Aufgabe 1

Es sei $\lambda \in \mathbb{R}$ eine Konstante, sowie

$$(2+1+1+1+1=6 \text{ Punkte})$$

$$A = \begin{pmatrix} 4 & 0 & 2 \\ 12\lambda & 1 & 6\lambda + 1 \\ 0 & 2\lambda & 2\lambda + 1 \end{pmatrix}.$$

1a) Bestimmen Sie die LR-Zerlegung ohne Pivotisierung von A und geben Sie $\sum_{i,j} L_{i,j}$ an.

	A	1		l				Н		
$\sum_{i,j} L_{i,j}$	6	$3+5\lambda$	7λ	0	-1	3	2	$1+4\lambda$	-5λ	7

LR-Zerlegung:

$$\begin{pmatrix} 4 & 0 & 2 \\ 12\lambda & 1 & 6\lambda + 1 \\ 0 & 2\lambda & 2\lambda + 1 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 4 & 0 & 2 \\ \hline 3\lambda & 1 & 1 \\ 0 & 2\lambda & 2\lambda + 1 \end{pmatrix} \xrightarrow{\text{Gauss}} \begin{pmatrix} 4 & 0 & 2 \\ \hline 3\lambda & 1 & 1 \\ 0 & 2\lambda & 1 \end{pmatrix}$$

also

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 3\lambda & 1 & 0 \\ 0 & 2\lambda & 1 \end{pmatrix}, \qquad R = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \longrightarrow \sum_{i,j} L_{i,j} = 3 + 5\lambda.$$

Es seien nun

$$\tilde{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0.25 & 1 & 0 \\ 0.5 & 0.81 & 1 \end{pmatrix}, \quad \tilde{R} = \begin{pmatrix} 0.9 & 0.1 & 0.1 \\ 0 & -0.53 & 0.38 \\ 0 & 0 & -0.09 \end{pmatrix}$$

Dabei sind \tilde{L} und \tilde{R} die Matrizen der LR-Zerlegung von B, d.h. $B = \tilde{L}\tilde{R}$.

1b) Berechnen Sie det(B) in **zweistelliger** Gleitpunktarithmetik.

	A	В	C	D	Е	F	G	Н	I	J
det(B)	0.023	0.043	0.0432	0.02	0.04	0.2	3	0.4	1.5	0.026

Es gilt

$$\det(B) = \det(\tilde{L}\,\tilde{R}) = \det(\tilde{L}) \cdot \det(\tilde{R}) = 1 \cdot (0.9 \cdot 0.53 \cdot 0.09) = 0.48 \cdot 0.09 = 0.043.$$

Es seien nun

$$\hat{L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & -1/2 & 1 \end{pmatrix}, \ \hat{R} = \begin{pmatrix} 16 & \alpha + 4 & -4 \\ 0 & 2\alpha & 8 \\ 0 & 0 & \alpha - 3 \end{pmatrix}, \ P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ b = \begin{pmatrix} 0 \\ -4\alpha \\ -32 \end{pmatrix}$$

mit $\alpha \in \mathbb{R}$. Dabei sind \hat{L} , \hat{R} und P die Matrizen der LR-Zerlegung von C, d.h. $PC = \hat{L}\hat{R}$. Wir lösen das Gleichungssystem Cx = b mittels Vorwärts- und Rückwärtseinsetzen.

1c) Für welche $\alpha \in \mathbb{R}$ ist Cx = b nicht oder nicht eindeutig lösbar?

	A	В	С	D	E	F	G	Н	I	J
α	-4 und 0	3 und 0	2	5	0	-4 und 1	1 und 2	8	-4	1

Für $\alpha \in \{3,0\}$ ist C nicht invertierbar, $\det(C) = \det(\hat{R}) = 16 \cdot 2\alpha \cdot (\alpha - 3)$.

1d) Bestimmen Sie mittels Vorwärtseinsetzen y_3 , wobei $\hat{L}y = Pb$ gilt.

