Testaufgaben zur Numerischen Mathematik I für Maschinenbauer, SS 99

Aufgabe 7

(entspricht etwa je einer Klausuraufgabe)
Bestimme für das Intervall $[0,1.5]$ die Nullstelle (n) von $f(x)=\tan (x-0.5)$ mittels Bisektion, Fixpunktverfahren, Newton-Verfahren und Sekantenverfahren bis auf einen absoluten Fehler von 0.01.
Prüfe beim Fixpunktverfahren die Voraussetzungen nach und führe a-priori und a-posteriori Abschätzungen durch.

Aufgabe 8

(umfangreicher als eine Klausuraufgabe)
Bestimme eine Näherungslösung des Gleichungssystems

$$
\begin{aligned}
\sin x+e^{y}-9 y & =0 \\
e^{-y^{2}}-\cos x+7 x & =0
\end{aligned}
$$

im Bereich $D=[-1,1] \times[-1,1]$.
a) Wieviele Iterationen sind mit dem Fixpunktverfahren höchstens erforderlich, um eine Genauigkeit (welche Norm?) von $\varepsilon=0.5 \cdot 10^{-2}$ zu erreichen? Wie groß ist der Fehler (höchstens) nach der 2. Iteration?
b) Verbessere die in a) gewonnene Näherung mittels 2 Schritten des (vereinfachten) Newton-Verfahrens.
c) Führe nun einen weiteren Schritt des Fixpunktverfahrens durch und gib erneut eine a-posteriori Fehlerabschätzung an.

Aufgabe 9

Die Funktion $f(x)=e^{-x^{2}}$ ist als Tabelle gegeben.

x	0.0	0.2	0.4	0.6	0.8	1.0
$f(x)$	1.0	0.96079	0.85214	0.69768	0.52729	0.36788

a) Berechne einen möglichst guten Näherungswert für $f(0.5)$ mit dem Neville-Aitken-Schema unter Benutzung von vier Tabellenwerten und gib eine Fehlerabschätzung an.
b) Berechne einen möglichst guten Näherungswert für $f(0.1)$ durch eine Newton-Interpolation vom Grad 3. Gib eine Fehlerabschätzung an.

