Numerische Mathematik I für Ingenieure SS16 Verständnisfragen – Hausübung 4

VF-1: Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!			
1.	Das Produkt von unteren Dreiecksmatrizen ist wieder eine untere Dreiecksmatrix.	wahr	
2.	Die Inverse einer oberen nichtsingulären Dreiecksmatrix ist eine untere Dreiecksmatrix.	falsch	
3.	Die Inverse einer unteren nichtsingulären Dreiecksmatrix ist nicht immer eine Dreiecksmatrix.	falsch	
4.	Das Produkt von zwei regulären Matrizen ist wieder regulär.	wahr	
5.	Es sei $A = QR$, wobei Q eine orthogonale Matrix ist und $R = \begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix}$. Berechne $\kappa_2(A)$.	1.6667	

VF-2: Es seien A eine reguläre Matrix, L eine normierte untere Dreiecksmatrix und R eine obere Dreiecksmatrix im $\mathbb{R}^{n \times n}$. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an! 1. Es existiert immer eine Zerlegung A = L R. falsch2. Die Determinante von A ist ungleich 0. wahr 3. Wenn A = LR ist, dann ist die Determinante von A das Produkt der Diagonaleinträge von wahr $R. (det(A) = \prod_{i=1}^{n} r_{ii})$ Das homogene System Ax=0 besitzt nur die triviale Lösung x=0. wahr und ${\cal D}$ die zugehörige Diagonalmatrix der Zeilenskalierung. 0.01Berechne det(D).

VF-3: Es seien $A \in \mathbb{R}^{n \times n}$ regulär, $b \in \mathbb{R}^n$ und gesucht sei die Lösung $x \in \mathbb{R}^n$ von $Ax = b$. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!			
1.	Durch Pivotisierung kann die Stabilität der LR-Zerlegung verbessert werden.	wahr	
2.	Pivotisierung verbessert die Kondition des linearen Gleichungssystems.	falsch	
3.	Zeilenäquilibrierte Matrizen sind immer gut konditioniert.	falsch	
4.	Es sei $\kappa(A)$ die Konditionszahl der Matrix A . Bei Störung der Eingabedaten A und b ist der relative Fehler in der Lösung maximal um einen Faktor $\kappa(A)$ größer als der relative Eingabefehler.	falsch	
5.	Es seien $A = \begin{pmatrix} -10 & 0 \\ 0 & 2 \end{pmatrix}$, $\tilde{A} = \begin{pmatrix} -10.5 & 0 \\ 0 & 1.5 \end{pmatrix}$ und b ungestört. Gib die bestmögliche Schranke für r_x an.	0.33333	