Numerische Mathematik für Maschinenbauer Lineare Ausgleichsrechnung

A. Reusken

K.-H. Brakhage, Saskia Dietze, Thomas Jankuhn

Institut für Geometrie und Praktische Mathematik
RWTH Aachen

Sommersemester 2018

Heute in der Vorlesung

Themen:

Dahmen & Reusken Kap. 4.1-4.4

- ► Lineare Ausgleichsrechnung
 - Problemstellung
 - Kondition
 - 3. Lösungsverfahren
 - ► über Normalgleichungen
 - ► über *QR*-Zerlegung

Was Sie mitnehmen sollten:

- ► Was ist ein lineares Ausgleichsproblem
- ► Wie ist das lineare Ausgleichsproblem konditioniert
- ► Welche Lösungsverfahren gibt es und wie stabil sind diese

Problemstellung

Bisher: Lineare Gleichungssysteme

- ▶ geg.: $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ ges.: $x \in \mathbb{R}^n$, so dass Ax = b
 - ► Annahme: $\det A \neq 0$ ⇒ Spalten von A bilden eine Basis in \mathbb{R}^n ⇒ Ax = b eindeutig lösbar.

Jetzt: Lineare Ausgleichsrechnung

- ▶ geg.: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, m > nges.: $x \in \mathbb{R}^n$, so dass Ax = b \Rightarrow im Allgemeinen nicht lösbar!, d.h. $Ax \neq b$!
- lacktriangle Lösung: Bestimme $x^* \in \mathbb{R}^n$, so dass

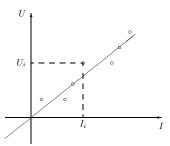
$$x^* = \arg\min_{x \in \mathbb{R}^n} ||Ax - b||_2.$$

Bestimmung des elektrischen Widerstands (Beispiel 4.1.)

- ▶ Ohmsches Gesetz: U = RI
- ► Aufgabe: Bestimme Widerstand *R* im Stromkreis aus einer Reihe von Messungen:

$$(U_i,I_i)$$
 (Spannung, Stromstärke), $i=1,\ldots,m$.

Problem: Messungen (Daten) sind mit Fehlern behaftet, d.h. $U_i \neq R I_i$, für fast alle $i = 1, \ldots, m$.



Beispiel 4.1.

Vorgehen:

► Fehler in Messung *i* (Residuum)

$$r_i = R I_i - U_i, \quad i = 1, \ldots, m$$

► Ein Maß für den Gesamtfehler: Summe der Fehlerquadrate

$$f(R) := \sum_{i=1}^{m} r_i^2 = \sum_{i=1}^{m} (R I_i - U_i)^2$$

lacktriangle Bestimme Widerstand R^* so, dass Gesamtfehler minimal wird

$$R^* = \arg\min_R f(R)$$

ightharpoonup Extremum der quadratischen Funktion f(R)

$$f'(R^*) = 0 \quad \Rightarrow \quad R^* = \left(\sum_{i=1}^m U_i\,I_i
ight) \bigg/ \left(\sum_{i=1}^m I_i^2
ight)$$

[Beispiel-4.1-02]

Fourierapproximation (Beispiel 4.2.)

In der Fourieranalyse wird eine T-periodische Funktion f durch eine Linearkombination der T-periodischen trigonometrischen Polynome

$$1, \cos(ct), \sin(ct), \cos(2ct), \sin(2ct), \dots, \cos(Nct), \sin(Nct)$$

mit
$$c:=rac{2\pi}{T}$$
 in der Form

$$g_N(t) = rac{1}{2}lpha_0 + \sum_{k=1}^N \left(lpha_k\cos(kct) + eta_k\sin(kct)
ight)$$

approximiert.

[Beispiel-4.2-01]

Lösungsverfahren

Beispiel 4.2.

Motivation, Beispiele

000000000000

Annahme: nicht f, sondern nur eine Reihe vom Meßdaten

$$b_i \approx f(t_i), \quad 0 \le t_1 < t_2 < \dots < t_m \le T,$$

ist bekannt, wobei m > 2N + 1.

