Numerische Mathematik I für Ingenieure SS11 Verständnisfragen – Hausübung 3

VF-1: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b, m, r, R)$ die Standardrundung. Beantworte alle Fragen mit wahr oder falsch!

1.	In $\mathbb{M}(10, 3, -8, 8)$ gilt $\left \frac{\mathbb{H}(x) - x}{x} \right = (1 + \varepsilon)x$ mit $ \varepsilon \le 10^{-3} \ \forall x \in \mathbb{D}$.	falsch
2.	In $M(10, 4, -8, 8)$ gilt eps = $5 \cdot 10^{-4}$.	wahr
3.	In $\mathbb{M}(10, 3, -8, 8)$ gilt $x_{\text{MIN}} = 10^{-8}$.	falsch
4.	In $\mathbb{M}(10, 4, -8, 8)$ gilt $x_{\text{MAX}} = 99990000$.	wahr

VF-2: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b, m, r, R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b, m, r, R)$ die Standardrundung. Alle Zahlenangaben sind im 10er-System. Beantworte alle Fragen mit wahr oder falsch!

1.	In $\mathbb{M}(7,3,-10,10)$ gilt $\left \frac{f!(x)-x}{x}\right \le \frac{1}{98} \ \forall x \in \mathbb{D}.$	wahr
2.	In $M(100, 4, -8, 8)$ gilt $x_{MIN} = 10^{-10}$.	falsch
3.	In $M(5, 8, -2, 9)$ gilt $x_{MIN} = 0.008$.	wahr
4.	In $M(3, 2, -4, 3)$ gilt $x_{MAX} = 18$.	falsch

VF-3: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b, m, r, R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b, m, r, R)$ die Standardrundung. Beantworte alle Fragen mit wahr oder falsch!

1.	$ \operatorname{fl}(x) - x \le \operatorname{eps} \text{ für alle } x \in \mathbb{D}.$	falsch
2.	$\left \frac{\operatorname{fl}(x) - x}{x} \right \le \operatorname{eps} \text{ für alle } x \in \mathbb{D}.$	wahr
3.	Für jedes $x \in \mathbb{D}$ existiert eine Zahl ε mit $ \varepsilon \le \text{eps}$ und $\text{fl}(x) = (1 + \varepsilon)x$.	wahr
4.	Für jedes $x \in \mathbb{D}$ existiert eine Zahl ε mit $ \varepsilon \le \text{eps und fl}(x) = x + \varepsilon$.	falsch