Numerische Mathematik I für Ingenieure SS10 Verständnisfragen – Hausübung 13

VF-1: Sei $P(f|x_0, ..., x_n)$ das Lagrange-Interpolationspolynom zu den Daten $f(x_i)$, i = 0, ..., n mit den Stützstellen $a = x_0 < ... < x_n = b$ für $n \in \mathbb{N}$. Sei $e(x) := f(x) - P(f|x_0, ..., x_n)$, $x \in \mathbb{R}$ der Fehler im Intervall $I := [\min(a, x), \max(b, x)]$. Beantworte alle Fragen mit wahr oder falsch!

1. $e(x_i) = 0$, i = 0, ..., n.

2. Für $f \in C^{n+1}(I)$ existiert ein $\xi \in I$, so dass $e(x) = \prod_{i=0}^{n} (x - x_i) \frac{1}{(n+1)!} f^{(n+1)}(\xi)$.

3. Es sei $[c,d] \subsetneq I$. Der Interpolationsfehler lässt sich dann für alle $x \in [c,d]$ wie folgt abschätzen: $|e(x)| \leq \max_{z \in [c,d]} |\prod_{i=0}^{n} (z-x_i)| \max_{z \in [c,d]} \frac{|f^{(n+1)}(z)|}{(n+1)!}$.

4. Sei $f(x) = 1/(1+x^2)$, $x \in [-5,5]$. Für festes $n \in \mathbb{N}$ seien die Stützstellen $x_{j,n} = -5 + 10 j/n$, $j = 0, \ldots, n$ gegeben. Dann gilt für den Fehler: $\lim_{n \to \infty} \max_{x \in [-5,5]} |f(x) - P(f|x_0, \ldots, x_n)| = 0$.

VF-2: Es sei P(f | x₀,...,x_n) das Interpolationspolynom zu den Daten (x₀, f(x₀)),...,(x_n, f(x_n)) mit x₀ < ... < x_n, und x, x* ∈ [x₀, x_n] . Beantworte alle Fragen mit wahr oder falsch!
1. P(f | x₀,...,x_n) kann man an der Stelle x* effizient mit dem Neville-Aitken-Schema auswerten.
2. P(f | x₀,...,x_n) kann man effizient mit dem Neville-Aitken-Schema bestimmen.
3. P(f | x₀,...,x_n) lässt sich sowohl mit dem Newton-Schema als auch mittels der Lagrange-Fundamentalpolynome aufstellen.
4. Sowohl die Newton-Interpolation als auch das Neville-Aitken-Schema haben zur Auswertung von P(f | x₀,...,x_n)(x) einen Aufwand von O(n²)

VF-3: Sei $P(f|x_0,...,x_n)$ das Lagrange-Interpolationspolynom zu den Daten $f(x_i), i=0,...,n$ mit den Stützstellen $x_0 < ... < x_n$ für $n \in \mathbb{N}$. Beantworte alle Fragen mit wahr oder falsch!

1. Seien l_{jn} die Lagrangeschen Fundamentalpoynome. Dann gilt für das Interpolationspolynom: $P(f|x_0,...,x_n)(x) = \sum_{j=0}^n f(x_j) l_{jn}(x), x \in \mathbb{R}$.

2. $P(f|x_0,...,x_n) = \sum_{j=0}^n a_j x^j$ ist immer ein Polynom vom Grad n mit $a_n \neq 0$.

3. Es existiert genau ein Polynom $p \in \Pi_n$ mit $p(x_i) = f(x_i), i = 0,...,n$.

VF-4: Sei $f \in C[a,b]$. Das Integral $I(f) := \int_a^b f(x) dx$ werde durch eine Newton-Cotes-Formel $I_m(f)$ zu Stützstellen $a \le x_0 < \ldots < x_m \le b$ approximiert. Beantworte alle Fragen mit wahr oder falsch!			
1.	$I_m(f) = \int_a^b P(f x_0,\ldots,x_m)dx$ wobei $P(f x_0,\ldots,x_m)$ das Interpolationspolynom von f zu den Stützstellen $x_0<\ldots< x_m$ ist.		
2.	$I_m(q) = I(q)$ für alle $q \in \Pi_m$.		
3.	Falls $f \in C^{m+1}[a, b]$, dann gilt für den Fehler $ I(f) - I_m(f) \le \frac{(b-a)^{m+1}}{(m+1)!} \max_{x \in [a, b]} f^{(m+1)}(x) $.		
4.	Bei Newton-Cotes-Formeln höherer Ordnung kann Auslöschung auftreten (instabil).		

VF-5: Das Integral $I(f) := \int_c^d f(x) dx$ soll numerisch approximiert werden durch eine Quadraturformel $(d - c) \sum_{j=0}^m c_j f(x_j)$, mit $c \le x_0 < \ldots < x_m \le d$. Beantworte alle Fragen mit wahr oder falsch!		
1.	Newton-Cotes-Formeln basieren auf der analytischen Integration eines Interpolationspolynoms an f mit äquidistanten Stützstellen x_j .	
2.	Bei allen Newton-Cotes-Quadraturformeln hängen die Integrationsgewichte c_j nicht von der Funktion f ab.	
3.	Die Newton-Cotes-Formeln sind stets exakt, wenn f ein Polynom vom Grade $\leq m+1$ ist.	
4.	Die Gewichte c_j sind bei Newton-Cotes-Quadraturformeln immer alle positiv.	

VF-6: Sei $f \in C[a, b]$. Das Integral $I(f) := \int_a^b f(x) dx$ werde durch eine Gauss-Formel $\tilde{I}_m(f) := \sum_{i=0}^m \omega_i f(x_i)$ approxomiert. Beantworte alle Fragen mit wahr oder falsch!

1. Die Stützstellen sind äquidistant verteilt.

2. $\tilde{I}_m(q) = I(q)$ für alle $q \in \Pi_{2m+1}$.

3. Die Gewichte ω_i sind alle positiv.

4. Falls $f \in C^{2m+2}[a, b]$, dann gibt es ein c_m , so dass für den Fehler gilt: $|I(f) - \tilde{I}_m(f)| \le c_m \max_{x \in [a, b]} |f^{(2m+2)}(x)|$.