Ansatz zur Bestimmung der Koeffizienten $\alpha_0, \alpha_1, \beta_1, \alpha_2, \beta_2, \ldots, \alpha_N, \beta_N$:

$$\sum_{i=1}^m \left(g_N(t_i) - b_i
ight)^2 = ext{min.}$$

[Beispiel-4.2-02]

Lösungsverfahren

Allgemeines lineares Ausgleichsproblem

Definition

Zu gegebenen $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$, bestimme $x^* \in \mathbb{R}^n$. für dass

$$\|A\,x^*-b\|_2 = \min_{x\in\mathbb{R}^n} \|A\,x-b\|_2$$

gilt. Diese Problemstellung heißt das lineare Ausgleichsproblem.

oder:

Lineares Ausgleichsproblem

Zu gegebenen $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$, bestimme $x^* \in \mathbb{R}^n$, so dass

$$x^* = \arg\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2.$$

Allgemeines lineares Ausgleichsproblem

Warum 2-Norm?

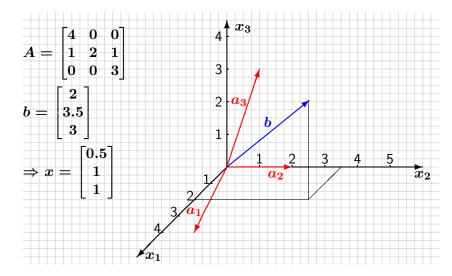
- $||Ax b||_2^2$ ist differenzierbar und Ableitung ist linear
- ► Statistischer Hintergrund ("BLUE").
- ▶ Euklidische Norm bleibt bei orthogonalen Transformationen erhalten, d.h. für jede orthogonale Matrix $Q \in \mathbb{R}^{m \times m}$ ist

$$\min_{x\in\mathbb{R}^n}\|Ax-b\|_2=\min_{x\in\mathbb{R}^n}\|Q(Ax-b)\|_2$$

Auch möglich:

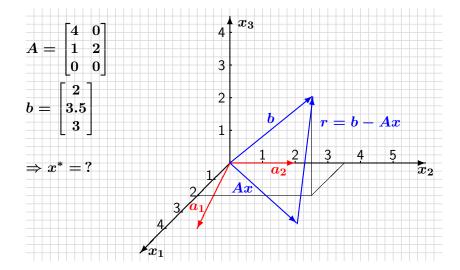
$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_1$$
 oder $\min_{x \in \mathbb{R}^n} \|Ax - b\|_\infty$

⇒ führt auf lineares Optimierungsproblem



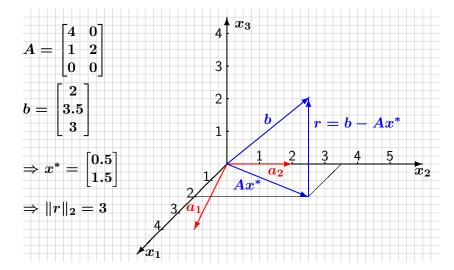
00000000000

Geometrische Interpretation $\min_{x \in \mathbb{R}^2} \|Ax - b\|_2$



00000000000

Geometrische Interpretation $\min_{x \in \mathbb{R}^2} \|Ax - b\|_2$



0000000000000 Problemstellung, Kondition

Man vermutet, dass die Meßdaten

einer Gesetzmäßigkeit der Form

$$y = f(t) = \alpha \frac{1}{1+t} + \beta$$

mit noch zu bestimmenden Parametern $\alpha, \beta \in \mathbb{R}$ gehorchen.

Frage/Problem

▶ Wie lautet das zugehörige lineare Ausgleichsproblem?

Beispiel 4.3.

Motivation, Beispiele

00000000000

Meßdaten

Gesetzmäßigkeit

$$y = f(t) = \alpha \frac{1}{1+t} + \beta$$

Das Ausgleichsproblem lautet
$$\|A\,x^*-b\|_2 = \min_{x\in\mathbb{R}^2} \|A\,x-b\|_2$$
, wobei $x=egin{pmatrix} \frac{1}{1+0} & 1 \ \frac{1}{1+1} & 1 \ \frac{1}{1+2} & 1 \ \frac{1}{1+3} & 1 \end{pmatrix} = egin{pmatrix} 1 & 1 \ \frac{1}{2} & 1 \ \frac{1}{3} & 1 \ \frac{1}{4} & 1 \end{pmatrix}$, $b=egin{pmatrix} 3 \ 2.14 \ 1.86 \ 1.72 \end{pmatrix}$. Matlab-Demo

Normalgleichungen

Die Lösung des linearen Ausgleichsproblems lässt sich auf die Lösung des linearen Gleichungssystems

$$A^T A x = A^T b$$

reduzieren, das häufig als Normalgleichungen bezeichnet wird.

