Numerische Mathematik I für Ingenieure SS17 Verständnisfragen – Hausübung 5

VF-1: Es seien $\|.\|$ eine Vektornorm auf \mathbb{R}^n und $\|.\|$ die zugehörige Matrix-Norm. Weiter seien $A, B \in \mathbb{R}^{n \times n}$. Beantworte alle Fragen mit wahr oder falsch!

1. $\|A^k\| \leq \|A\|^k$ 2. Es sei A zusätzlich invertierbar. Dann gilt $\|A^{-1}\| > \frac{1}{n+1}$

2. Es sei A zusätzlich invertierbar. Dann gilt $||A^{-1}|| \ge \frac{1}{||A||}$ 3. Es sei A zusätzlich invertierbar. Dann gilt $||A^{-1}|| = \frac{1}{\inf_{||x||=1} ||Ax||}$ 4. $\forall x \in \mathbb{R}^n : ||Ax|| = ||A|| ||x||$

5. $||AB|| \le ||A|| \cdot ||B||$

VF-2: Es seien $A \in \mathbb{R}^{n \times n}$, $L \in \mathbb{R}^{n \times n}$ eine normierte untere Dreiecksmatrix, $D \in \mathbb{R}^{n \times n}$ eine Diagonalmatrix mit Diagonaleinträgen $d_{i,i} > 0$, $i = 1, \ldots, n$.

- 1. Falls eine Zerlegung $A = LDL^T$ existiert, dann ist A symmetrisch positiv definit.
- 2. Für jede invertierbare Matrix A existiert eine Zerlegung $A = L D L^{T}$.
- 3. | Für jede symmetrische Matrix A existiert eine Zerlegung $A = L D L^T$.
- 4. Die Matrix $L D L^T$ ist invertierbar.

5. Es seien $L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ und $A = LDL^T$. Berechne $\det(A)$.

VF-3: Es seien $A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit, $L \in \mathbb{R}^{n \times n}$ eine normierte untere Dreiecksmatrix und $D \in \mathbb{R}^{n \times n}$ eine Diagonalmatrix.

- 1. Das Cholesky-Verfahren zur Bestimmung der Cholesky-Zerlegung $A=L\,D\,L^T$ ist nur dann stabil, wenn man Pivotisierung benutzt.
- 2. Der Aufwand des Cholesky-Verfahrens zur Bestimmung der Cholesky-Zerlegung $A=L\,D\,L^T$ ist ca. $\frac{1}{3}n^3$ Operationen.
- 3. Es sei $A = LDL^T$. Dann gilt $\det(A) = \prod_{i=1}^n d_{i,i}$, wobei $d_{i,i}$ die Diagonaleinträge der Matrix D sind.
- 4. Es sei $A = LDL^T$. Dann gilt $\kappa_2(A) = \kappa_2(D)$, wobei $\kappa_2(.)$ die Konditionszahl bezüglich der guldigischen Norm ist
- 5. Bei bekannter Zerlegung $A=L\,D\,L^T$ beträgt der Aufwand zum Lösen von $A\,x=b$ ungefähr $\alpha\,n^p$. Gib p an.