Numerische Mathematik I für Ingenieure SS15 Verständnisfragen – Hausübung 2

VF-1: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b, m, r, R)$ die Standardrundung. Beantworte alle Fragen mit wahr oder falsch!

1.	In $\mathbb{M}(10,3,-8,8)$ gilt $\left \frac{\mathbf{fl}(x)-x}{x}\right = (1+\varepsilon)x$ mit $ \varepsilon \le 10^{-3} \ \forall x \in \mathbb{D}$.	falsch
2.	In $M(10, 4, -8, 8)$ gilt eps = $5 \cdot 10^{-4}$.	wahr
3.	In $M(10, 3, -8, 8)$ gilt $x_{MIN} = 10^{-8}$.	falsch
4.	In $M(10, 4, -8, 8)$ gilt $x_{MAX} = 99990000$.	wahr

VF-2: größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl: $\mathbb{D} \to \mathbb{M}(b,m,r,R)$ die Standardrundung. Alle Zahlenangaben sind im 10er-System. Beantworte alle Fragen mit wahr oder falsch!

1.	In $\mathbb{M}(7,3,-10,10)$ gilt $\left \frac{f!(x)-x}{x}\right \leq \frac{1}{98} \ \forall x \in \mathbb{D}.$	wahr
2.	In $M(100, 4, -8, 8)$ gilt $x_{MIN} = 10^{-10}$.	falsch
3.	In $M(5, 8, -2, 9)$ gilt $x_{MIN} = 0.008$.	wahr
4.	In $M(3, 2, -4, 3)$ gilt $x_{MAX} = 18$.	falsch

VF-3: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b,m,r,R)$ die Standardrundung. Beantworte alle Fragen mit wahr oder falsch!

L			
	1.	$ \mathrm{fl}(x) - x \le \mathrm{eps} \ \mathrm{für} \ \mathrm{alle} \ x \in \mathbb{D}.$	falsch
	2.	$\left \frac{\mathrm{fl}(x) - x}{x} \right \le \mathrm{eps} \ \mathrm{für} \ \mathrm{alle} \ x \in \mathbb{D}.$	wahr
	3.	Für jedes $x \in \mathbb{D}$ existiert eine Zahl ε mit $ \varepsilon \le \text{eps und fl}(x) = (1 + \varepsilon)x$.	wahr
	4.	Für jedes $x \in \mathbb{D}$ existiert eine Zahl ε mit $ \varepsilon \le \text{eps und fl}(x) = x + \varepsilon$.	falsch

VI	VF-4:		
1.	Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x,y) = y e^{x^2}$. Für $x = 1$ und $y \neq 0$ hat die relative Konditionszahl den Wert $\kappa_{rel} = 2$.	wahr	
2.	Die Funktion $f(x,y) = x - y$ ist für alle (x,y) mit $(x,y) \neq (0,0)$ gut konditioniert.	falsch	
3.	Je besser die Kondition eines Problems, desto stabiler sind Algorithmen zur Lösung dieses Problems.	falsch	
4.	Nur für gut konditionierte Probleme gibt es stabile Algorithmen zur Lösung des Problems.	falsch	

VF-5: Die Matrix $A \in \mathbb{R}^{n \times n}$ habe (in der betrachteten Matrixnorm) die Konditionszahl $\kappa(A)$. Die rechte Seite $b \in \mathbb{R}^n$ sei mit einem relativen Fehler ε behaftet. Bei der Berechnung von $x := A^{-1}b$ muss man mit einem relativen Fehler in der folgenden Größenordnung rechnen:

1.	$\ A\ arepsilon$	falsch
2.	$\kappa(A) arepsilon$	wahr
3.	$\kappa(A^{-1}) \varepsilon$	wahr
4.	$\ A^{-1}\ arepsilon$	falsch