Numerische Mathematik für Maschinenbauer Lineare Gleichungssysteme

A. Reusken

K.-H. Brakhage, I. Voulis, H. Saß

Institut für Geometrie und Praktische Mathematik RWTH Aachen

Sommersemester 2017

Heute in der Vorlesung

Themen:

Dahmen & Reusken Kap. 3.5

- Gauß-Elimination und LR-Zerlegung
- Cholesky-Zerlegung

Was Sie mitnehmen sollten:

- Wie funktioniert die LR-Zerlegung?
- Warum benötigt man Pivotisierung?
- Was ist die Cholesky-Zerlegung?

Matrix-Zerlegung

Aufgabe

Gegeben seien $A \in \mathbb{R}^{n \times n}$ (det $A \neq 0$) und $b \in \mathbb{R}^n$, bestimme $x \in \mathbb{R}^n$, so dass

$$Ax = b$$
.

Vorgehensweise: Bestimme eine Faktorisierung (Zerlegung) von A, so dass das Gleichungssystem "leichter" lösbar ist.

Wichtige Verfahren:

- LR-Zerlegung: A = LR, wobei L untere Dreiecksmatrix, R obere Dreiecksmatrix
- lacktriangleright Cholesky-Zerlegung: $A = L D L^T$, wobei D Diagonalmatrix
- lacktriangle QR-Zerlegung: A=QR, wobei Q orthogonale Matrix

Gauß-Elimination: LR-Zerlegung

Die bekannteste Methode, das System

$$A x = b \quad (\det A \neq 0)$$

auf Dreiecksgestalt zu bringen, ist die Gauß-Elimination.

$$A = A^{(1)}$$

*	*	• • •	• • •	*
*	*	• • •	• • •	*
:	:			:
•	•			•
:	÷			:
*	*	• • •	•••	*

*	*	• • •	• • •	*
0	*	• • •	• • •	*
:	:	$ ilde{A}^{(2)}$:
:	:			:
0	*	• • •	• • •	*

*	*	*		*
0	*	*	• • •	*
0	0	*	• • •	*
:	:	:	$ ilde{A}^{(3)}$:
0	0	*	• • •	*

- lacktriangle Einträge der Matrix $A^{(k)}$ werden mit $a^{(k)}_{i,j}$ notiert.
- ▶ Der Eintrag $a_{j,j}^{(j)}$ (\circledast oben) heißt *Pivotelement*.
- lacktriangle In entsprechender Weise ist auch die rechte Seite b umzuformen.

Beispiel 3.19.

Löse das Gleichungssystem Ax = b, wobei

$$A = egin{pmatrix} 2 & -1 & -3 & 3 \ 4 & 0 & -3 & 1 \ 6 & 1 & -1 & 6 \ -2 & -5 & 4 & 1 \end{pmatrix} \quad ext{und} \quad b = egin{pmatrix} 1 \ -8 \ -16 \ -12 \end{pmatrix}$$

mit Hilfe der Gauß-Elimiation.

Wir benutzen die folgende Notation

$$ightarrow \; (A \, | \, b) = \left(egin{array}{ccc|c} 2 & -1 & -3 & 3 & 1 \ 4 & 0 & -3 & 1 & -8 \ 6 & 1 & -1 & 6 & -16 \ -2 & -5 & 4 & 1 & -12 \ \end{array}
ight)$$

Beispiel 3.19.

Gauß-Elimination:

▶ 1. Schritt: subtrahiere $(\ell_{i,1} \times \mathsf{Zeile}\ 1)$ von Zeile i

▶ 2. Schritt: subtrahiere $(\ell_{i,2} \times \text{Zeile } 2)$ von Zeile i

Beispiel 3.19.

▶ 3. Schritt: subtrahiere $(\ell_{i,3} \times \text{Zeile } 3)$ von Zeile i

$$j=3$$
 $\begin{pmatrix} 2 & -1 & -3 & 3 & 1 \ 0 & 2 & 3 & -5 & -10 \ 0 & 0 & 2 & 7 & 1 \ 0 & 0 & 0 & -46 & -46 \ \end{pmatrix}=(R\,|\,c)$

Wegen

$$Ax = b \Leftrightarrow Rx = c$$

liefert Rückwärtseinsetzen die Lösung

$$x = \begin{pmatrix} -\frac{9}{2}, & 2, -3, & 1 \end{pmatrix}^T$$
.