Bemerkung

- ▶ Für $A \in \mathbb{R}^{m \times n}$ ist die Matrix $A^T A \in \mathbb{R}^{n \times n}$ stets symmetrisch.
- lacktriangle Falls $A \in \mathbb{R}^{m imes n}$ vollen (Spalten-)Rang n hat, so ist die Matrix $A^T A \in \mathbb{R}^{n \times n}$ symmetrisch positiv definit.

Annahme:

 \blacktriangleright Wir beschränken uns hier auf den Fall, dass A vollen Spaltenrang hat: Rang(A) = n (Fall Rang(A) < n, siehe SVD).

13/1

0000000000000

Normalgleichungen

Die Lösung des linearen Ausgleichsproblems lässt sich auf die Lösung des linearen Gleichungssystems

$$A^T A x = A^T b$$

reduzieren, das häufig als Normalgleichungen bezeichnet wird.

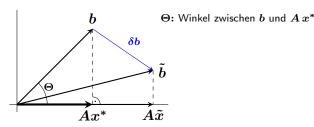
Satz 4.5.

 $x^* \in \mathbb{R}^n$ ist genau dann Lösung des linearen Ausgleichsproblems, wenn x^* Lösung der Normalgleichungen

$$A^TAx^* = A^Tb$$

ist. Das System der Normalgleichungen hat stets mindestens eine Lösung. Sie ist genau dann eindeutig, wenn Rang(A) = n gilt.

Für
$$A\in\mathbb{R}^{m imes n(m
eq n)}$$
 sei $\kappa_2(A):=\max_{x
eq 0}rac{\|A\,x\|_2}{\|x\|_2}/\min_{x
eq 0}rac{\|A\,x\|_2}{\|x\|_2}.$



Satz 4.7.

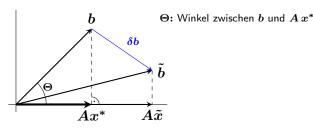
Motivation, Beispiele

Für die Kondition des linearen Ausgleichsproblems bezüglich Störungen in b gilt

$$rac{\| ilde{x} - x^*\|_2}{\|x^*\|_2} \leq rac{\kappa_2(A)}{\cos\Theta} rac{\| ilde{b} - b\|_2}{\|b\|_2}.$$

Kondition des linearen Ausgleichsproblems

Für
$$A \in \mathbb{R}^{m imes n(m
eq n)}$$
 sei $\kappa_2(A) := \max_{x
eq 0} rac{\|A\,x\|_2}{\|x\|_2} / \min_{x
eq 0} rac{\|A\,x\|_2}{\|x\|_2}.$



Satz 4.9.

Motivation, Beispiele

Für die Kondition des linearen Ausgleichsproblems bezüglich Störungen in A gilt

$$\frac{\|\tilde{x} - x^*\|_2}{\|x^*\|_2} \le \left(\kappa_2(A) + \kappa_2(A)^2 \tan \Theta\right) \, \frac{\|\tilde{A} - A\|_2}{\|A\|_2}$$

Gegeben seien

$$A:=egin{pmatrix}1&1\0&0\0&1\end{pmatrix}$$
 und $b:=egin{pmatrix}0.01\1\0\end{pmatrix},$

sowie eine gestörte rechte Seite $\tilde{b}=(0.01,1,0.01)^T$. Bestimmen Sie x^* und \tilde{x} , und diskutieren Sie die Kondition des linearen Ausgleichsproblems.

Die Lösung der Normalgleichungen liefert

$$x^* = (A^T A)^{-1} A^T b = \begin{pmatrix} 0.01 \\ 0 \end{pmatrix},$$

sowie für die gestörte rechte Seite

$$ilde{x} = (A^TA)^{-1}A^T ilde{b} = \begin{pmatrix} 0 \ 0.01 \end{pmatrix}.$$

[Beispiel-4.8-01]

Lösungsverfahren

Beispiel 4.8.

Motivation, Beispiele

Daraus folgt

$$rac{\| ilde{x} - x^*\|_2}{\|x^*\|_2} pprox 100 \cdot rac{\| ilde{b} - b\|_2}{\|b\|_2},$$

also eine schlechte Kondition des linearen Ausgleichsproblems.

