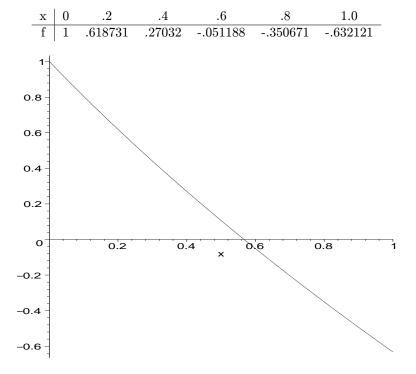
Aufgabensammlung Numerik für Ingenieure A 5.2: Nullstellen (skalar) Bisektion

$$f := x \to e^{(-x)} - x$$

 $f' := x \to -e^{(-x)} - 1$

f'(x) < 0: also ist f auf ganz IR (dort ist f stetig) monoton fallend \rightarrow höchstens eine Nulsttelle. Skizze hilft, also: Wertetabelle!



Wähle Startwerte $x_0 := 0$ und $x_1 := 1.0$ (oder $x_0 := 0.4$ und $x_1 := 0.6$) für Einschluss. Nun wird solange iteriert, bis $|x_{i-1} - x_i| \le 0.01 = \varepsilon$ ist. Da der Abstand in jedem Schritt halbiert wird. läßt sich die Anzahl der Iterationen n vorher, nur mit Kenntnis von $x_0 - x_1$ und ε , bestimmen.

$$|x_{\tilde{n}}-x_{\tilde{n}-1}|=\left(\frac{1}{2}\right)^{\tilde{n}-1}|x_1-x_0|\overset{!}{\leq}\varepsilon\Rightarrow\tilde{n}\geq1+\frac{1}{\ln\frac{1}{2}}\ln\frac{\varepsilon}{|x_1-x_0|}=7.6...\rightarrow n=8$$

Die Iterationsvorschrift lautet $(f_i = f(x_i))$

for
$$i=2$$
 to n
$$x_i=\frac{x_{i-1}+x_{i-2}}{2}$$
 if $f_i\cdot f_{i-1}>0$ then $x_{i-1}=x_{i-2}$ end i

i	x_i	f_i	$x_{i-1} = x_{i-2}$?
0	0	1	entfällt
1	1.0	632121	entfällt
2	.50	.106531	nein
3	.750	277633	nein
4	.6250	089739	ja
5	.56250	.007283	nein
6	.59375	041498	nein
7	.578125	017176	ja
8	.570313	004964	ja

Fixpunktverfahren

Um den Banachschen Fixpunktsatz anwenden zu können, müssen wir f(x) = 0 in x = F(x) umwandeln und ein abgeschlossenes Intervall [a, b] finden, das durch F in sich abgebildet wird, und auf dem F kontraktiv ist. Letzteres ist erfüllt, falls ein $\alpha < 1$ existiert mit $|F'(x)| \le \alpha$ für alle $x \in [a, b]$.

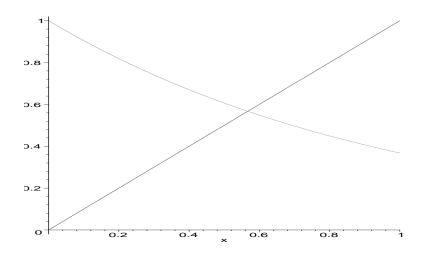
Tip: Meistens zeigt man im ersten Schritt, dass das Intervall I = [a, b] auf ein Teilintervall $\tilde{I} = [\tilde{a}, \tilde{b}] \subset I$ (mehrdimensional das Gebiet D auf $\tilde{D} \subset D$) abgebildet wird. Wenn ein Fixpunkt existiert, dann kann dieser nur in \tilde{I} (\tilde{D}) liegen. Es genügt also, die Kontraktivität in \tilde{I} (\tilde{D}) nachzuweisen. Für entsprechende Fehlerabschätungen muss dann aber auch konsequenterweise ein Startwert aus \tilde{I} (\tilde{D}) gewählt werden.

$$F := x \to e^{(-x)}$$

$$F' := x \to -e^{(-x)}$$

$$F'' := x \to e^{(-x)}$$

Skizze (y = x und y = F(x)) gemäß folgender Wertetabelle:



Wir versuchen die Vorausetzungen für das abgeschlossene Intervall I = [0.0, 1.0] nachzuweisen.

