RHEINISCH WESTFÄLISCHE TECHNISCHE HOCHSCHULE

Institut für Geometrie und Praktische Mathematik

Numerische Mathematik für Elektrotechniker — WS 19/20

Prof. Dr. Benjamin Berkels
Dr. Karl-Heinz Brakhage — Thomas Jankuhn — Christian Löbbert

Hausübung 3

VF-1: Gegeben seien eine reguläre Matrix $A \in \mathbb{R}^{n \times n}$ und eine rechte Seite $b \in \mathbb{R}^n$. Dann gilt für das zugehörige lineare Gleichungssystem Ax = b:

- 1. Das Problem ist immer gut konditioniert.
- 2. Bei Störung der Eingabedaten A und b wird der relative Fehler in der Lösung in Abhängigkeit vom relativen Eingabefehler durch den Faktor $\kappa(A)$ verstärkt.
- 3. Die Lösung des linearen Gleichungssystems kann immer mit dem Standard-Gauß-Algorithmus (ohne Spaltenpivotisierung) berechnet werden.
- 4. Es sei B die zu A gehörige zeilenäquilibrierte Matrix. Dann gilt $\kappa_2(B) \leq \kappa_2(A)$.
- 5. Es seien $A = \begin{pmatrix} -2.34 & 14.4 \\ 5.67 & 6.78 \end{pmatrix}$ und B die zu A gehörige zeilenäquilibrierte Matrix. Berechne $||B||_{\infty}$.

VF-2: Aus der Matrix
$$\tilde{A} \in \mathbb{R}^{2\times 2}$$
 gehe die Matrix $A = \begin{pmatrix} 123 & 0.12 \\ 1.23 & 12.3 \end{pmatrix}$ durch Rundung auf

drei signifikante Ziffern hervor. ΔA sei die größtmögliche Abweichung $A-\tilde{A}$. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!

- 1. $||\Delta A||_1 = 0.505.$
- 2. $| ||\Delta A||_{\infty} = 0.505.$
- 3. Für den relativen Fehler von A gemessen in der 1-Norm gilt $r_{A_1} \approx 0.004$.
- 4. Berechne $||A||_1$.
- 5. Berechne $||A||_{\infty}$.

1	VF-3: Gegeben sei die Matrix $A = \begin{pmatrix} -2 & 14 \\ 5 & 6 \end{pmatrix}$. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!		
1.	A ist regulär.		
2.	$\det(A) = 0.$		
3.	$ A _{\infty} = 12.$		
4.	Für eine beliebige rechte Seite $b \in \mathbb{R}^2$ besitzt $Ax = b$ eine eindeutige Lösung x .		
5.	Berechne $ A _1$.		

VF-4: Seien A, B beliebige $n \times n$ -Matrizen mit reellen Einträgen. Weiter sei $||\cdot||$ eine Matrixnorm. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an.

1. $||A + B|| \le ||A|| + ||B||$.

2. $||A - B|| \le ||A|| - ||B||$.

3. $||\lambda A + \mu B|| \le \lambda ||A|| + \mu ||B||, \lambda, \mu \in \mathbb{R}$.

4. $||AB|| \le ||A|| \cdot ||B||$.

5. Es sei $A = \begin{pmatrix} 8 & 1 \\ 1 & 0.5 \end{pmatrix}$. Berechne $\det(A^4)$.

VF-5: Es seien A eine reguläre Matrix, L eine normierte untere Dreiecksmatrix und R eine obere Dreiecksmatrix in $\mathbb{R}^{n \times n}$. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!

1. Es existiert immer eine Zerlegung A = LR.

2. Die Determinante von A ist ungleich 0.

3. Wenn A = LR ist, dann ist die Determinante von A das Produkt der Diagonaleinträge von R. $(\det(A) = \prod_{i=1}^{n} r_{ii})$ 4. Das homogone System Ax = 0 besitzt nur die triviale Lösung x = 0.

5. Es seien $A = \begin{pmatrix} 1.7 & -2.1 & 1.2 \\ -1.5 & 1.1 & 1.4 \\ 2.2 & 1.3 & -1.5 \end{pmatrix}$ und D die zugehörige Diagonalmatrix der Zeilenskalierung. Berechne $\det(D)$.

	ch Pivotisierung kann die Stabilität der LR-Zerlegung verbessert werden.
1. Dur	ten i ivotisierung kann die Stabilität der Ent-Zeriegung verbessert werden.
2. Pive	otisierung verbessert die Kondition des linearen Gleichungssystems.
3. Zeil	enäquilibrierte Matrizen sind immer gut konditioniert.
b ist	sei $\kappa(A)$ die Konditionszahl der Matrix A . Bei Störung der Eingabedaten A und t der relative Fehler in der Lösung maximal um einen Faktor $\kappa(A)$ größer als der tive Eingabefehler.
	seien $A = \begin{pmatrix} -10 & 0 \\ 0 & 2 \end{pmatrix}$, $\tilde{A} = \begin{pmatrix} -10.5 & 0 \\ 0 & 1.5 \end{pmatrix}$ und b ungestört. Gib die bestmögliche ranke für den relativen Fehler r_x der Lösung des linearen Gleichungssystems an.

Aufgabe: (Choleskey-Zerlegung)

Gegeben seien die Choleskey-Zerlegung $A = LDL^T$ und der Vektor b mit

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 2 & 0 & 2 & 1 \end{pmatrix}, D = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ und } b = \begin{pmatrix} 2 \\ 5 \\ 36 \\ 36 \end{pmatrix}.$$

- a) Lösen Sie das lineare Gleichungssystem Ax = b mit Hilfe der angegebenen Choleskey-Zerlegung von A.
- b) Bestimmen Sie die Determinante von A.
- c) Bestimmen Sie die Choleskey-Zerlegung von

$$B := R^T R \qquad \text{mit } R^T = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 8 & 3 & 2 \end{pmatrix}.$$

d) Ist B symmetrisch positiv definit?