Aufgabe 1 (11 Punkte)

Gegeben sei das lineare Gleichungssystem $A \cdot x = b$ mit

$$A = \begin{pmatrix} \cos(1) & \sin(1) & 0 \\ -\sin(1) & \cos(1) & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{und} \quad b = \begin{pmatrix} 5.01 \\ 0 \\ 2 \end{pmatrix}.$$

- a) Bestimmen Sie die Kondition $\kappa_{\infty}(A)$ der Matrix. Ist A gut oder schlecht konditioniert?
- b) Mit welchem relativen Fehler in x (in der ∞ -Norm) muß man rechnen, wenn statt des ursprünglichen Gleichungssystems $A \cdot x = b$ das gestörte Gleichungssystem $\tilde{A}x = \tilde{b}$ gelöst wird, wobei \tilde{A} und \tilde{b} Störungen von A bzw. b mit einem relativen Fehler von maximal 1% sind?
- c) Lösen Sie $A \cdot x = b$ mittels Gaußelimination mit Pivotisierung in 3-stelliger Gleitpunktarithmetik.

Aufgabe 2 (9 Punkte)

Gegeben seien folgende Stützstellen x_i und Meßwerte y_i

$$\begin{array}{c|cccc} x_i & 0 & 0.5 & 2 \\ \hline f_i & 4 & 2.5 & 2 \end{array}.$$

Aus theoretischen Überlegungen geht hervor, daß diese Meßdaten einer Funktion

$$f(x) = \frac{1}{x + 2 \cdot a} + b$$

genügen. Bestimmen Sie die Parameter a und b optimal im Sinne der kleinsten Fehlerquadrate. Formulieren Sie dazu das entsprechende nichtlineare Ausgleichsproblem, und führen Sie ausgehend vom Startwert $(a_0, b_0) = (0.25, 1.5)$ einen Gauß-Newton-Schritt durch. Berechnen Sie anschließend das Residuum. **Hinweis:** Lösen Sie das auftretende lineare Ausgleichsproblem mittels Normalgleichungen.

Aufgabe 3 (11 Punkte)

Die Funktion $f(x) = \sqrt{2x+1}$ ist als Tabelle gegeben.

- a) Berechnen Sie mittels eines Polynoms 2. Grades eine möglichst gute Näherung für f(5). Stellen Sie das Polynom nicht explizit auf, sondern verwenden Sie das Neville–Aitken Schema.
- b) Berechnen Sie das Newton'sche Interpolationspolynom vom Grad 3. Werten Sie es an der Stelle $\bar{x}=3$ mit dem hornerartigen Schema aus, und geben Sie speziell für diese Stelle eine möglichst gute Fehlerabschätzung an.
- c) Sei p(x) das Interpolationspolynom von f unter Benutzung aller Tabellenwerte. Wie groß wird der Fehler |f(x) p(x)| im Intervall [0, 7.5] maximal?

Hinweis: Das Knotenpolynom $\omega(s) = \prod_{i=0}^{3} (s - x_i)$ hat folgende Extremstellen: $s_0 = 0.62888$, $s_1 = 2.8547$, $s_2 = 6.2664$.

Aufgabe 4 (9 Punkte)

Gegeben sei das Anfangswertproblem

$$y'(t) = y^2(t) - 5t,$$
 $y(1) = 2.$

- a) Berechnen Sie mit dem expliziten Euler–Verfahren zur Schrittweite $h=\frac{1}{2}$ eine Näherung zu y(2).
- b) Berechnen Sie mit dem impliziten Euler-Verfahren zur Schrittweite $h=\frac{1}{2}$ eine Näherung zu y(2). **Hinweis:** Die in jedem Zeitschritt zu lösende quadratische Gleichung in y_{k+1} besitzt jeweils zwei reelle Lösungen. Nehmen Sie jeweils diejenige Lösung, die am nächsten zur vorhergehenden Approximation y_k liegt.
- c) Geben Sie eine geometrische Veranschaulichung für das implizite Euler-Verfahren.