in (i) also satisfies

$$\int a\nabla u \cdot \nabla v \, dx = \langle f, v \rangle \quad \text{for all } v \in H_0^1(\Omega) \, .$$

4+3=7 points

Exercise 39. Let $\Omega \subset \mathbb{R}^3$ be a bounded domain and $\mathbb{X} := (H_0^1(\Omega))^3 \times L_2(\Omega)$. Furthermore, let $\nu > 0$. Let the nonlinear operator F on \mathbb{X} be defined by the relation

$$\langle F([u,p]),[v,q]\rangle = \int_{\Omega} \nu \sum_{i=1}^{3} \nabla u_{i} \cdot \nabla v_{i} + p \operatorname{div} v + \sum_{i=1}^{3} (u \cdot \nabla u_{i}) v_{i} + q \operatorname{div} u \, dx \qquad \text{for all } [v,q] \in \mathbb{X}.$$

Show that for any $[u, p] \in \mathbb{X}$, that is, for $u = (u_1, u_2, u_3) \in (H_0^1(\Omega))^3$ and $p \in L_2(\Omega)$, we have $F([u, p]) \in \mathbb{X}'$. Find the Fréchet derivative $DF([u, p]) : \mathbb{X} \to \mathbb{X}'$ and show that DF([u, p]) is bounded for any $[u, p] \in \mathbb{X}$.

Hint: Use the embedding $H_0^1(\Omega) \hookrightarrow L_4(\Omega)$.

5 points