Numerische Mathematik I für Ingenieure SS15 überarbeitete Verständnisfragen – Klausur Frühjahr 2013

VF-1: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b,m,r,R)$ die Standardrundung. Alle Zahlen sind im Dezimalsystem angegeben.

- 1. In $\mathbb{M}(3, 3, -5, 3)$ gilt $x_{\text{MAX}} = 26$. 2. Geben Sie x_{MAX} für $\mathbb{M}(3, 3, -5, 3)$ an.
 - 3. Die Zahl 0.1 ist in $\mathbb{M}(2,32,-99,99)$ exakt darstellbar.
 - 4. Für alle $x \in \mathbb{D}$ gilt $|f(x) x| \le \exp|x|$.
 - 5. In M(100, 4, -99, 99) gilt eps = $5 \cdot 10^{-8}$.
 - 6. In $\mathbb{M}(100, 4, -99, 99)$ gilt eps = $5 \cdot 10^p$. Geben Sie p an.
 - 7. Geben Sie die nicht-normalisierte Darstellung der Zahl 10 in $\mathbb{M}(2, 8, -8, 8)$ an.
 - 8. Geben Sie die nicht-normalisierte Darstellung der Zahl 10 in $\mathbb{M}(3,8,-8,8)$ an.

VF-2: Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x,y) = y e^{4x^2}$. (Der relative Fehler der Eingabe wird bezüglich der 1-Norm gemessen.)

- 1. Die relative Konditionszahl ist $\kappa_{rel} = 1 + 8 x^2$.
- 2. Die relative Konditionszahl ist $\kappa_{rel} = \max\{1, 8x^2\}$.
- 3. Das Problem ist schlecht konditioniert für $|y| \to \infty$.
- 4. Nur für gut konditionierte Probleme gibt es auch stabile Algorithmen.
- 5. Berechnen Sie $\kappa_{rel}(0.5, 0.5)$ für die Funktion $f(x, y) = y^2 e^{2x}$.

VF-3: Mit $A, L, R, P, D \in \mathbb{R}^{n \times n}$ seien R bzw. L eine rechte obere bzw. normierte linke untere Dreiecksmatrix, P eine Permutationsmatrix und D eine reguläre Diagonalmatrix.

- 1. Ist A regulär, so existiert stets eine LR-Zerlegung mit Permutationsmatrix P, so dass PA = LR gilt.
- 2. Ist A regulär, so existiert stets eine L R-Zerlegung mit Permutationsmatrix P, so dass P D A = L R gilt.
- 3. Aus PDA = LR folgt, dass A genau dann positiv definit ist, wenn A symmetrisch ist und alle Diagonalelemente von D positiv sind.
- 4. Beschreibt die Diagonalmatrix D eine Zeilenäquilibrierung, so folgt aus B := DA die Ungleichung $\kappa_{\infty}(B) \geq \kappa_{\infty}(A)$ für die Konditionszahlen von A und B bezüglich der $||\cdot||_{\infty}$ -Norm.
- 5. Berechnen Sie $||A||_{\infty}$ für $A = \begin{pmatrix} 1 & 8 \\ 10 & 11 \end{pmatrix}$

VF-4: Es seien $A, B \in \mathbb{R}^{n \times n}$ symmetrisch positiv definite Matrizen.

- 1. A + B ist immer symmetrisch positiv definit.
- 2. $A \cdot B$ ist immer symmetrisch positiv definit.
- 3. Wenn x Eigenvektor von A ist, dann ist x auch Eigenvektor von A^{-1} .
- 4. Das Cholesky-Verfahren zur Bestimmung der Cholesky-Zerlegung von A ist auch ohne Pivotisierung stabil.
- 5. Geben Sie den größten Eigenwert von $A = \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}$ an

VF-5: Es sei $A \in \mathbb{R}^{n \times n}$ und $QR = A$ eine QR -Zerlegung von A . Weiter seien $b \in \mathbb{R}^n$ und $x \in \mathbb{R}^n$.		
1.	$A x = b \Leftrightarrow R x = Q^T b$	
2.	$\kappa_2(A) = \kappa_2(R)$	
3.	Zur Lösung von $Ax = b$ über die QR -Zerlegung muss Q explizit bestimmt werden.	
4.	Es sei zusätzlich $B \in \mathbb{R}^{n \times n}$ und $Q_B R_B = B$ eine Q R -Zerlegung von B . Dann ist $(Q Q_B) (R R_B)$ eine Q R -Zerlegung von A B .	
5.	Für welche α ist die Matrix $Q=\left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \alpha \end{array}\right)$ orthogonal?	