Mit Hilfe von Satz 4.7. erhält man aus

$$\kappa_2(A)pprox 2.62$$
 und $\cos\Theta=rac{\|A\,x^*\|_2}{\|b\|_2}=0.01$

für die Kondition bezüglich Störungen in b

$$rac{\kappa_2(A)}{\cos\Theta}=262,$$

d.h. eine schlechte Kondition, obwohl $\kappa_2(A)$ klein ist.

Lösung über Normalgleichungen

Da die Matrix A^TA symmetrisch positiv definit ist, ergibt sich folgende Methode:

Lösung über Normalgleichungen

- ightharpoonup Berechne A^TA , A^Tb .
- lacktriangle Berechne die Cholesky-Zerlegung von A^TA

$$LDL^T = A^T A$$

► Löse

$$L y = A^T b, \quad L^T x = D^{-1} y$$

durch Vorwärts- bzw. Rückwärtseinsetzen.

Lösung über Normalgleichungen — Nachteile

- ▶ Die Berechnung von A^TA ist für große m aufwendig und birgt die Gefahr von Genauigkeitsverlust durch Auslöschungseffekte. Die Einträge von A^TA sind also mit (möglicherweise erheblichen relativen) Fehlern behaftet.
- lacktriangle Bei der Lösung des Systems $A^TA\,x = A^T\,b$ über das Cholesky-Verfahren werden die Rundungsfehler in A^TA und A^Tb mit

$$\kappa_2(A^TA)$$

verstärkt. Es gilt

$$\kappa_2(A^T A) = \kappa_2(A)^2.$$

Folglich wird die Rundungsfehlerverstärkung durch $\kappa_2(A)^2$ beschrieben.

Beispiel 4.12.

Gegeben seien

$$A = egin{pmatrix} \sqrt{3} & \sqrt{3} \ \delta & 0 \ 0 & \delta \end{pmatrix}, \; b = egin{pmatrix} 2\sqrt{3} \ \delta \ \delta \end{pmatrix}, \; 0 < \delta \ll 1.$$

Bestimmen Sie die Lösung des linearen Ausgleichsproblems über die Normalgleichungen und diskutieren Sie das Ergebnis.

- ▶ Das lineare Ausgleichsproblem hat die Lösung $x^* = (1,1)^T$ (für alle $\delta > 0$).
- ▶ Es gilt $\Theta = 0$ und damit $\cos \Theta = 1$, d.h. die Kondition des Problems wird ausschließlich durch $\kappa_2(A)$ beschrieben.
- ► Man rechnet einfach nach, dass

$$\kappa_2(A)pprox rac{\sqrt{6}}{\delta}.$$

[Beispiel-4.12-01]

ightharpoonup Ein stabiles Verfahren sollte ein Resultat $ilde{x}$ liefern, mit

$$rac{\| ilde{x}-x^*\|_2}{\|x^*\|_2}\lessapprox \kappa_2(A) ext{ eps.}$$

▶ Die Lösung dieses Problems über die Normalgleichungen und das Cholesky-Verfahren auf einer Maschine mit $eps \approx 10^{-16}$ ergibt jedoch:

$$\delta = 10^{-4}: \ \frac{\|\tilde{x} - x^*\|_2}{\|x^*\|_2} \approx 2 \cdot 10^{-8} \approx \frac{1}{3} \kappa_2(A)^2 \, \mathrm{eps}$$

$$\delta = 10^{-6}: \ \frac{\|\tilde{x} - x^*\|_2}{\|x^*\|_2} \approx 2 \cdot 10^{-4} \approx \frac{1}{3} \kappa_2(A)^2 \text{ eps}$$

[Beispiel-4.12-02]

Zur Erinnerung:

Motivation, Beispiele

▶ Für $A \in \mathbb{R}^{m \times n}$, m > n, mit $\operatorname{Rang}(A) = n$, folgt aus der QR-Zerlegung von A, dass

$$Q\,A=R=egin{pmatrix} \widetilde{R}\ 0 \end{pmatrix} egin{pmatrix} n\ m-n \end{pmatrix},$$

wobei die obere Dreiecksmatrix $\widetilde{R} \in \mathbb{R}^{n \times n}$ regulär ist.

► Multiplikation mit (einer orthogonalen Matrix) *Q* verändert nicht die euklidische Länge eines Vektors, d.h.

$$\|x\|_2 = \|Qx\|_2$$
 für alle $x \in \mathbb{R}^n$.

lacktriangleright Das lineare Ausgleichsproblem: bestimme $x^* \in \mathbb{R}^n$, für dass

$$\|A x^* - b\|_2 = \min_{x \in \mathbb{R}^n} \|A x - b\|_2$$

gilt.