Abbildung in sich:

Für $x \in I$ ist F(x) streng monoton fallend (F'(x) < 0 auf I), also reicht es, wenn wir die Randwerte untersuchen (sonst Extrema bestimmen).

$$F(I) = [F(1), F(0)] = [0.3678791, 1] \subset [0.367, 1] =: \tilde{I}$$

Also wird I in sich abgebildet

kontraktiv:

Hier wählen wir direkt \tilde{I} als Intervall. (Bei 0 hätten wir sonst auch ein Problem.) : $F'(x) < 0 \land F''(x) > 0$, also ist $\max_{x \in \tilde{I}} |F'(x)| = -F'(0.367) = 0.6928$ und wir setzen $\alpha := 0.693$.

Die a-priori Abschätzung

$$|x_n - \overline{x}| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0| \stackrel{!}{=} \varepsilon$$

führt auf

$$\tilde{n} = \frac{\ln \frac{\varepsilon(1-\alpha)}{|x_1 - x_0|}}{\ln(\alpha)}$$

Mit $\varepsilon = 1e - 2$ und $x_0 = 0.5$ ($\in \tilde{I}$, s.o.) ergibt diese Formel $\tilde{n} = 9.6...$ Also ist es hinreichend, 10 Iterationen auszuführen.

.606531 x_1 x_2 .545239.579703.560065 x_4 .571172.564863 x_6 x_7 = .568438= .566409 x_8 .56756 x_{10} .566907

Die a-posteriori Abschätzung

$$|x_n - \overline{x}| \le \frac{\alpha}{1 - \alpha} |x_n - x_{n-1}|$$

ergibt dann

$$|x_{10} - \overline{x}| \le 0.0014727.. \le 0.001473$$

Die höhere Genauigkeit resultiert aus den, bezogen auf die komplette Iteration, zu pessimistischem α . Am Ende der Iteration ist die Kontraktionszahl auf ungefähr 0.5673 gesunken. Allgemein kann man dies aber **nicht** schließen

Newtonverfahren Erklärungen, Skizze und Startwerte siehe auch Bisektion

$$f := x \to e^{(-x)} - x \to f' := x \to -e^{(-x)} - 1$$

Startwert: $x_0 := 0.5$ (vgl. Bisektion). Iteration (15-stellig gerechnet):

$$f_0 = 1.0653066e - 01 \quad f_0' = -1.6065307e + 00 \quad \Delta x_0 = -6.6311003e - 02 \quad x_1 = 5.6631100e - 01 \\ f_1 = 1.3045098e - 03 \quad f_1' = -1.5676155e + 00 \quad \Delta x_1 = -8.3216184e - 04 \quad x_2 = 5.6714317e - 01$$

Wir stoppen die Iteration, wenn $|\Delta x_i| < \varepsilon$ erfüllt ist und testen einen Einschluss (Newton-Verfahren konvergiert lokal monoton, d.h.: x_n lokal monoton); dazu wird f an den Stellen x_n und $x_n \pm \varepsilon$ ausgewertet:

$$f(x_2) = 0.196e - 6$$
 und $f(x_2 + 0.01) = -0.0156$

Einschluss gegeben, also x_2 genügend genau.

Bem.: Bereits x_1 war genau genug. Meistens ist Δx_i ein guter Fehlerschätzer zur vorherigen Iterierten.

Sekantenverfahren Erklärungen, Skizze und Startwerte siehe auch Bisektion

$$f := x \to x \to e^{(-x)} - x$$

Startwerte: $x_0 := 0$ und $x_1 := 1.0$ (vgl. Bisektion). Iteration (15-stellig gerechnet) mit $f(x_0) = 1$ und $f(x_1) = -0.6321205588$ sowie dem Abbruchkriterium: $|\Delta x_i| < \varepsilon$ und f_{i+1} und f_i bilden einen Einschluss; m ist die Sekantensteigung:

$$\begin{array}{llll} m = -1.6321206 & \Delta x_1 = +3.8730016e - 01 & x_2 = 6.1269984e - 01 & f_2 = -7.0813948e - 02 \\ m = -1.4492806 & \Delta x_2 = +4.8861448e - 02 & x_3 = 5.6383839e - 01 & f_3 = +5.1823545e - 03 \\ m = -1.5553428 & \Delta x_3 = -3.3319693e - 03 & x_4 = 5.6717036e - 01 & f_4 = -4.2419242e - 05 \end{array}$$

Es kann sein, dass zu lange iteriert wird, wenn die Bedingung mit dem Einschluss gerade nicht erfüllt ist.