VF-6: Nicht im SS15 Für A ∈ R^{m×n} betrachten wir das lineare Ausgleichsproblem: bestimme x* mit minimaler 2-Norm so, dass ||Ax* - b||₂ = min_{x∈Rⁿ} ||Ax - b||₂.
1. Es sei A = UΣV^T eine Singulärwertzerlegung von A. Für die Pseudoinverse A⁺ gilt A⁺ = VΣ⁺U^T.
2. Es seien σ₁ der größte und σ_r der kleinste (positive) Singulärwert von A. Dann gilt: ||A||₂ = σ₁/σ_r.
3. Die Lösung x* des linearen Ausgleichsproblems mit minimaler 2-Norm ist immer eindeutig.
4. Es seien Q₁ ∈ R^{m×m} und Q₂ ∈ R^{n×n} orthogonale Matrizen. Dann haben A und Q₁ A Q₂ die selben

Singulärwerte.

5. Es seien $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Bestimmen Sie x^* .

5. Es seien $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Bestimmen Sie x^* .

VF-7: Es seien $0 < a \in \mathbb{R}$ und $\Phi : \mathbb{R} \to \mathbb{R}$ gegeben durch $\Phi(x) = x/2 + a/(2x)$.

x* = √a ist ein Fixpunkt von Φ.
 Das Fixpunktiteration x_{i+1} := Φ(x_i) konvergiert für alle Startwerte x₀ > 0 quadratisch gegen √a.

3. Die Fixpunktiteration $x_{i+1} := \Phi(x_i)$ konvergiert nur, falls x_0 hinreichend nahe am Fixpunkt gewählt wird.

4. Die Fixpunktiteration $x_{i+1} := \Phi(x_i)$ konvergiert für alle $x_0 > \sqrt{a}$ und die Folge $\{x_i\}_{i \in \mathbb{N}}$ ist streng monoton fallend.

5. Bestimmen Sie x_2 für a = 9 und $x_0 = 4$.

VF-8: Es sei $\Phi : \mathbb{R} \to \mathbb{R}$ stetig differenzierbar, und für $x^* \in \mathbb{R}$ gelte $\Phi(x^*) = x^*$ und $|\Phi'(x^*)| < 1$. Mit $x_0 \in \mathbb{R}$ wird die Fixpunktiteration $x_{k+1} := \Phi(x_k), \ k = 0, 1, 2, \dots$ definiert.

1. Die Fixpunktiteration konvergiert stets, wenn $|x_0 - x^*|$ hinreichend klein ist.

2. Die Konvergenzordnung der Fixpunktiteration kann größer als 2 sein.

3. Das Fixpunktverfahren lässt sich stets auch als Newton-Verfahren für ein entsprechendes Nullstellenproblem interpretieren.

4. | Falls $\Phi'(x^*) = 0$ gilt, ist die Konvergenzordnung der Fixpunktiteration größer als 1.

5. Bestimmen Sie den positiven Fixpunkt x^* von $\Phi(x) = \frac{x}{4} + \frac{3}{x}$.

VF-9: Nichtlineare Ausgleichsrechnung			
1.	Wenn das Gauß-Newton-Verfahren konvergiert, dann ist es lokal quadratisch konvergent.		
2.	Ein lokales Minimum kann für die Gauß-Newton-Methode abstoßend sein.		
3.	Beim Levenberg-Marquardt-Verfahren ergibt sich in jedem Iterationsschritt stets ein eindeutig lösbares lineares Ausgleichsproblem.		
4.	In der Praxis verwendet man das Levenberg-Marquardt-Verfahren, weil es fast immer schneller konvergiert als das Gauß-Newton-Verfahren.		
5.	Für die Funktion $f(t) = a^t$ hat man Messwerte $f(1) = 2$ und $f(2) = 4$. Stellen Sie das zugehörige nichtlineare Ausgleichsproblem und bestimmen Sie a_1 durch das Gauß-Newton-Verfahren mit Startwert $a_0 = 2$.		

