Numerische Mathematik I für Ingenieure SS15 Verständnisfragen – Hausübung 4

VI	VF-1: Beantworte alle Fragen mit wahr oder falsch!		
1.	Das Produkt von unteren Dreiecksmatrizen ist wieder eine untere Dreiecksmatrix.	wahr	
2.	Die Inverse einer oberen nichtsingulären Dreiecksmatrix ist eine untere Dreiecksmatrix.	falsch	
3.	Die Inverse einer unteren nichtsingulären Dreiecksmatrix ist nicht immer eine Dreiecksmatrix.	falsch	
4.	Das Produkt von zwei regulären Matrizen ist wieder regulär.	wahr	

VF-2: Es seien A eine reguläre Matrix, L eine normierte untere Dreiecksmatrix und R eine obere Dreiecksmatrix im $R^{n \times n}$. Beantworte alle Fragen mit wahr oder falsch!		
1.	Es existiert immer eine Zerlegung $A = L R$.	falsch
2.	Die Determinante von A ist ungleich 0 .	wahr
3.	Wenn $A=LR$ ist, dann ist die Determinante von A das Produkt der Diagonaleinträge von $R.$ $(det(A)=\prod_{i=1}^n r_{ii})$	wahr
4.	Das homogene System $Ax = 0$ besitzt nur die triviale Lösung $x = 0$.	wahr

	VF-3: Es seien $A \in \mathbb{R}^{n \times n}$ regulär, $b \in \mathbb{R}^n$ und gesucht sei die Lösung $x \in \mathbb{R}^n$ von $Ax = b$. Beantworte alle Fragen mit wahr oder falsch!		
1.	Durch Pivotisierung kann die Stabilität der LR-Zerlegung verbessert werden.	wahr	
2.	Pivotisierung verbessert die Kondition des linearen Gleichungssystems.	falsch	
3.	Zeilenäquilibrierte Matrizen sind immer gut konditioniert.	falsch	
4.	Sei $\kappa(A)$ die Konditionszahl der Matrix A . Bei Störung der Eingabedaten A und b ist der relative Fehler in der Lösung maximal um einen Faktor $\kappa(A)$ größer als der relative Eingabefehler.	falsch	

VI	VF-4: Es seien $A \in \mathbb{R}^{n \times n}$ beliebig aber regulär, $b \in \mathbb{R}^n$ und gesucht sei die Lösung $x \in \mathbb{R}^n$ von $Ax = b$.		
1.	Sei $\kappa(A)$ die Konditionszahl der Matrix A . Bei Störung der Eingabedaten A und b ist der relative Fehler in der Lösung maximal um einen Faktor $\kappa(A)$ größer als der relative Eingabefehler.	falsch	
2.	Sei A zusätzlich symmetrisch positiv definit. Für die Cholesky-Zerlegung $A=LDL^T$ gilt dann: $\det(L)=1$ und $\det(D)>0$.	wahr	
3.	Der Rechenaufwand der Gauß-Elimination mit Spaltenpivotisierung zur Bestimmung der Lösung x ist etwa $\frac{4}{3}n^3$ Operationen.	falsch	
4.	Sei \tilde{x} eine Annäherung von x und $\tilde{r}:=b-A\tilde{x}$. Dann gilt: $\ \tilde{x}-x\ \leq \ A^{-1}\ \ \tilde{r}\ $.	wahr	

VF-5: Es seien $A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit, $L \in \mathbb{R}^{n \times n}$ eine normierte untere Dreiecksmatrix und $D \in \mathbb{R}^{n \times n}$ eine Diagonalmatrix. Beantworte alle Fragen mit wahr oder falsch!		
1.	A hat nur positive Eigenwerte.	wahr
2.	Das Cholesky-Verfahren zur Bestimmung der Zerlegung $A=LDL^T$ ist nur dann stabil, wenn man Pivotisierung benutzt.	falsch
3.	Der Aufwand des Cholesky-Verfahrens zur Bestimmung der Zerlegung $A=LDL^T$ ist ca. $\frac{1}{3}n^3$ Operationen.	falsch
4.	Es sei $A = LDL^T$. Dann gilt $d_{i,i} > 0 \ \forall i = 1,, n$, wobei $d_{i,i}$ die Diagonaleinträge der Matrix D sind.	wahr

	VF-6: Es sei $A \in \mathbb{R}^{n \times n}$. Die Abkürzung "spd" stehe für symmetrisch und positiv-definit. Beantworte alle Fragen mit wahr oder falsch!		
1.	$A \text{ spd} \Longrightarrow A \text{ ist invertierbar}$	wahr	
2.	$A \text{ spd} \Longrightarrow A^{-1} \text{ ist ebenfalls spd}$	wahr	
3.	A symmetrisch und alle Diagonale lemente von A strikt positiv $\Longrightarrow A$ ist spd	falsch	
4.	A ist eine spd–Matrix genau dann, wenn es eine obere Dreiecksmatrix R mit strikt positiven Diagonalelementen und $A=R^TR$ gibt.	wahr	

VF-7: Mit $A, L, D \in \mathbb{R}^{n \times n}$ seien L eine normierte linke untere Dreiecksmatrix und D eine Diagonalmatrix. Beantworte alle Fragen mit wahr oder falsch!		
1.	Ist A regulär, so existiert stets eine LDL^T -Zerlegung mit $A = LDL^T$.	falsch
2.	Ist A positiv definit und symmetrisch, so existiert stets eine LDL^T -Zerlegung mit $A = LDL^T$, wobei alle Diagonalelemente von D positiv sind.	wahr
3.	Nur mithilfe einer zusätzlichen Pivotisierung kann man garantieren, dass beim Cholesky-Algorithmus keine Division durch Null auftritt.	falsch
4.	Nur für positiv definite Matrizen A kann man mit dem Cholesky-Algorithmus eine Zerlegung $A=LDL^T$ finden.	falsch