	A	В	С	D	Е	F	G	Н	I	J
y_3	$9-4\alpha$	$-4 \alpha - 16$	-32	12	$8\alpha - 48$	-4α	1	$4\alpha - 32$	$-8\alpha - 4$	-16α

Vorwärtseinsetzen:

$$\hat{L}y = Pb \longrightarrow \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & -32 \\ 1/2 & -1/2 & 1 & | & -4\alpha \end{pmatrix} \downarrow \longrightarrow \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -32 \\ -4\alpha - 16 \end{pmatrix}.$$

1e) Eine andere rechte Seite führt auf $y=(0,-32,-4\alpha+12)^T$. Bestimmen Sie mittels Rückwärtseinsetzen $\sum_i x_i$, wobei $\hat{R}x=y$ gilt. Dabei nehmen wir an, dass C invertierbar ist.

	A	В	С	D	E	F	G	Н	I	J
$\sum_{i} x_{i}$	5	-5	-2	-4	3α	3	1	8	$-\alpha - 1$	-6α

Rückwärtseinsetzen ($\alpha + 4 \neq 0$ und $2\alpha \neq 0$):

$$\hat{R}x = y \longrightarrow \begin{pmatrix} 16 & \alpha + 4 & -4 & | & 0 \\ 0 & 2\alpha & 8 & | & -32 \\ 0 & 0 & \alpha - 3 & | & -4\alpha + 12 \end{pmatrix} \uparrow \longrightarrow x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -4 \end{pmatrix}.$$

Aufgabe 2 (1+1+2=4 Punkte)

Wir betrachten das lineare Ausgleichsproblem

$$||Ax - b||_2 = \min_{y \in \mathbb{R}^n} ||Ay - b||_2$$

für eine Matrix $A \in \mathbb{R}^{4 \times 2}$ und Daten $b = (1, 0, 1, 0)^T \in \mathbb{R}^4$. Von der Matrix sei die QR-Zerlegung A = QR bekannt mit

$$Q = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 & 0 & 1\\ 0 & -1 & 1 & 0\\ 0 & 1 & 1 & 0\\ -1 & 0 & 0 & 1 \end{pmatrix} \quad \text{und} \quad R = \begin{pmatrix} 2 & 4\\ 0 & 3\\ 0 & 0\\ 0 & 0 \end{pmatrix}.$$

2a) Lösen Sie das lineare Ausgleichsproblem mithilfe der QR-Zerlegung. Geben Sie x_1 an.

	A	В	С	D	E	F	G	Н	I	J
x_1	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{2}}{12}$	$-\frac{\sqrt{2}}{6}$	$\frac{\sqrt{2}}{6}$	3	$\sqrt{2}$	2	$-\sqrt{2}$	1	4

Berechne

$$Q^T b = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Löse anschließend $\tilde{R} x = b_1$, also

$$\begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix} x = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \Rightarrow \qquad x = \frac{\sqrt{2}}{6} \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} -0.117851 \\ 0.235702 \end{pmatrix}.$$

2b) Geben Sie die Norm des Residuums $||Ax - b||_2$ an.

								Н		
$ Ax-b _2$	2	1	9	$2\sqrt{3}$	$\sqrt{2}$	$3\sqrt{2}$	$2\sqrt{2}$	$2\sqrt{6}$	0	6

Das Residuum ist durch $||b_2||_2 = 1$ gegeben.

Wir betrachten nun das Ausgleichsproblem $x^* = \operatorname{argmin}_{x \in \mathbb{R}} \|Bx - c\|_2$ mit

$$B = \begin{pmatrix} 24 \\ 0 \\ -10 \end{pmatrix}, \quad c = \begin{pmatrix} -58 \\ -6 \\ -4 \end{pmatrix}.$$

Die Lösung ist $x^* = -2$.

2c) Wie groß darf der absolute Fehler $\|\tilde{c} - c\|_2$ von c höchstens sein, damit der relative Fehler in x, ebenfalls gemessen in der $\|\cdot\|_2$ -Norm, nicht größer als 5 Prozent ist?

	A	В	С	D	E	F	G	Н	I	J
$\ \tilde{c} - c\ _2 \le$	1.56	2.6	-1	1.6	1.2	2.45	1.5	1	0.4	0.35

Die Formeln stehen in der Formelsammlung.