VF-10: Es sei $\Pi_n = \left\{\sum_{j=0}^n a_j x^j | a_0, ..., a_n \in \mathbb{R}\right\}$ der Raum der Polynome vom Grade (höchstens) n. Ferner seien $l_{jn}(x) = \frac{(x-x_0)...(x-x_{j-1})(x-x_{j+1})...(x-x_n)}{(x_j-x_0)...(x_j-x_{j-1})(x_j-x_{j+1})...(x_j-x_n)}, 0 \le j \le n$ die Lagrange-Fundamentalpolynome und $P(f \mid x_0, \ldots, x_n)$ das Lagrange-Interpolationspolynom zu den Daten $(x_0, f(x_0)), \ldots, (x_n, f(x_n))$.

1. $l_{jn}(x), 0 \le j \le n$ bilden eine Basis von Π_n .

2. Die Lagrange-Fundamentalpolynome zur Darstellung von $P(f \mid x_0, \ldots, x_n)$ sind gerade so konstruiert, dass gilt: $l_{jn}(x_i) = \delta_{ji}, \quad i, j = 0, \ldots, n$.

3. $\left\{a_0, a_1 x, a_2 x^2, \ldots, a_n x^n\right\}$ bildet für beliebige, nicht verschwindende Koeffizienten $a_0, a_1, \ldots, a_n \in \mathbb{R}$ eine Basis von Π_n .

4. Für ein festes \bar{x} ist die Auswertung von $P(f \mid x_0, \ldots, x_n)(\bar{x})$ sowohl mittels Neville-Aitken-Schema, als auch mittels Berechnung einer Newton-Darstellung und anschließender Auswertung von der Ordnung $\mathcal{O}(n)$.

VF-11: Es sei $P(f|x_0,...,x_n)$ das Lagrange–Interpolationspolynom zu den Daten $(x_0, f(x_0)),...,(x_n, f(x_n))$ mit $x_0 < ... < x_n$.

Seien n = 2, $x_0 = 7$, $x_1 = 3$, $x_2 = 1$. Berechnen Sie $l_{02}(4)$.

- 1. $P(\Psi|x_0,\ldots,x_n) = \Psi$ für alle Polynome Ψ .
- 2. Für beliebige f ist $P(f|x_0,\ldots,x_n)(x_i)=f(x_i)$ für $i=0,1,\ldots,n$.
- 3. Für genügend oft stetig differenzierbare Funktionen f gilt: $P(f|x_0,...,x_n)(x)=f(x)$ für alle $x\in [x_0,x_n]$.
- 4. | Der Fehler $\max_{x \in [x_0, x_n]} |P(f|x_0, \dots, x_n)(x) f(x)|$ wird mit wachsendem n immer kleiner.
- 5. Es seien $f(x_0) = 1$, $f(x_1) = 2$. Berechnen Sie $P(f|x_0, x_1)(\frac{x_0 + x_1}{2})$.

VF-12: Es sei $f \in C[a,b]$. Das Integral $I(f) = \int_a^b f(x) dx$ soll numerisch durch geeignete Quadraturformeln approximiert werden.

- 1. Der Fehler der Mittelpunktsregel ist stets genau halb so groß wie der Fehler der Trapezregel.
- 2. Die Mittelpunktsregel ist stets exakt, wenn f ein Polynom vom Grade ≤ 2 ist.
- 3. Die summierte Mittelpunktsregel ist stets exakt, wenn f ein Polynom vom Grade ≤ 2 ist.
- 4. Geben Sie den Exaktheitsgrad der summierten Simpsonregel an.
- 5. Die Simpsonregel ist stets exakt, wenn f ein Polynom vom Grade ≤ 3 ist.
- 6. Berechnen Sie eine Approximation von $\int_0^{10} x^2$ mit Hilfe der Mittelpunktsregel.