Numerische Mathematik I für Ingenieure SS13 Verständnisfragen – Hausübung 10

VF-1: Sei F: Rⁿ → R^m, mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem min_{x∈Rⁿ} ||F(x)||₂. Wir nehmen an, dass Rang (F'(x)) = n für alle x. Beantworte alle Fragen mit wahr oder falsch!
1. Die Gauß-Newton Methode ist immer lokal quadratisch konvergent.
2. Falls die Gauß-Newton Methode konvergiert, ist die Konvergenz im allgemeinen quadratisch.
3. Falls die Gauß-Newton Methode konvergiert, ist die Konvergenz im allgemeinen nicht schneller als linear.
4. Die Gauß-Newton Methode ist immer konvergent in einer hinreichend kleinen Umgebung eines falsch Minimums.

VF-2: Sei $F: \mathbb{R}^n \to \mathbb{R}^m$ hinreichend oft differenzierbar mit m > n und $x^* \in \mathbb{R}^n$ so, dass $||F(x^*)||_2 = \min_{x \in \mathbb{R}^n} ||F(x)||_2$. Sei $\phi(x) := \frac{1}{2}F(x)^T F(x)$. Beantworte alle Fragen mit wahr oder falsch!

1. $\phi(x^*) = \min_{x \in \mathbb{R}^n} ||F(x)||_2$.

falsch

2. $\phi(x^*) = \min_{x \in \mathbb{R}^n} \phi(x)$.

wahr

3. $\nabla \phi(x^*) = 0$.

wahr

4. Die Aufgabe $\min_{x \in \mathbb{R}^n} \phi(x)$ ist einfacher zu lösen als die Aufgabe $\min_{x \in \mathbb{R}^n} ||F(x)||_2$.

falsch

VF-3: Sei F: Rⁿ → R^m mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem min | F(x)||₂. Wir nehmen an, dass Rang F'(x) = n für alle x. Beantworte alle Fragen mit wahr oder falsch!
1. Ein Gauß-Newton-Verfahren kann mit einer Dämpfungsstrategie kombiniert werden. wahr
2. Lokale Maxima oder Sattelpunkte der Funktion x → ||F(x)||²/₂ sind für das Gauß-Newton-Verfahren minmer abstoßend.
3. Lokale Konvergenz des Gauß-Newton-Verfahren in einer Umgebung eines (lokalen) Minimums x* wahr ist gesichert, falls ||F(x*)||₂ hinreichend klein ist und alle Komponenten von F"(x) beschränkt sind.
4. Falls die Gauß-Newton-Methode konvergiert, ist die Konvergenzordnung der Methode im Allgemeinen genau 1.

VF-4: Sei $F: \mathbb{R}^n \to \mathbb{R}^m$ mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} \|F(x)\|_2$. Wir nehmen an, dass Rang F'(x) = n für alle x. Beantworte alle Fragen mit wahr oder falsch!

1. Finde $s^k \in \mathbb{R}^n$ so, dass $\|F'(x^k)s^k + F(x^k)\|_2 + \mu \|s^k\|_2 = \min$ 2. Finde $s^k \in \mathbb{R}^n$ so, dass $\|F'(x^k)s^k + F(x^k)\|_2^2 + \mu^2 \|s^k\|_2^2 = \min$ 3. Finde $s^k \in \mathbb{R}^n$ so, dass $\|F'(x^k)s^k + F(x^k)\|_2^2 + \mu^2 \|s^k\|_2^2 = \min$ 4. Finde $s^k \in \mathbb{R}^n$ so, dass $\|F'(x^k)s^k + F(x^k)s^k + F$