Gauß-Elimination ohne Pivotisierung

- lacksquare Bestimme $(A \mid b)
 ightarrow (R \mid c)$
- ightharpoonup Löse Rx=c

Beispiel 3.22.

Für die Matrix

$$A = \left(egin{array}{ccccc} 2 & -1 & -3 & 3 \ 4 & 0 & -3 & 1 \ 6 & 1 & -1 & 6 \ -2 & -5 & 4 & 1 \end{array}
ight)$$

gilt

$$A=LR,$$

wobei

$$L = egin{pmatrix} 1 & 0 & 0 & 0 \ 2 & 1 & 0 & 0 \ 3 & 2 & 1 & 0 \ -1 & -3 & 5 & 1 \end{pmatrix} \quad ext{und} \quad R = egin{pmatrix} 2 & -1 & -3 & 3 \ 0 & 2 & 3 & -5 \ 0 & 0 & 2 & 7 \ 0 & 0 & 0 & -46 \end{pmatrix}$$

die bei der Gauß-Elimination berechneten Dreiecksmatrizen sind.

Zusammenfassung

Ein bemerkenswertes "Nebenprodukt" der Gauß-Elimination ist also eine Faktorisierung von \boldsymbol{A} in ein Produkt einer normierten unteren Dreiecksmatrix \boldsymbol{L} und oberen Dreiecksmatrix \boldsymbol{R} .

Satz 3.21.

Sind im Gauß-Algorithmus stets alle Pivotelemente ungleich null, dann erhält man

$$A = LR$$

wobei $m{R}$ eine obere Dreiecksmatrix und $m{L}$ eine normierte untere Dreiecksmatrix ist.

Frage:

- Was passiert, wenn das Pivotelement identisch null ist?
- ▶ Was passiert, wenn das Pivotelement "sehr klein" ist?

Gauß-Elimination mit Spaltenpivotisierung

- Ein verschwindendes Pivotelement bedeutet nicht, dass das lineare Gleichungssystem keine Lösung besitzt.
- Bei verschwindendem Pivotelement ist das Vertauschen von Zeilen notwendig.
- Selbst wenn das Pivotelement ungleich null, ist eine Vertauschung von Zeilen angebracht, um die Stabilität der Gauß-Elimination (bzw. LR-Zerlegung) zu verbessern.

Beispiel 3.23.

Löse das lineare Gleichungssystem

$$\begin{pmatrix} 0.00031 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -3 \\ -7 \end{pmatrix}.$$

Mit $l_{2,1}=1/0.00031$ ergibt die Gauß-Elimination

$$(R \mid c) = \left(egin{array}{cc|c} 0.00031 & 1 & -3 \ 0 & 1 - rac{1}{0.00031} & -7 - rac{-3}{0.00031} \end{array}
ight),$$

und bei 4-stelliger Rechnung schließlich

$$(R \mid \! c) = \left(egin{array}{cc|c} 0.00031 & 1 & -3 \ 0 & -3225 & 9670 \end{array}
ight).$$

Rückwärtseinsetzen liefert dann ...

Beispiel 3.23.

$$\tilde{x}_1 pprox -6.452, \quad \tilde{x}_2 pprox -2.998.$$

Exakte Rechnung ergibt sich allerdings

$$x_1 = -4.00124..., \quad x_2 = -2.998759...,$$

d.h., \tilde{x}_1 ist auf keiner Stelle korrekt.

Dieses Ergebnis ist *unakzeptabel*, weil die Kondition des Problems sehr gut ist: $\kappa_{\infty}(A) = 4.00$.

Nach Spaltenpivotisierung mit 4-stelliger Rechnung erhält man

$$(R\mid c)=\left(egin{array}{cc|c}1&1&-7\0&0.9997&-2.998\end{array}
ight)$$

und damit

$$\tilde{x}_1 \approx -4.001$$
, $\tilde{x}_2 \approx -2.999$,

also völlig akzeptable Werte.

Permutationsmatrix

Sei $P_{i,j}$ die elementare Permutationsmatrix, die durch Vertauschen der i-ten und j-ten Zeile der Einheitsmatrix I entsteht.

Beispiel: für n=4, i=2, j=4 erhält man

$$P_{2,4} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Es gelten die folgenden Resultate

$$\mathrm{det}P_{i,j} = egin{cases} 1 & ext{für } i=j, \ -1 & ext{für } i
eq j, \end{cases}$$

und

$$P_{i,i}^{-1} = P_{i,j}$$
.