Hier ist $(0 \neq x \in \mathbb{R}) \|Bx\|/\|x\| = |x| \|(24, 0, -10)^T\|/|x| = \|(24, 0, -10)^T\|$, also $\kappa_2(B) = 1$. Weiter ist $\|Bx^*\|_2 = 52$ und wir erhalten

$$\frac{\kappa_2(B)}{\cos(\Theta)} \frac{\|\tilde{c} - c\|_2}{\|c\|_2} = \frac{\kappa_2(B)}{\|Bx^*\|_2} \|\tilde{c} - c\|_2 = \frac{1}{52} \|\tilde{c} - c\|_2 \stackrel{!}{\leq} 0.05.$$

Also muss gelten

$$\|\tilde{c} - c\|_2 \le 2.6.$$

Aufgabe 3

(1+1+2+1+1+1+2=9 Punkte)

Gegeben sei die 2D-Fixpunktgleichung

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{4} x (2 - x) y (2 - y) \\ \frac{1}{4} (4 + x - y) \end{pmatrix} =: F(x, y) = F(\mathbf{x}) .$$

Zeigen Sie: Für $D = [0.2, 1.8] \times [0.2, 1.8]$ gilt $F(D) \subset \tilde{D} = I_x \times I_y$. Bestimmen Sie ein möglichst kleines \tilde{D} .

3a) Geben Sie I_x an

		A	В	С	D	E	F	G	Н	I	J
-	I_x	[1.0648, 1.5]	[1.0324, 1.25]	[1, 1]	[1.05, 1.5]	[1.2, 1.8]	[1, 1.5]	[1.1, 1.25]	[1.25, 2]	[1.3, 1.7]	[1.2, 1.5]

3b) Geben Sie I_y an

		A	В	\mathbf{C}	D	E	F	G	Н	I	J
1	y	[0.3, 0.7]	[0.6, 1.4]	[0.2, 1]	[0.2, 2]	[0.3, 0.8]	[0.2, 0.7]	[0.2, 0.5]	[0.6, 2]	[0.3, 0.9]	[0.2, 1.4]

Wegen $(x,y) \in [0.2,1.8]^2$ gilt $x(2-x) \in [0.2 \cdot 1.8,1] = [0.36,1]$ und $y(2-y) \in [0.36,1]$ (Parabeln der Form $(x-x_0)(x-x_1)$ haben ihr Extremum an der Stelle $(x_0+x_1)/2$) sowie $x-y \in [0.2-1.8,1.8-0.2] = [-1.6,1.6]$. Daraus folgt

$$1.0324 = 1 + \frac{0.36^2}{4} \le F_1(x, y) = 1 + \frac{x(1-x)y(1-y)}{4} \le 1 + \frac{1^2}{4} = 1.25$$
$$0.6 = \frac{1}{4}(4 + (-1.6)) \le F_2(x, y) = \frac{1}{4}(4 + x - y) \le \frac{1}{4}(4 + 1.6) = 1.4.$$

Insgesamt gilt also $F(D) \subset E \Rightarrow F$ ist selbstabbildend auf $\subset D$.

3c) D ist **konvex** und F ist stetig differenzierbar. Wir dürfen die Kontraktivität also durch Abschätzung einer Norm von F' auf D nachweisen. Bestimmen Sie eine möglichst kleine Kontraktionszahl L, indem Sie in der Jacobi-Matrix alle einzelnen Komponenten, die nur von x bzw. y abhängen betragsmäßig nach oben abschätzen. Verwenden Sie die 1-Norm.

	A	В	С	D	Е	F	G	Н	I	J
L	0.925	0.65	0.6195	0.825	0.625	0.4	0.9	0.95	0.85	0.8

Als Jacobi-Matrix ergibt sich

$$F'(x,y) = \begin{pmatrix} \frac{1}{2}y(2-y)(1-x) & \frac{1}{2}x(2-x)(1-y) \\ \frac{1}{4} & -\frac{1}{4} \end{pmatrix}.$$

Wegen $(x, y) \in D = [0.2, 1.8]^2$ gilt (s.o.) $x(2-x) \in [0.36, 1]$ und $y(2-y) \in [0.36, 1]$ sowie $1-x \in [-0.8, 0.8]$ und $1-y \in [-0.8, 0.8]$ so dass wir durch elementweise Betragsabschätzung (zulässig in der $\|\cdot\|_1$ - und $\|\cdot\|_\infty$ -Norm, nicht jedoch in der $\|\cdot\|_2$ -Norm) erhalten:

$$||F'(\mathbf{x})||_1 \le \left\| \begin{pmatrix} 0.4 & 0.4 \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} \right\|_1 =: ||F'_{max}||_1.$$

(Hier könnten wir auch die ∞ -Norm verwenden, denn $||F'_{max}||_{\infty} = 0.8$!!). Es ist $||F'_{max}||_{1} = 0.65 =: L$; d.h. F ist kontraktiv auf D.

