Numerische Mathematik I für Ingenieure SS13 Verständnisfragen – Hausübung 3

VF-1:	Seien A ,	B beliebige n	\times <i>n</i> -Matrizen	mit	reellen	Einträgen.	Weiter sei	. eine Matrixnorm.	
Beantw	orte alle F	ragen mit wahr	oder falsch.						

ре	Deantworte and Fragen intervals oder raisen.			
1.	$ A + B \le A + B .$	wahr		
2.	$ A - B \le A - B .$	falsch		
3.	$\ \lambda A + \mu B\ \le \lambda \ A\ + \mu \ B\ , \lambda, \mu \in \mathbb{R}.$	falsch		
4.	$ AB \le A B .$	wahr		

VF-2:				
1.	Je besser die Kondition eines Problems, desto stabiler sind Algorithmen zur Lösung dieses Problems.	falsch		
2.	Bei einem stabilen Algorithmus ist der Ausgabefehler nicht viel größer als der Eingabefehler.	falsch		
3.	Die Funktion $f(x) = \ln(x)$ ist gut konditioniert für alle x mit $ x - 1 \ll 1$.	falsch		
4.	Die Funktion $f(x,y) = x e^{4y^2}$ ist gut konditioniert für alle (x,y) mit $x^2 + y^2 \le 0.1$.	wahr		

VF-3:					
1.	Es seien $x=\frac{1}{3}$ und $y=\frac{1}{3}+\pi10^{-10}$. Bei der Berechnung von $(x+y)(x-y)$ in $\mathbb{M}(10,12,-99,99)$ tritt Auslöschung auf.	wahr			
2.	Es seien $x=\frac{1}{3}$ und $y=\frac{1}{3}+\pi10^{-10}$. Bei der Berechnung von $\sin(x)-\sin(y)$ in $\mathbb{M}(10,12,-99,99)$ tritt Auslöschung auf.	wahr			
3.	Die Funktion $f(x,y) = x + y$ ist für alle (x,y) mit $(x,y) \neq (0,0)$ gut konditioniert.	falsch			
4.	Es seien $A \in \mathbb{R}^{n \times n}$ beliebig aber regulär und $\kappa(A)$ die Konditionszahl der Matrix A . Dann gilt $\kappa(A^{-1}) = \kappa(A)^{-1}$.	falsch			

V	F-4: Gegeben sei die Matrix $A = \begin{pmatrix} -2 & 14 \\ 5 & 6 \end{pmatrix}$. Beantworte alle Fragen mit wahr oder falsch!	
1.	$ A _{\infty} = 12$	falsch
2.	$ A _1 = 20.$	wahr
3.	A ist regulär.	wahr
4.	Für eine beliebige rechte Seite $b \in \mathbb{R}^2$ besitzt $Ax = b$ eine eindeutige Lösung x .	wahr

V	VF-5: Gegeben seien die Matrizen A und \tilde{A} mit $\tilde{A} \approx A = \begin{pmatrix} 123 & 0.12 \\ 1.23 & 12.3 \end{pmatrix}$. Alle Zahlen in A sind auf drei				
	signifikante Ziffer gerundet. ΔA sei das größtmögliche Abweichung für $A-\tilde{A}$. Beantworte alle Fragen mit wahr oder falsch!				
1.	$\ \Delta A\ _1 = 0.505$	wahr			
2.	$\ \Delta A\ _{\infty} = 0.505$	falsch			
3.	$ A _1 = 124.23$	wahr			
4.	Für den relativen Fehler von A gemessen in der 1-Norm gilt $r_{A1}\approx 0.004$	wahr			