Numerische Mathematik I für Ingenieure, SS 2007 Multiple-Choice-Aufgaben

MC 6-1

Sei $F: \mathbb{R}^n \to \mathbb{R}^m$, mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Kreuzen Sie alle korrekten Aussagen an.

- O Das Gauß-Newton-Verfahren lässt sich als Fixpunktiteration formulieren
- O Das Levenberg-Marquardt-Verfahren lässt sich als Fixpunktiteration formulieren.
- O Beim Levenberg-Marquardt-Verfahren hat das linearisierte Ausgleichsproblem in jedem Iterationsschritt stets eine eindeutige Lösung.

MC 6-2

Sei $F: \mathbb{R}^n \to \mathbb{R}^m$, mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Wir nehmen an, daß RangF'(x) = n für alle x. Kreuzen Sie alle korrekten Aussagen an.

- O Die Gauß-Newton Methode ist immer lokal quadratisch konvergent.
- O Falls die Gauß-Newton Methode konvergiert, ist die Konvergenz im allgemeinen quadratisch.
- O Falls die Gauß-Newton Methode konvergiert, ist die Konvergenz im allgemeinen nicht schneller als linear.
- O Die Gauß-Newton Methode ist immer konvergent in einer hinreichend kleinen Umgebung eines Minimums.

MC 6-3

Sei $F: \mathbb{R}^n \to \mathbb{R}^m$, mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Kreuzen Sie alle korrekten Aussagen an.

Beim Levenberg-Marquardt-Verfahren wird die Korrektur s^k durch folgende Minimierungsaufgabe festgelegt ($\mu > 0$ ein zu wählender Parameter):

 \bigcap Finde $s^k \in \mathbb{R}^n$, so daß

$$||F'(x^k)s^k + F(x^k)||_2 + \mu ||s^k||_2 = \min$$

 \bigcirc Finde $s^k \in \mathbb{R}^n$, so daß

$$\|F'(x^k)s^k + F(x^k)\|_2^2 + \mu^2 \|s^k\|_2^2 = \min$$

 \bigcirc Finde $s^k \in \mathbb{R}^n$, so daß

$$\Big\| \begin{pmatrix} F'(x^k) \\ \mu I \end{pmatrix} s^k + \begin{pmatrix} F(x^k) \\ \emptyset \end{pmatrix} \Big\|_2 = \min$$

 \bigcirc Finde $s^k \in \mathbb{R}^n,$ so daß

$$\Big\| \begin{pmatrix} F'(x^k) \\ I \end{pmatrix} s^k + \begin{pmatrix} F(x^k) \\ \emptyset \end{pmatrix} \Big\|_2 = \min$$

MC 6-4

Sei $F: \mathbb{R}^n \to \mathbb{R}^m$ hinreichend oft differenzierbar mit m > n und $x^* \in \mathbb{R}^n$, so dass $||F(x^*)||_2 = \min_{x \in \mathbb{R}^n} ||F(x)||_2$. Sei $\varphi(x) := \frac{1}{2}F(x)^T F(x)$. Kreuzen Sie alle korrekten Aussagen an.

$$\bigcirc \varphi(x^*) = \min_{x \in \mathbb{R}^n} ||F(x)||_2.$$

$$\bigcirc \varphi(x^*) = \min_{x \in \mathbb{R}^n} \varphi(x).$$

$$\bigcirc \nabla \varphi(x^*) = 0.$$

 $\bigcirc \ \ \text{Die Aufgabe} \ \min_{x \in \mathbb{R}^n} \varphi(x) \ \text{ist einfacher zu lösen als die Aufgabe} \ \min_{x \in \mathbb{R}^n} \|F(x)\|_2.$

MC 6-5

Sei $F: \mathbb{R}^n \to \mathbb{R}^m$ mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Wir nehmen an, dass $\operatorname{Rang} F'(x) = n$ für alle x. Kreuzen Sie alle korrekten Aussagen an.

○ Ein Gauß-Newton-Verfahren kann nicht mit einer Dämpfungsstrategie kombiniert werden.

\bigcirc	Lokale	Maxima	oder	Sattelpunkte	der	Funktion	\boldsymbol{x}	\mapsto	$ F(x) _2^2$	sind	für	das	Gauß-Newton-
	Verfahren immer abstoßend.												

- \bigcirc Lokale Konvergenz des Gauß-Newton-Verfahren in einer Umgebung eines (lokalen) Minimums x^* ist gesichert, falls $||F(x^*)||_2$ hinreichend klein ist.
- O Falls die Gauß-Newton-Methode konvergiert, ist die Konvergenzordnung der Methode im Allgemeinen genau 1.