3d) Berechnen Sie ausgehend vom Startwert $\mathbf{x}^0 = (1,1)^T$ die ersten beiden Iterierten \mathbf{x}^1 und \mathbf{x}^2 und dann damit $\|\mathbf{x}^2 - \mathbf{x}^1\|_1$.

	A	В	С	D	Е	F	G	Н	I	J
$\ \mathbf{x}^2 - \mathbf{x}^1\ _1$	0.34375	0.078125	0.39934	0.11205	0.18667	0.44280	0.70565	0.34655	0.1	0.25

$$\mathbf{x}^{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \to \mathbf{x}^{1} = F(\mathbf{x}^{0}) = \begin{pmatrix} 1.25 \\ 1 \end{pmatrix} \to \mathbf{x}^{2} = F(\mathbf{x}^{1}) = \begin{pmatrix} 1.23438 \\ 1.0625 \end{pmatrix}$$
$$\to \mathbf{x}^{2} - \mathbf{x}^{1} = \begin{pmatrix} -0.015625 \\ 0.0625 \end{pmatrix} \to \|\mathbf{x}^{2} - \mathbf{x}^{1}\|_{1} = 0.078125$$

$$\mathbf{x}^1 = F(\mathbf{x}^0) = \begin{pmatrix} 5/4 \\ 1 \end{pmatrix} \ \rightarrow \ \mathbf{x}^2 = F(\mathbf{x}^1) = \begin{pmatrix} 79/64 \\ 17/16 \end{pmatrix} \rightarrow \ \mathbf{x}^2 - \mathbf{x}^1 = \begin{pmatrix} -1/64 \\ 1/16 \end{pmatrix} \ \rightarrow \ \|\mathbf{x}^2 - \mathbf{x}^1\|_1 = 5/64 = 0.078125$$

Zu einem anderen Startwert erhält man $\|\mathbf{x}^1 - \mathbf{x}^0\|_1 = 0.85$ und $\|\mathbf{x}^2 - \mathbf{x}^1\|_1 = 0.25$ bei einer Kontraktionszahl L = 0.6 in der 1-Norm.

3e) Geben Sie eine a-priori-Fehlerabschätzung für \mathbf{x}^2 unter Verwendung der $\|\cdot\|_1$ -Norm an.

		A	В	С	D	Е	F	G	Н	I	J
$\ \mathbf{x}^2 - \mathbf{x}^*\ $	$ _1 \le$	1.47	0.765	0.39934	0.11205	0.18667	0.44280	0.70565	0.34655	0.1	0.25

Es ist $\|\mathbf{x}^1 - \mathbf{x}^0\|_1 = 0.85$ sowie L = 0.6 und somit gemäß a-priori-Abschätzung

$$\|\mathbf{x}^2 - \mathbf{x}^*\|_1 \le \frac{L^2}{1 - L} \|\mathbf{x}^1 - \mathbf{x}^0\|_1 = \frac{0.6^2}{1 - 0.6} \cdot 0.85 = 0.765$$
.

3f) Geben Sie eine a-posteriori-Fehlerabschätzung für \mathbf{x}^2 unter Verwendung der $\|\cdot\|_1$ -Norm an.

	A	В	C	D	E	F	G	Н	I	J
$\ \mathbf{x}^2 - \mathbf{x}^*\ _1 \le$	0.77	0.375	0.39934	0.11205	0.18667	0.44280	0.70565	0.34655	0.1	0.25

Es ist $\|\mathbf{x}^2-\mathbf{x}^1\|_1=0.25$ und somit gemäß a-posteriori-Abschätzung

$$\|\mathbf{x}^2 - \mathbf{x}^*\|_1 \le \frac{L}{1-L} \|\mathbf{x}^2 - \mathbf{x}^1\|_1 = \frac{0.6}{1-0.6} \cdot 0.25 = 0.375$$
.

