

Exercise sheet 12 for Friday, Jan 27, 2017

To be handed in either at the beginning of the exercise session, or before Jan 27, 9:55 a.m. at the drop box in front of room 149.

Exercise 40.

(i) Let $\Omega = (0, 1)$. Consider the variational formulation

$$\begin{cases} \text{Find } u \in H_0^1, \text{ such that} \\ \langle Au, v \rangle = \langle f, v \rangle & \forall v \in \mathbb{U} = H_0^1(\Omega) \end{cases}$$

of the Poisson problem $(-\Delta u = f \text{ in } \Omega, u = 0 \text{ on } \partial\Omega)$. Let \mathbf{A}_h denote the standard FE stiffness matrix for a Galerkin discretization with respect to a finite element space on a uniform mesh with mesh size $h=2^{-n}$. How does $\kappa_2(\mathbf{A}_h)$ grow with decreasing mesh size h?

(ii) Suppose you have a Riesz basis Ψ for $H_0^1(\Omega)$. For any $\Lambda_h \subset \Lambda$, $\#\Lambda_h = N$, let $\Psi_{\Lambda_h} = \{\psi_{\lambda} : \lambda \in \Lambda_h\} \subset \Lambda$ $H_0^1(\Omega)$. Let $\mathbb{U}_{\Lambda_h} = \operatorname{span}\{\psi_{\lambda} : \lambda \in \Lambda_h\} \subset \mathbb{U}$ and use this as a trial space for the Galerkin scheme. Let $A_h^{\Psi} = (a(\psi_{\nu}, \psi_{\lambda}))_{\lambda, \nu \in \Lambda_h} \in \mathbb{R}^{N \times N}$ be the corresponding stiffness matrix where the bilinear form $a:\mathbb{U}\times\mathbb{U}\to\mathbb{R}$ satisfies the mapping property (MP). Show that

$$\kappa_2(A_h^{\Psi}) \le \frac{C_a C_{\Psi}^2}{c_a c_{\Psi}^2}.$$

4+2 points

Exercise 41.

(i) Let the nonlinear problem

$$\langle F(u), v \rangle = \langle f, v \rangle \quad \forall v \in \mathbb{U}$$

be stable, i. e. there exists a neighborhood $\mathcal{N}(u)$ of the solution u, such that for all $w \in \mathcal{N}(u)$

$$c_w \|z\|_{\mathbb{U}} \le \|DF(w)z\|_{\mathbb{V}'} \le C_w \|z\|_{\mathbb{U}} \qquad \forall z \in \mathbb{U}$$

holds. Show that one obtains

$$c_w c_{\Psi}^2 \|\mathbf{v}\|_{\ell_2} \le \|D\mathbf{F}(\mathbf{w})\mathbf{v}\|_{\ell_2} \le C_w C_{\Psi}^2 \|\mathbf{v}\|_{\ell_2} \qquad \forall \mathbf{v} \in \ell_2(\Lambda)$$

for all w in the stability region $\mathcal{N}(u)$.

(ii) Identify $D\mathbf{F}(\mathbf{w})\mathbf{v}$ and specify this for $F(v) = v^3$.

2+3 points

Exercise 42. Let $n \in \mathbb{N}$ and let $A \in \mathbb{R}^{n \times n}$ be symmetric with $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^T$, where $\mathbf{V} \in \mathbb{R}^{n \times n}$ is orthogonal with columns v_i , i = 1, ..., n, and $\mathbf{D} = \operatorname{diag}(\lambda_i)_{i=1,...,n}$. Let $\mathbf{f}, \mathbf{u}_0 \in \mathbb{R}^n$ and

$$\mathbf{u}_{k+1} := \mathbf{u}_k - \alpha(\mathbf{A}\mathbf{u}_k - \mathbf{f}), \quad k \in \mathbb{N}_0.$$

- (i) Let $0 < \lambda_1 \le \ldots \le \lambda_n$, and let $\mathbf{u} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{u} = \mathbf{f}$. Determine the range of $\alpha > 0$ such that for some $\rho > 0$, we have $\|\mathbf{u} - \mathbf{u}_{k+1}\|_2 \le \rho \|\mathbf{u} - \mathbf{u}_k\|_2$ for all \mathbf{f} and \mathbf{u}_0 . Find the α for which ρ is minimal.
- (ii) For some 0 < m < n, let $0 = \lambda_1 = \ldots = \lambda_m < \lambda_{m+1} \leq \ldots \leq \lambda_n$. Let $\mathbb{V}_0 := \operatorname{span}\{v_1, \ldots, v_m\}$, and let $\mathbf{f}, \mathbf{u}_0 \in \mathbb{V}_0^{\perp}$. Let $u \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{u} = \mathbf{f}$, and let \mathbf{u}_{\perp} denote the orthogonal projection of \mathbf{u} onto \mathbb{V}_0^{\perp} . As in (i), find $\alpha > 0$ such that ρ in the estimate $\|\mathbf{u}_{\perp} - \mathbf{u}_{k+1}\|_2 \le \rho \|\mathbf{u}_{\perp} - \mathbf{u}_{k}\|_2$ is minimal.
- (iii) For some 0 < m < n, let $\lambda_1 \leq \ldots \leq \lambda_m < 0 < \lambda_{m+1} \leq \ldots \leq \lambda_n$. Show that if $\alpha \neq 0$, there exist \mathbf{u}_0 such that $\|\mathbf{u}_k\|_2 \to \infty$.