Numerische Mathematik I für Ingenieure SS15 überarbeitete Verständnisfragen – Klausur Herbst 2014

VF-1: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b,m,r,R)$ die Standardrundung. Alle Zahlen sind im Dezimalsystem angegeben.

Zal	ahlen sind im Dezimalsystem angegeben.		
1.	Für alle $x \in \mathbb{D}$ gilt $ f (x) \le x $.	falsch	
2.	In $M(2, 4, -4, 4)$ gilt $x_{MIN} = \frac{1}{16}$.	falsch	
3.	Berechnen Sie x_{MIN} für $\mathbb{M}(2, 4, -4, 4)$.	0.03125	
4.	Die Zahl 0.25 ist in $\mathbb{M}(2, 12, -99, 99)$ exakt darstellbar.	wahr	
5.	Für alle $x \in \mathbb{D}$ gilt $\mathrm{fl}(x) = x(1+\varepsilon)$ für ein ε mit $ \varepsilon \le \mathrm{eps}$.	wahr	
6.	Geben Sie die nicht-normalisierte Darstellung der Zahl 12 in $\mathbb{M}(2,6,-8,8)$ an.	1100	
7.	Geben Sie die nicht-normalisierte Darstellung der Zahl 49.2 in $\mathbb{M}(5,6,-8,8)$ an.	144.1	
VI	VF-2: Aufgaben zur relativen Kondition.		
1.	Die Funktion $f(x_1, x_2) := x_2 e^{x_1}$ ist für alle (x_1, x_2) mit $ x_1 \le 1$ gut konditioniert.	wahr	
2.	Eine gute Kondition eines Problems impliziert eine geringe Fehlerfortpflanzung in einem Verfahren zur Lösung des Problems.	falsch	
3.	Bei einem stabilen Algorithmus ist der durch Rundungseffekte verursachte Fehler im Ergebnis von derselben Größenordnung wie der durch die Kondition des Problems bedingte unvermeidbare Fehler.	wahr	
4.	Die Addition zweier Zahlen mit demselben Vorzeichen ist gut konditioniert.	wahr	
5.	Sei $\kappa_{rel}(x)$ die Kondition der Funktion $f(x) = x + e^x$. Geben Sie $\kappa_{rel}(1)$ an.	1	
VI	VF-3: Es seien $A \in \mathbb{R}^{n \times n}$ beliebig aber regulär, $b \in \mathbb{R}^n$ und gesucht sei die Lösung $x \in \mathbb{R}^n$ von $Ax = b$.		
1.	Für die Konditionszahl $\kappa(A)$ der Matrix A gilt $\kappa(A) \geq 1$.	wahr	
2.	Zeilenäquilibrierung $(B = DA)$ führt auf eine Matrix B mit $\kappa_{\infty}(B) \leq \kappa_{\infty}(A)$.	wahr	
3.	Es existiert immer eine LR -Zerlegung $A = LR$ von A .	falsch	
4.	Es sei $A = QR$ eine QR -Zerlegung von A . Es gilt $x = Q^Tb$.	falsch	
5.	Sei $A = QR$ mit $R = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$. Bestimmen Sie $\kappa_2(A)$.	1.5	
1/1	F-4. Es seien A $B \in \mathbb{R}^{n \times n}$ symmetrisch positiv definite Matrizen. Sei $A = I$, DL^T die Cholesky-Zerlegung.		

VF-4: Es seien $A, B \in \mathbb{R}^{n \times n}$ symmetrisch positiv definite Matrizen. Sei $A = L D L^T$ die Cholesky-Zerlegung von A.

1.	AB ist immer symmetrisch positiv definit.	falsch
2.	Es gilt $det(A) = det(D)$.	wahr
3.	Sei $\kappa(\cdot)$ die Konditionszahl bezüglich der Euklidischen Norm. Es gilt $\kappa(A) = \kappa(D)$.	falsch
4.	Es existiert immer eine LR -Zerlegung $A = LR$ von A .	wahr
5.	Sei $A = LR$ mit $R = \begin{pmatrix} 3 & 5 \\ 0 & 4 \end{pmatrix}$. Bestimmen Sie $\det(A)$.	12