3g) Wieviele Iterationen n sind für diesen Startwert mit dem Fixpunktverfahren höchstens erforderlich, um bezüglich der 1-Norm eine Genauigkeit von $\varepsilon = 10^{-5}$ zu erreichen? Geben Sie einen möglichst kleinen Wert an.

	A	В	С	D	Е	F	G	Н	I	J
n	36	25	21	12	35	24	48	42	37	19

Es gilt gemäß a-priori-Abschätzung

$$\|\mathbf{x}^{n} - \mathbf{x}^{*}\|_{1} \leq \frac{L^{n}}{1 - L} \|\mathbf{x}^{1} - \mathbf{x}^{0}\|_{1} \leq \varepsilon \iff n \geq \frac{\ln \frac{\varepsilon(1 - L)}{\|\mathbf{x}^{1} - \mathbf{x}^{0}\|}}{\ln L} = \frac{\ln \left(\frac{10^{-5} \cdot 0.4}{0.85}\right)}{\ln 0.6} = 24.01 \dots$$

Es sind also höchstens n=25 Schritte erforderlich, um eine Genauigkeit von $\varepsilon=10^{-5}$ zu erreichen.

IGPM RWTH–Aachen Numerik MB H20

Aufgabe 4

$$(1+1+1+1+2=6 \text{ Punkte})$$

Gegeben sei die Funktion $f:[0,4.5]\to\mathbb{R}, x\mapsto f(x)=2\,x\,e^{x/2}$. Wir möchten f mit einem Polynom vom Grad n interpolieren.

Betrachten Sie dazu folgendes Newton-Schema-Tableau:

4a) Berechnen Sie $[x_1, x_2]f$.

	A	В	C	D	Е	F	G	Н	I	J
$[x_1, x_2]f$	3.7878	7.5757	0.8244	1.6487	1.8939	5.3186	3.6433	2.7573	4.0155	9.4456

Betrachte folgendes Newton-Schema-Tableau:

$$x_1 = 1$$
 | 3.29744
 $x_2 = 2$ | 10.8731 \rightarrow **7.57568**
 $x_3 = 4$ | 59.1124 \rightarrow 24.1196
 $x_4 = 4.5$ | 85.3896 \rightarrow 52.5544 \rightarrow **11.3739**

4b) Berechnen Sie $[x_2, x_3, x_4]f$.

	A	В	C	D	E	F	G	Н	I	J
$[x_2, x_3, x_4]f$	5.6870	11.374	3.0696	12.060	9.3571	7.6573	0.9179	6.5433	3.5122	1.5133

Siehe Lösung zur a).

Betrachten Sie nun folgendes Newton-Tableau:

$$\hat{x}_0 = -1 \quad 1$$

$$\hat{x}_1 = 0 \quad 1 \quad \rightarrow \quad 0$$

$$\hat{x}_2 = 1 \quad -1 \quad \rightarrow \quad -2 \quad \rightarrow \quad -1$$

4c) Berechnen Sie den Wert $P(f|\hat{x}_0, \hat{x}_1, \hat{x}_2)(1.5)$.

	A	В	С	D	Е	F	G	Н	I	J
$P(f \hat{x}_0, \hat{x}_1, \hat{x}_2)(1.5) =$	3.25	-2.75	-5	2	3.75	8.3333	-1	1.3333	-0.5	1.5

Für das Newton-Interpolations-Polynom gilt:

$$P(f|x_0,...,x_n)(x) = [x_0]f + (x-x_0)[x_0,x_1]f + (x-x_0)(x-x_1)[x_0,x_1,x_2]f + ... + (x-x_0)...(x-x_{n-1})[x_0,...,x_n]f.$$

Setzt man in diese Formel die vorgegebenen Werte ein, so erhält man:

$$P(f|x_0, x_1, x_2) = 1 + (x - (-1)) \cdot 0 + (x - (-1))(x - 0) \cdot (-1)$$

= 1 - x - x².

Damit ergibt sich: $P(f|x_0, x_1, x_2)(1.5) = -2.75$.

