Numerische Mathematik I für Ingenieure SS17 Verständnisfragen – Übung 9

VI	VF-1: Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!			
1.	Es seien $\Phi: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Iterationsvorschrift und x^* ein Fixpunkt, d.h. $\Phi(x^*) = x^*$. Dann gilt: $ \Phi'(x^*) < 1$.			
2.	Es sei $\Phi(x)$ eine Funktion auf dem Intervall $[a,b]$, die die Voraussetzungen des Banachschen Fixpunktsatzes erfüllt. Außerdem gilt $\Phi(x^*) = x^*$ für ein $x^* \in [a,b]$ mit $x^* \neq 0$. Dann konvergiert das Newtonverfahren, angewendet auf $\Phi(x)$ immer für alle Startwerte $x_0 \in [a,b]$ gegen x^* .			
3.	Die Konvergenzordnung des Sekanten-Verfahrens ist ungefähr 1.6.			
4.	Das Newton-Verfahren ist global konvergent mit Konvergenzordnung 1 und hat lokal die Konvergenzordnung 2.			
5.	Es sei $f(x) = x^3 - \frac{1}{2}$. Wir betrachten das Newton-Verfahren zur Annährung der Nullstelle dieser Funktion mit Startwert $x_0 = 1$. Berechne x_1 .			

VI	VF-2: Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!			
1.	Das vereinfachte Newton-Verfahren ist ein Fixpunktverfahren.			
2.	Das Bisektionsverfahren ist ein Fixpunktverfahren.			
3.	Das Newton-Verfahren ist ein Fixpunktverfahren.			
4.	Das Sekanten-Verfahren ist ein Fixpunktverfahren.			
5.	Es sei $f(x) = x^3 - \frac{1}{2}$. Wir betrachten das Sekantenverfahren zur Annährung der Nullstelle dieser Funktion mit Startwerten $x_0 = 0$, $x_1 = 1$. Berechne x_2 .			

VF-3: Das skalare bzw. mehrdimensionale Nullstellenproblem $f(x) = 0$ soll iterativ gelöst werden. Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!				
1.	Bei mehrdimensionalen Problemen erfordert das Newton-Verfahren in jedem Iterationsschritt das Lösen eines linearen Gleichungssystems.			
2.	Während beim Newtonverfahren in jedem Schritt ein neues lineares Gleichungssystem gelöst werden muss, ändert sich beim vereinfachten Newtonverfahren nur die rechte Seite $-f(x^k)$.			
3.	Das vereinfachte Newton-Verfahren trägt seinen Namen, weil es stets ohne die Lösung eines linearen Gleichungssystems auskommt.			
4.	Beim Newton-Verfahren ist x^{k+1} die Nullstelle der quadratischen Näherung an die Funktion f im Punkt x^k .			
5.	Es sei $f(x) = x^3 - \frac{1}{2}$. Wir betrachten das vereinfachte Newton-Verfahren zur Annährung der Nullstelle dieser Funktion mit Startwert $x_0 = 1$. Berechne x_2 .			

VF-4: Es sei $f: \mathbb{R}^n \to \mathbb{R}^n$ zweimal stetig differenzierbar in einer Umgebung U von x^* und es gelte $f(x^*) = 0$. Wir betrachten die Newton-Methode zur Bestimmung von x^* :

$$x_0 \in U$$
, $x_{k+1} = x_k - (f'(x_k))^{-1} f(x_k)$ für $k \ge 0$.

Beantworte alle Fragen mit wahr oder falsch bzw. gib den numerischen Wert an!

Fall an.

Die Newton-Methode ist immer lokal quadratisch konvergent.
Die Newton-Methode ist nur lokal quadratisch konvergent, falls man die Berechnung von (f'(x_k))⁻¹ vermeidet.
Wenn f'(x) für alle x ∈ U regulär ist und das Newton-Verfahren konvergiert, dann gilt für genügend große k's: ||x_k - x*|| ≈ ||x_k - x_{k+1}||.
Die Konvergenzgeschwindigkeit des Newton-Verfahrens kann durch Verwendung orthogonaler Transformationen zur Lösung des auftretenden Gleichungssystems beschleunigt werden.
Es seien f'(x) für alle x ∈ U regulär und das gedämpfte Newton-Verfahren mit konstantem

 $\lambda=0.8$ konvergiere gegen die Nullstelle $x^\star.$ Gib die (lokale) Konvergenzordnung p für diesen