Daraus folgt:

Motivation, Beispiele

$$egin{array}{lll} \|A\,x^*-b\|_2 &=& \min_{x\in\mathbb{R}^n}\|A\,x-b\|_2 = \min_{x\in\mathbb{R}^n}\|Q(Ax-b)\|_2 \ &=& \min_{x\in\mathbb{R}^n}\|Q\,A\,x-Q\,b\|_2 \ &=& \min_{x\in\mathbb{R}^n}\|R\,x-Q\,b\|_2, \end{array}$$

mit
$$R=inom{\widetilde{R}}{0}{n\choose 1}{n\choose m-n},\quad Q\,b=inom{b_1}{b_2}{n\choose 1}{n\choose m-n},$$
 erhält man $\|A\,x^*-b\|_2^2 \ = \ \min_{x\in\mathbb{R}^n}\left\|inom{\widetilde{R}}{0}\,x-inom{b_1}{b_2}
ight\|_2^2$

$$egin{aligned} &=& \min_{x \in \mathbb{R}^n} \left(\|\widetilde{R}\,x - b_1\|_2^2 + \|b_2\|_2^2
ight) \ &=& \|b_2\|_2^2 \ \ ext{für} \ \ \widetilde{R}\,x = b_1 \end{aligned}$$

Lösung über QR-Zerlegung

Satz 4.13.

Seien $A \in \mathbb{R}^{m \times n}$ mit $\mathrm{Rang}(A) = n$ und $b \in \mathbb{R}^m$.

Sei $Q \in \mathbb{R}^{m \times m}$ eine orthogonale Matrix und $\widetilde{R} \in \mathbb{R}^{n \times n}$ eine obere Dreiecksmatrix, so dass

$$QA = R := inom{\widetilde{R}}{0} igr\} m - n.$$

Dann ist die Matrix $\widetilde{m{R}}$ regulär. Schreibt man

$$Qb = inom{b_1}{b_2} n \ m-n,$$

dann ist $x^* = \widetilde{R}^{-1} \, b_1$ die Lösung des linearen Ausgleichsproblems.

Die Norm $||A x^* - b||_2$ ist gerade durch $||b_2||_2$ gegeben.

Lösung über QR-Zerlegung

Aus Satz 4.13. ergibt sich nun folgende Methode:

▶ Bestimme die QR-Zerlegung von A

$$QA = inom{\widetilde{R}}{0} \qquad (\widetilde{R} \in \mathbb{R}^{n imes n}),$$

z.B. mittels Givens-Rotationen oder Householder-Spiegelungen und berechne

$$Qb=egin{pmatrix} b_1\ b_2 \end{pmatrix}.$$

- ▶ Löse $Rx = b_1$ mittels Rückwärtseinsetzen.
- lacktriangle Die Norm des Residuums $\min_{x\in\mathbb{R}^n}\|Ax-b\|_2=\|Ax^*-b\|_2$ ist gerade durch $||b_2||_2$ gegeben.

Gegeben seien

$$A=egin{pmatrix} 3&7\0&12\4&1 \end{pmatrix},\quad b=egin{pmatrix} 10\1\5 \end{pmatrix},$$

d.h. m = 3, n = 2.

Man bestimme die Lösung $x^* \in \mathbb{R}^2$ des zugehörigen linearen Ausgleichsproblem über QR-Zerlegung mittels Givens-Rotation.

Annullierung von $a_{3,1}$:

$$A^{(2)} = G_{1,3}\, A = egin{pmatrix} 5 & 5 \ 0 & 12 \ 0 & -5 \end{pmatrix}, \quad b^{(2)} = G_{1,3}\, b = egin{pmatrix} 10 \ 1 \ -5 \end{pmatrix}.$$

Zur Erinnerung: die Transformationen $G_{1,3}A$ und $G_{1,3}b$ werden in der Praxis ausgeführt, ohne dass $G_{1,3}$ explizit berechnet wird.