4d) Für die 2-te Ableitung von f gilt $f''(x) = \left(2 + \frac{x}{2}\right) e^{x/2}$. Bestimmen Sie $f_{\max}^3 := \max_{x \in [0,4]} |f^{(3)}(x)|$.

	A	В	С	D	Е	F	G	Н	I	J
$f_{\rm max}^3 =$	9.2363	18.473	10	19	2.7183	5.4366	8.7589	17.632	11.385	21.649

Berechne die Ableitung mit der Produktregel:

$$f'(x) = (2 \cdot x \exp(0.5x))' = 2 \cdot \exp(0.5x) + 0.5 \cdot x \exp(0.5x)$$

$$\Rightarrow f''(x) = \exp(0.5x) + f'(x) = 2 \cdot \exp(0.5x) + 0.5 \cdot x \exp(0.5x)$$

$$\Rightarrow f'''(x) = 0.5 \exp(0.5x) + f''(x) = 0.5 \exp(0.5x) + (0.5 \exp(0.5x) + 0.5f'(x))$$

$$= \exp(0.5x) + 0.5(\exp(0.5x) + 0.5 \cdot x \exp(0.5x))$$

$$= 1.5 \exp(0.5x) + 0.25 \cdot x \exp(0.5x).$$

Beachte, dass $f^{(3)}$ streng monoton steigend und positiv ist, also das Maximum bei x=4 liegt. Daraus folgt $||f^{(3)}||_{\infty}=18.4726$.

Hinweis: Für ein andere Funktion g gilt $||g^{(3)}||_{L^{\infty}([1,4])} = \max_{x \in [1,4]} |g^{(3)}(x)| = 18.5.$

4e) Schätzen Sie nun den Fehler $err_{\infty} := \max_{x \in [1,4]} |g(x) - P(g|1,2,4)(x)|$ unter Benutzung des Hinweises möglichst gut ab.

	A	В	С	D	Е	F	G	Н	I	J
err_{∞}	3.6971	6.5139	2.9568	5.3013	0.2300	8.7573	1.0345	4.9812	1.5394	2.1126

Wir müessen den Fehler:

$$\max_{x \in [1,4]} |g(x) - P(g|x_1, x_2, x_3)(x)| = ||g - P(g|x_1, x_2, x_3)||_{\infty}$$

abschätzen, weil $x_1, x_2, x_3 \in [1, 4]$. Aus der Vorlesung wissen wir, dass wir diesen Fehler folgendermaßen unter Kontrolle bekommen:

$$||g - P(g|x_1, x_2, x_3)||_{\infty} \le \max_{x \in [1, 4]} |(x - x_1)(x - x_2)(x - x_3)| \cdot \frac{||g^{(3)}||_{\infty}}{3!}$$

Aus dem Hinweis kennen wir bereits die Maximums-Norm von $g^{(3)}$, also gilt $\frac{\|g^{(3)}\|_{\infty}}{3!} \leq 3.08333$. Es bleibt noch der erste Term zum Abschätzen. Es gilt:

$$h(x) := (x-1)(x-2)(x-4) = x^3 - 7x^2 + 14x - 8$$

hat bei $\frac{7+\sqrt{7}}{3}$ sein Minimum in [1,4] mit $h(\frac{7+\sqrt{7}}{3})=-2.11261$. Das ist der betragsmäßig größte Wert von h im Intervall, also folgt:

$$||g - P(g|x_1, x_2, x_3)||_{\infty} \le 2.11261 \cdot 3.08333 = 6.51387.$$

Aufgabe 5 (1+1+1+2=5 Punkte)

Es sei $f \in C^{\infty}([0,1])$ gegeben. Wir möchten das Integral

$$I(f) = \int_0^1 f(x) dx$$

bis auf Genauigkeit $\varepsilon = 0.02$ bestimmen.

Weiterhin sollen zur Bestimmung von I(f) möglichst wenige Funktionsauswertungen genutzt werden.

Hinweis: $\max_{y \in [0,1]} |f^{(1)}(y)| = 31.5$, $\max_{y \in [0,1]} |f^{(2)}(y)| = 454$, $\max_{y \in [0,1]} |f^{(3)}(y)| = 1532.5$, $\max_{y \in [0,1]} |f^{(4)}(y)| = 450$.