Permutationsmatrix: Beispiel

Berechne die folgenden Matrix-Produkte für

$$A = egin{pmatrix} 1 & 0 & 0 \ a & 1 & 0 \ b & 0 & 1 \end{pmatrix} \quad ext{und} \quad P_{2,3} = egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}.$$

$$P_{2,3}\,A = egin{pmatrix} 1 & 0 & 0 \ b & 0 & 1 \ a & 1 & 0 \end{pmatrix} \Rightarrow$$
 Vertauschen der 2. und 3. Zeile $A\,P_{2,3} = egin{pmatrix} 1 & 0 & 0 \ a & 0 & 1 \ b & 1 & 0 \end{pmatrix} \Rightarrow$ Vertauschen der 2. und 3. Spalte $P_{2,3}\,A\,P_{2,3} = egin{pmatrix} 1 & 0 & 0 \ b & 1 & 0 \ a & 0 & 1 \end{pmatrix} \Rightarrow$ Vertauschen der Einträge a und b

LR-Zerlegung mit Spaltenpivotisierung

Gauß-Elimination mit Spaltenpivotisierung ist für jede nichtsinguläre Matrix durchführbar.

Satz 3.25.

Zu jeder nichtsingulären Matrix A existiert eine Permutationsmatrix P, eine (dazu) eindeutige untere normierte Dreiecksmatrix L, deren Einträge sämtlich betragsmäßig durch eins beschränkt sind, und eine eindeutige obere Dreiecksmatrix R, so dass

$$PA = LR$$
.

Die Matrizen P,L und R ergeben sich aus der Gauß-Elimination mit Spaltenpivotisierung.

Durchführung der LR-Zerlegung

Skalierung und Gauß-Elimination mit Spaltenpivotisierung

► Bestimme die Diagonalmatrix

$$D=\mathrm{diag}(d_1,\ldots,d_n),$$

so dass DA zeilenweise äquilibriert ist, d.h.

$$d_i = \left(\sum\limits_{k=1}^n |a_{i,k}|
ight)^{-1}, \quad i=1,\ldots,n.$$

lacktriangle Wende Gauß-Elimination mit Spaltenpivotisierung auf DA an.

Aufwand

- ightharpoonup Zeilensummenberechnung: n(n-1) Additionen;
- Berechnung der Skalierung: n Divisionen;
- Für $j=1,2,\ldots,n-1$
 - **b** Berechnung der neuen Einträge in L: (n-j) Divisionen;
 - lacktriangle Berechnung der neuen Einträge in R: $(n-j)^2$ Multiplik./Additionen

Dominierender Aufwand:
$$\sum\limits_{j=1}^{n-1}(n-j)^2=\sum\limits_{j=1}^{n-1}j^2\sim n^3/3$$
.

Rechenaufwand 3.29

LR-Zerlegung über Gauß-Elimination mit Spaltenpivotisierung kostet ca.

$$\frac{1}{3}n^3$$
 Operationen.

Die Skalierung (falls nötig) kostet nur $\mathcal{O}(n^2)$ Operationen.

Beispiel 3.30.

$$A = \begin{pmatrix} 1 & 5 & 0 \\ 2 & 2 & 2 \\ -2 & 0 & 2 \end{pmatrix} \Rightarrow D = \begin{pmatrix} \frac{1}{6} & 0 & 0 \\ 0 & \frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \Rightarrow DA = \begin{pmatrix} \frac{1}{6} & \frac{5}{6} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

Gauß-Elimination mit Spaltenpivotisierung:

1. Schritt:

$$DA \xrightarrow{Vertauschung}$$

$-\frac{1}{2}$	0	$\frac{1}{2}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$\frac{1}{6}$	$\frac{5}{6}$	0

$$\xrightarrow{Elimination}$$

$-\frac{1}{2}$	0	1/2
$-\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
$-\frac{1}{3}$	$\frac{5}{6}$	$\frac{1}{6}$

2. Schritt:

$$\xrightarrow{Elimination}$$

$$\begin{array}{c|cccc}
-\frac{1}{2} & 0 & \frac{1}{2} \\
-\frac{1}{3} & \frac{5}{6} & \frac{1}{6} \\
-\frac{2}{3} & \frac{2}{5} & \frac{3}{5}
\end{array}$$

Beispiel 3.30

Ergebnis:
$$L=egin{pmatrix} 1 & 0 & 0 \ -\frac{1}{3} & 1 & 0 \ -\frac{2}{3} & \frac{2}{5} & 1 \end{pmatrix}$$
 , und $R=egin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \ 0 & \frac{5}{6} & \frac{1}{6} \ 0 & 0 & \frac{3}{5} \end{pmatrix}$.