	G -5: Es sei $A \in \mathbb{R}^{m \times n}$ und G_1, \ldots, G_k Givens-Rotationen, so dass $G_k \ldots G_2 G_1 A = R$, mit einer eiecksmatrix R .	oberen	
1.	Es sei $\kappa(\cdot)$ die Konditionszahl bezüglich der Euklidischen Norm. Es gilt $\kappa(G_j)=1$ für alle $j=1,\ldots,k$.	wahr	
2.	Die Produktmatrix $G_k \dots G_1$ kann man geometrisch als eine Rotation interpretieren.	wahr	
3.	Es gilt: $A = QR$, mit $Q = G_1G_k$.	falsch	
4.	Das Givens-Verfahren zur Berechnung einer Q R -Zerlegung von A ist ohne Pivotisierung ein stabiles Verfahren.	wahr	
5.	Für welche $\alpha \in \mathbb{R}$ ist die Matrix $Q = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$ orthogonal?	0	
VF-6: Es seien $A \in \mathbb{R}^{m \times n}$, mit $\operatorname{Rang}(A) = n$, und $b \in \mathbb{R}^m$. Weiter sei $Q \in \mathbb{R}^{m \times m}$ eine orthogonale und $R \in \mathbb{R}^{m \times n}$ eine obere Dreiecksmatrix so, dass $QA = R$ gilt. Sei $x^* \in \mathbb{R}^n$ die eindeutige Minimalste Minimierungsproblems $\min_{x \in \mathbb{R}^n} \ Ax - b\ _2$. Weiter sei $\Theta \in [0, \frac{\pi}{2})$ der Winkel zwischen Ax^* und b .			
1.	Je größer der Winkel $\Theta,$ desto schlechter ist das Problem konditioniert.	wahr	
2.	Es gilt $Rx^* = Qb$.	falsch	
3.	Es gilt $A^T A x^* = A^T b$.	wahr	
4.	Sei $Qb = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, mit $b_1 \in \mathbb{R}^n$, $b_2 \in \mathbb{R}^{m-n}$. Es gilt $ Ax^* _2 = b_2 _2$.	falsch	
5.	Bestimmen Sie $\langle Ax^* - b, Ax^* \rangle$.	0	
VF-7: Gesucht ist ein Fixpunkt der Abbildung $\Phi(x) = \frac{1}{1+x}$, mit $x \neq -1$. Für $x_0 \in \mathbb{R}$, $x_0 \neq -1$, v Fixpunktiteration $x_{k+1} = \Phi(x_k)$, $k = 0, 1, 2, \ldots$ definiert.			
1.	Die Aufgabe $\Phi(x)=x$ hat eine eindeutige Lösung in $[0,\infty)$.	wahr	
2.	Alle Voraussetzungen des Banachschen Fixpunktsatzes sind für Φ auf dem Intervall $[\frac{1}{2},1]$ erfüllt.	wahr	
3.	Die Konvergenzordnung der Fixpunktiteration ist in diesem Fall 2.	falsch	
4.	Die Fixpunktiteration konvergiert für beliebige Startwerte $x_0 > -1$.	wahr	
5.	Berechnen Sie x_2 mit $x_0 = 1$.	0.66667	
VE	VF-8: Sei x^* eine Nullstelle der Funktion $f(x) = e^{x^2} - 4$.		
1.	f hat eine eindeutige Nullstelle x^* .	falsch	
2.	Die Bisektionsmethode, mit Startwerten $a_0 = -1$, $b_0 = 1$, konvergiert gegen eine Nullstelle x^* .	falsch	
3.	Die Bisektionsmethode, mit Startwerten $a_0 = 0$, $b_0 = 2$, konvergiert gegen eine Nullstelle x^* .	wahr	
4.	Das Newton-Verfahren, angewandt auf f , konvergiert für jeden Startwert $x_0 \neq 0$ gegen eine Nullstelle x^* .	wahr	
5.	Zur Lösung des Nullstellenproblems von f wird Newton-Verfahren angewandt mit dem Startwert $x_0=1$. Geben Sie x_1 an.	1.23576	