5a) Wie viele Unterteilungen N benötigt man, um $\mathrm{I}(f)$ mit der summierten Mittelpunktsregel $I_0^n(f)$ auf ε genau zu bestimmen?

	A	В	С	D	Е	F	G	Н	I	J
n =	44	31	23	101	13	11	66	75	34	7

Für die Fehlerschranken bei der Mittelpunktsregel, Trapezregel und Simpsonregel gilt:

Regel	nicht summiert	summiert
Mittelpunkt	$\frac{h^3}{24} f(2) _{\infty}$	$\frac{h^2}{24} f(2) _{\infty}$
Trapez	$\frac{h^3}{12} f(2) _{\infty}$	$\frac{h^2}{12} f(2) _{\infty}$
Simpson	$\frac{h^5}{2880} f(4) _{\infty}$	$\frac{h^4}{2880} f(4) _{\infty}$

Entsprechend gilt: Für die summierte Mittelpunktsregel gilt:

$$\frac{h^2}{24} \cdot 454 \le 0.02 \Leftrightarrow h^2 \le 0.001057269 \stackrel{h>0}{\iff} h \le 0.03251565 \Leftrightarrow \frac{1}{h} \ge 30.7 \dots \text{ also } n = 31.$$

5b) Wie viele Unterteilungen n benötigt man, um $\mathrm{I}(f)$ mit der summierten Trapezregel $I_1^n(f)$ auf ε genau zu bestimmen?

	A	В	С	D	Е	F	G	Н	I	J
n =	62	44	72	11	13	93	16	64	10	8

Analog geht man für die summierte Trapezregel vor:

$$\frac{h^2}{12} \cdot 454 \le 0.02 \Leftrightarrow h^2 \le 5.28634 \cdot 10^{-4} \stackrel{h>0}{\iff} h \le 0.022992 \Leftrightarrow \frac{1}{h} \ge 43.4 \dots \text{ also } n = 44.$$

5c) Wie viele Unterteilungen n benötigt man, um $\mathrm{I}(f)$ mit der summierten Simpsonregel $I_2^n(f)$ auf ε genau zu bestimmen?

						F				
n =	4	3	5	8	2	14	17	11	1	23

Und ebenso für die summierte Simpsonregel:

$$\frac{h^4}{2880} \cdot 4350 \leq 0.02 \Leftrightarrow h^4 \leq 0.0132414 \stackrel{h>0}{\Longleftrightarrow} h \leq 0.339221 \Leftrightarrow \frac{1}{h} \geq 2.9 \dots \text{ also } n=3.$$

5d) Es stehen die summierte Mittelpunktsregel $I_0^n(f)$, summierte Trapezregel $I_1^n(f)$ und summierte Simpsonregel $I_2^n(f)$ zur approximativen Berechnung von I(f) zur Verfügung. Welche dieser Regeln $I_m^n(f)$ benötigt unter Voraussetzung obiger Genauigkeit ε die wenigsten Funktionen-Auswertungen N von f und wie viele werden benötigt?

	A	В	С	D	Е	F	G	Н	I	J
$I_m^n(f), N$	$I_2^n(f), 9$	$I_2^n(f), 7$	$I_0^n(f), 44$	$I_1^n(f), 9$	$I_1^n(f), 2$	$I_0^n(f), 8$	$I_2^n(f), 3$	$I_1^n(f), 22$	$I_0^n(f), 23$	$I_2^n(f), 5$

Bei der summierten Mittelpunktsregel $I_0^n(f)$ benötigt man N=n Funktionsauswertungen (jeweils in der *Mitte*). Bei der summierten Trapezrregel $I_1^n(f)$ benötigt man N=n+1 Funktionsauswertungen (im ersten Intervall zwei und dann jeweils eine am rechten Rand).

Bei der summierten Simpson-Rregel $I_2^n(f)$ benötigt man N = 2n + 1 Funktionsauswertungen (im ersten Intervall drei und dann jeweils zwei (in der *Mitte* und am rechten Rand).

Demnach benötigt man mit der summierten Mittelpunktsregel N=31, mit der summierten Trapezregel N=45 und mit der summierten Simpsonregel lediglich N=7 Funktionenauswertungen. Also sollte man die summierte Simpsonregel zum Bestimmen des Integrals I(f) benutzen.