Man rechnet einfach nach, dass

$$LR = PDA$$

gilt, wobei

$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Die Matrix P ist das Produkt von $P_{2,3}$ und $P_{1,3}$.

Schlußfolgerungen

Aus dem Beipsiel 3.30. kann man folgende Lehre ziehen:

Merke

- Skalierung/Äquilibrierung verbessert die "Konditionszahl der Matrix".
- Pivotisierung verbessert die Stabilität der Gauß-Elimination/ LR-Zerlegung.

Sei $A \in \mathbb{R}^{n \times n}$ eine Matrix, die schon zeilenweise äquilibriert ist. Sei für diese Matrix die LR-Zerlegung PA = LR bekannt.

1. Lösen eines Gleichungssystems

Die Lösung von

$$Ax = b$$

ergibt sich über die Lösung zweier Dreieckssysteme

$$Ax = b \iff PAx = Pb \iff L\underbrace{Rx}_{=y} = Pb$$

- **Bestimme** y durch Vorwärtseinsetzen aus Ly = Pb.
- **b** Berechne x aus Rx = y durch Rückwärtseinsetzen.

2. Mehrere rechte Seiten

Gesucht seien die Lösungen x^k des linearen Gleichungssystems

$$A x^k = b^k, \quad k = 1, \dots, K,$$

wobei A eine konstante Matrix ist und b^k , $k = 1, \ldots, K$, verschiedene rechte Seiten sind (Bsp. Zeitdiskretisierung).

Vorgehen

▶ Bestimme (einmalig) LR-Zerlegung von *A*, d.h.

$$PA = LR$$

Vorwärts-/Rückwärtseinsetzen für jede rechte Seite

$$\begin{array}{rcl} L \, y^k & = & P \, b^k \\ R \, x^k & = & y^k \end{array}$$

Aufwand: $rac{1}{3}n^3 + Kn^2$ (vs. $Krac{1}{3}n^3$ ohne LR-Zerlegung)

3. Berechnung der Inversen

Sei $x^i \in \mathbb{R}^n$ die *i*-te Spalte der Inversen von A:

$$A^{-1} = (x^1 \ x^2 \ \dots \ x^n).$$

Aus $AA^{-1} = I$ folgt

$$A x^i = e^i, \quad i = 1, \dots, n.$$

Zur Berechnung der Inversen bietet sich folgende Strategie an:

- ▶ Bestimme die LR-Zerlegung PA = LR über Gauß-Elimination mit Spaltenpivotisierung,
- ► Löse die Gleichungssysteme

$$LRx^i = Pe^i, \quad i = 1, \dots, n.$$

Gesamtaufwand: etwa $\frac{4}{3}n^3$ Operationen.

4. Berechnung von Determinanten

Aus
$$PA = LR$$
 folgt

$$\det P \det A = \det L \det R = \det R$$
.

Wegen

$$\det P = \det P_{n,r_n} \dots \det P_{n-1,r_{n-1}} \ = (-1)^{\# \mathsf{Zeilenvertauschungen}},$$

folgt

$$\det A = (-1)^{\# {\sf Zeilenvertauschungen}} \prod\limits_{j=1}^n r_{j,j}.$$

Cholesky-Zerlegung

Definition 3.31.

 $A \in \mathbb{R}^{n imes n}$ heißt symmetrisch positiv definit (s.p.d.), falls

$$A^T = A$$
 (Symmetrie)

und

$$x^T A x > 0$$
 (positiv definit)

für alle $x \in \mathbb{R}^n, x \neq 0$, gilt.

Tritt bei vielen (physikalischen) Problemen auf:

- Netzwerke mit passiven Komponenten
- ► Diffusions-/Wärmeleitungsgleichung
- Normalgleichung (Lineare Ausgleichsrechnung)
-

Beispiel 3.32

1. A=I (Identität) ist s.p.d. Die Symmetrie ist trivial und $x^TIx=x^Tx=\|x\|_2^2>0,$

falls $x \neq 0$.

