Aufgabe 10 (Lineare Gleichungssysteme): Gegeben seien

$$A = \begin{pmatrix} 1 & 11 & 11/3 \\ 3/2 & 9 & 8 \\ 3 & 6 & 2 \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} -3 \\ 8 \\ 18 \end{pmatrix}.$$

- a) Berechnen Sie die LR-Zerlegung von A mit Pivotisierung, und lösen Sie damit das lineare Gleichungssystem Ax=b.
- b) Schätzen Sie den relativen Fehler in x in der Maximumnorm ab, falls die rechte Seite b durch einen gestörten Vektor \tilde{b} mit $\|b \tilde{b}\|_{\infty} \leq 10^{-3}$ ersetzt wird. Es ist $\|A^{-1}\|_{\infty} = 17/27$.
- c) Was versteht man unter "Diagonalskalierung", und welchen Effekt erzielt man damit?

4+1+2 Punkte

Aufgabe 11 (Nichtlineare Gleichungen):

a) Zeigen Sie mit Hilfe des Banachschen Fixpunktsatzes, daß die Gleichung

$$x^2 + \frac{\cos(x)}{2} = 1.$$

genau eine positive Lösung besitzt.

b) Führen Sie zwei Schritte der Fixpunkt-Iteration aus a) mit einem geeigneten ganzzahligen Startwert durch, und geben Sie die a-priori- und a-posteriori-Fehlerabschätzung für den zweiten Iterationswert an.

4 + 4 Punkte

Aufgabe 12 (Lineare Ausgleichsrechnung):

Die Parameter a, b der Funktion

$$f(t) = at + be^{\frac{|t|}{\sqrt{2}}}$$

sollen im Sinne der kleinsten Fehlerquadrate optimal an folgende Messdaten angepasst werden:

- a) Formulieren Sie das entsprechende lineare Ausgleichsproblem.
- b) Lösen Sie das Ausgleichsproblem mittels Givens-Rotationen, ohne zu den Normalgleichungen überzugehen. Geben Sie sowohl die Lösung als auch das Residuum an. Führen Sie die Rechnung mit mindestens 4 Dezimalstellen Genauigkeit aus.

2 + 5 Punkte

Aufgabe 13 (Polynominterpolation):

Von der Funktion $f(x) = \sin(x)e^x$ sind die folgenden Funktionswerte bekannt:

	i	1	2	3	4	5
	x_i	0.1	0.2	0.4	0.7	1.1
\overline{f}	$\overline{(x_i)}$	0.11033	0.24266	0.58094	1.2973	2.6773

- a) Werten Sie mit Hilfe des Neville-Aitken-Schemas das Interpolationspolynom $P(f|x_2, x_3, x_4)$ an der Stelle x = 0.5 aus.
- b) Schätzen Sie den Interpolationsfehler $P(f|x_1,x_2,x_3)(x)-f(x)$ im Punkt x=0.15 möglichst scharf ab.

3 + 3 Punkte