VI	7-9: Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar und x^* eine Lösung des Nullstellenproblems $f(x) = 0$.	
1.	Das vereinfachte Newton-Verfahren benötigt die Ableitung f^{\prime} (Jacobi-Matrix) nicht.	falsch
2.	Wenn $f'(x^*)$ regulär ist, so konvergiert das Newton-Verfahren für alle Startwerte die hinreichend nahe bei x^* liegen, und die Konvergenzordnung ist 2.	wahr
3.	Das Sekantenverfahren erlaubt nur die Dimension $n=1.$	wahr
4.	Eine Dämpfungsstrategie beim Newton-Verfahren gewährleistet für jeden Startwert die Konvergenz des Verfahrens.	falsch
5.	Es seien $f(x) = x^4$, $x_0 = 1$ und $\{x_k, k = 0, 1,\}$ die durch das Newton-Verfahren induzierte Folge. Bestimmen Sie x_2 .	0.5625
VF-10: Es sei $P(f x_0,, x_n)$ das Lagrange-Interpolationspolynom zu den Daten $(x_0, f(x_0)),, (x_n, mit a = x_0 < < x_n = b. Es sei \delta_n der führende Koeffizient dieses Polynoms und [x_0,, x_n] f die div Differenz der Ordnung n von f.$		
1.	Sei $f(x) = x^3 + 2x$. Es gilt $[x_0, x_1, x_2, x_3]f = 1$.	wahr
2.	Die Wahl von äquidistanten Stützstellen ist optimal wenn man bei der Polynominterpolation den Interpolationsfehler minimieren will.	falsch
3.	Es gilt $P(f \mid x_0, \dots, x_n)(x) = \delta_n x^n + P(f \mid x_0, \dots, x_{n-1})(x)$ für alle x .	falsch
4.	Es gilt $P(f x_0, x_1,, x_n)(x) = P(f x_n, x_{n-1},, x_0)(x)$ für alle x .	wahr
5.	Seien $f(x) = x^2 - e^x + 6$, $n = 2$, $x_0 = 0$, $x_1 = 0.5$, $x_2 = 2$. Bestimmen Sie $P(f \mid x_0, x_1, x_2)(0)$.	5
VF-11: Es sei $f \in C[a,b]$. Das Integral $I(f) = \int_a^b f(x) dx$ soll numerisch approximiert werden durc Quadraturformel $Q_m(f) = (b-a) \sum_{j=0}^m w_j f(x_j)$, mit $a \le x_0 < \ldots < x_m \le b$.		
1.	Die absolute Kondition, bezüglich der Maximumnorm, der Bestimmung von $I(f)$ ist gut.	wahr
2.	Sei $Q_2(f)$ die Simpsonregel. Es gilt $Q_2(p) = I(p)$ für alle Polynome p vom Grade 4.	falsch
3.	Bei der Gauß-Quadratur hängen die Gewichte w_j von der Funktion f ab.	falsch
4.	Newton-Cotes-Formeln basieren auf der analytischen Integration eines Lagrange-Interpolationspolynoms an f , wobei die Stützstellen so gewählt werden, dass der Fehler minimal wird.	falsch
5.	Berechnen Sie eine Approximation von $\int_0^4 e^x$ mit Hilfe der Miitelpunktsregel.	29.55622
	F-12: Nicht in SS15: Wir betrachten Einschrittverfahren zur Lösung einer gewöhnlichen Different ang $y'(t) = f(t, y), t \in [t_0, T]$, mit Anfangswert $y(t_0) = y^0$.	ialglei-
1.	Bei impliziten Einschrittverfahren ist die Konvergenzordnung immer höher als bei expliziten Einschrittverfahren.	falsch
2.	Der lokale Abbruchfehler misst den maximalen Fehler zwischen numerischer Annäherung und exakter Lösung.	falsch
3.	Bei Einschrittverfahren ist die Konsistenzordnung der Regel höher als die Konvergenzordnung.	falsch
4.	Der lokale Abbruchfehler wird verwendet, um die Konsistenzordnung des zugehörigen Verfahrens zu bestimmen.	wahr
5.	Es seien $y'(t) = \cos(t)\sqrt{y}$, $t_0 = 0$ und $y^0 = y(t_0) = 4$. Berechnen Sie mit Euler-Verfahren eine Näherung y^1 von $y(t_0 + h)$ für $h = 0.1$.	4.2