2. Sei $B \in \mathbb{R}^{m \times n}, \ m \geq n$, und B habe vollen Rang. Dann ist $A := B^T B \in \mathbb{R}^{n \times n}$ s.p.d., denn:

$$A^{T} = (B^{T}B)^{T} = B^{T}(B^{T})^{T} = B^{T}B = A.$$

Sei $x \in \mathbb{R}^n, \; x
eq 0$. Dann gilt

$$x^T A x = x^T B^T B x = (Bx)^T (Bx) = \|Bx\|_2^2 \ge 0.$$

Es gilt $x^TAx = \|Bx\|_2^2 = 0$ nur falls Bx = 0 gilt. Da B vollen Rang hat, muss daher x = 0 sein.

Satz 3.33

- $A \in \mathbb{R}^{n \times n}$ sei s.p.d. Dann gelten folgende Aussagen:
- 1. A ist invertierbar, und A^{-1} ist s.p.d.
- 2. A hat nur strikt positive (insbesondere reelle) Eigenwerte.
- 3. Jede Hauptuntermatrix von A ist s.p.d.
- 4. Die Determinante von A ist positiv (und damit die Determinante aller Hauptuntermatrizen von A)
- 5. A hat nur strikt positive Diagonaleinträge und der betragsgrößte Eintrag von A liegt auf der Diagonalen.
- 6. Bei Gauß-Elimination ohne Pivotisierung sind alle Pivotelemente strikt positiv.

Cholesky-Zerlegung

Satz 3.34

Jede s.p.d. Matrix $A \in \mathbb{R}^{n \times n}$ besitzt eine eindeutige Zerlegung

$$A = LDL^T$$
,

wobei $m{L}$ eine normierte untere Dreiecksmatrix und $m{D}$ eine Diagonalmatrix mit Diagonaleinträgen

$$d_{i,i} > 0, i = 1, \ldots, n,$$

ist. Umgekehrt ist jede Matrix der Form LDL^T , wobei D eine Diagonalmatrix ist, die $d_{i,i}>0$ erfüllt, und L eine normierte untere Dreiecksmatrix ist, symmetrisch positiv definit.

Beachte: Aufgrund von Satz 3.33 (5) ist bei s.p.d. Matrizen Gauß-Elimination *ohne Pivotisierung* durchführbar.

⇒ "Symmetrische" LR-Zerlegung

Zusammenfassung

- ▶ Die Kondition des Problems A x = b wird im wesentlichen durch die Konditionszahl $\kappa(A)$ der Matrix A beschrieben.
- ▶ Dreiecksmatrizen ergeben leicht lösbare Systeme: Aufwand ca. $\frac{1}{2}n^2$ Operationen.
- Zeilenskalierung vs. Pivotisierung
 - Skalierung/Äquilibrierung verbessert die "Konditionszahl der Matrix". (sogenannte Vorkonditionierung)
 - Pivotisierung verbessert die Stabilität der Gauß-Elimination/ LR-Zerlegung.
- LR-Zerlegung mit Spaltenpivotisierung: stabile und effiziente Methode, Aufwand $\sim \frac{1}{3} n^3$
- lacktriangleright A s.p.d. \Leftrightarrow es existiert eine Cholesky-Zerlegung $A=LDL^T$.

Verständnisfragen

Es seien $A \in \mathbb{R}^{n \times n}$ beliebig aber regulär, $b \in \mathbb{R}^n$ und gesucht sei die Lösung $x^* \in \mathbb{R}^n$ von A x = b.

- Es existieren stets eine Permutationsmatrix P, eine normierte untere Dreiecksmatrix L und eine obere Dreiecksmatrix R, so dass PA = LR gilt.
- Sei PA = LR die über den Gauß-Algorithmus mit Spaltenpivotisierung berechnete Faktorisierung. Dann gilt: $\det A = \det R$ oder $\det A = -\det R$.
- $oxed{X}$ Ohne Pivotisierung ist die Gauß-Elimination nicht für jedes $oldsymbol{A}$ durchführbar.

Es seien
$$A=egin{pmatrix} -3 & 4 & 1 \ 0 & 4 & -1 \ 1 & -1 & 2 \end{pmatrix}$$
 und D die zugehörige Diagonal-

matrix der Zeilenskalierung. Berechnen Sie $||D||_2$. 0.25