Numerische Mathematik I für Ingenieure SS10 Verständnisfragen – Hausübung 11

VF-1: Sei $F : \mathbb{R}^n \to \mathbb{R}^m$, mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Beantworte alle Fragen mit wahr oder falsch! Beim Levenberg-Marquardt-Verfahren wird die Korrektur s^k durch folgende Minimierungsaufgabe festgelegt ($\mu > 0$ ein zu wählender Parameter):

1.	Finde $s^k \in \mathbb{R}^n$ so, dass $ F'(x^k)s^k + F(x^k) _2 + \mu s^k _2 = \min$	
2.	Finde $s^k \in \mathbb{R}^n$ so, dass $ F'(x^k)s^k + F(x^k) _2^2 + \mu^2 s^k _2^2 = \min$	
3.	Finde $s^k \in \mathbb{R}^n$ so, dass $\left\ \begin{pmatrix} F'(x^k) \\ uI \end{pmatrix} s^k + \begin{pmatrix} F(x^k) \\ \emptyset \end{pmatrix} \right\ = \min$	

4. Finde
$$s^k \in \mathbb{R}^n$$
 so, dass $\left\| \mu \begin{pmatrix} F'(x^k) \\ I \end{pmatrix} s^k + \begin{pmatrix} F(x^k) \\ \emptyset \end{pmatrix} \right\|_{2} = \min$

VF-2: Sei $F: \mathbb{R}^n \to \mathbb{R}^m$ hinreichend oft differenzierbar mit m > n und $x^* \in \mathbb{R}^n$ so, dass $||F(x^*)||_2 = \min_{x \in \mathbb{R}^n} ||F(x)||_2$. Sei $\varphi(x) := \frac{1}{2} F(x)^T F(x)$. Beantworte alle Fragen mit wahr oder falsch!

1. $||\varphi(x^*)||_2 = \min_{x \in \mathbb{R}^n} ||F(x)||_2$.

2. $\varphi(x^*) = \min_{x \in \mathbb{R}^n} \varphi(x).$ 3. $\nabla \varphi(x^*) = 0.$

4. Die Aufgabe $\min_{x \in \mathbb{R}^n} \varphi(x)$ ist einfacher zu lösen als die Aufgabe $\min_{x \in \mathbb{R}^n} ||F(x)||_2$.

VF-3: Sei $F: \mathbb{R}^n \to \mathbb{R}^m$ mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Wir nehmen an, dass Rang F'(x) = n für alle x. Beantworte alle Fragen mit wahr oder falsch!

2. Lokale Maxima oder Sattelpunkte der Funktion $x \mapsto ||F(x)||_2^2$ sind für das Gauß-Newton-Verfahren immer abstoßend.

Ein Gauß-Newton-Verfahren kann mit einer Dämpfungsstrategie kombiniert werden.

- 3. Lokale Konvergenz des Gauß-Newton-Verfahren in einer Umgebung eines (lokalen) Minimums x^* ist gesichert, falls $||F(x^*)||_2$ hinreichend klein ist und alle Komponenten von F''(x) beschränkt sind.
- 4. Falls die Gauß-Newton-Methode konvergiert, ist die Konvergenzordnung der Methode im Allgemeinen genau 1.

VF-4: Es sei $\Pi_n = \left\{ \sum_{j=0}^n a_j \, x^j \mid a_0, \dots, a_n \in \mathbb{R} \right\}$ der Raum der Polynome vom Grade (höchstens) n. Beantworte alle Fragen mit wahr oder falsch!

- 1. $\{1, x, x^2, \dots, x^n\}$ bildet eine Basis von Π_n .
- 2. $\{\alpha_0, \alpha_1 x, \alpha_2 x^2, \dots, \alpha_n x^n\}$ bildet für beliebige, nicht verschwindende Koeffizienten $\alpha_0, \dots, \alpha_n \in \mathbb{R}$ eine Basis von Π_n .
- 3. $\left\{1, x \alpha_1, (x \alpha_1)(x \alpha_2), \dots, \prod_{i=1}^n (x \alpha_i)\right\}$ bildet für beliebige Koeffizienten $\alpha_0, \dots, \alpha_n \in \mathbb{R}$ eine Basis von Π_n .
- 4. Der Raum Π_n hat die Dimension n.