Lösungsverfahren

00000000000000

Lösungsverfahren

000000000000000

Motivation, Beispiele

Annullierung von $a_{3,2}^{(2)}$:

$$A^{(3)} = G_{2,3} \, A^{(2)} = egin{pmatrix} 5 & 5 \ 0 & 13 \ 0 & 0 \end{pmatrix} = egin{pmatrix} \widetilde{R} \ 0 \end{pmatrix}, \; b^{(3)} = G_{2,3} \, b^{(2)} = egin{pmatrix} 10 \ rac{37}{13} \ rac{-55}{12} \end{pmatrix}$$

Lösung von

$$\begin{pmatrix} 5 & 5 \\ 0 & 13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 10 \\ \frac{37}{13} \end{pmatrix}$$

durch Rückwärtseinsetzen liefert

$$x^* = \left(\frac{301}{160}, \frac{37}{160}\right)^T$$
.

Als Norm des Residiums ergibt sich:

$$\|b_2\|_2 = rac{55}{13}.$$

Lösung über QR-Zerlegung — Stabilität

Beachte

▶ Wegen Satz 3.14 gilt

$$\kappa_2(A) = \kappa_2(\widetilde{R}),$$

d.h. das Quadrieren der Kondition, das bei den Normalgleichungen auftritt, wird vermieden.

Die Berechnung der QR-Zerlegung über Givens- oder Householder-Transformationen ist ein sehr stabiles Verfahren, wobei die Fehlerverstärkung durch $\kappa_2(A)$ (und nicht $\kappa_2(A)^2$) beschrieben wird.

Gegeben seien

$$A = egin{pmatrix} \sqrt{3} & \sqrt{3} \ \delta & 0 \ 0 & \delta \end{pmatrix}, \; b = egin{pmatrix} 2\sqrt{3} \ \delta \ \delta \end{pmatrix}, \; 0 < \delta \ll 1.$$

Bestimmen Sie die Lösung des linearen Ausgleichsproblems über die QR-Zerlegung und diskutieren Sie das Ergebnis.

Auf einer Maschine mit $\mathrm{eps} \approx 10^{-16}$ erhält man

$$\delta = 10^{-4}: \ \frac{\|\tilde{x} - x^*\|_2}{\|x^*\|_2} \approx 2.2 \cdot 10^{-16},$$

$$\delta = 10^{-6}: \frac{\|\tilde{x} - x^*\|_2}{\|x^*\|_2} \approx 1.6 \cdot 10^{-16}.$$

Wegen der sehr guten Stabilität dieser Methode sind die Resultate viel besser als in Beispiel 4.12..

Lösungsverfahren

000000000000

1.1

11

11

Zusammenfassung

	Normalgleichungen	QR-Zerlegung
Rechenaufwand $(m\gg n)$	ca. $rac{1}{2}mn^2$	ca. mn^2 (Householder)
Stabilität	instabil, wenn $\kappa_2(A)\gg 1$ und $ hetapprox 0$ stabil, wenn	stabil
	$\kappa_2(A)$ moderat	

Zusammenfassung

► Aufgabe:

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2 \;\; \Leftrightarrow \;\; A^TAx = A^Tb$$

- ▶ Eindeutige Lösung $\Leftrightarrow \operatorname{Rang}(A) = n$
- ► Kondition (nur Störung in *b*):

$$\frac{\|\tilde{x} - x^*\|_2}{\|x^*\|_2} \le \frac{\kappa_2(A)}{\cos \Theta} \cdot \frac{\|\tilde{b} - b\|_2}{\|b\|_2}$$

- ► Lösungsverfahren:
 - $lacktrianglerichungen A^TAx = A^Tb$ (Cholesky-Verfahren)
 - ► über *QR*-Zerlegung (Householder, Givens)

Verständnisfragen

Es seien $A \in \mathbb{R}^{m \times n}$, mit $\operatorname{Rang}(A) = n < m$, und $b \in \mathbb{R}^m$. Weiter seien $Q \in \mathbb{R}^{m \times m}$ eine orthogonale Matrix und $\widetilde{R} \in \mathbb{R}^{n \times n}$ eine obere Dreiecksmatrix so, dass $QA = (\widetilde{R}, 0)^T$ gilt. Weiter seien $x^* \in \mathbb{R}^n$ die eindeutige Minimalstelle des Minimierungsproblems $\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$ und $\Theta \in \left[0, \frac{\pi}{2}\right)$ der Winkel zwischen Ax^* und b.

 $\boxed{\mathbf{w}}$ Es gilt $\det \widetilde{R} \neq 0$.

 $oxed{\mathsf{f}}$ Es gilt $\widetilde{R}x^*=Qb$.

 $oxed{\mathbb{W}}$ Es gilt $\kappa_2(A)=\kappa_2(\widetilde{R})$.

Es seien $A=egin{pmatrix}1&1\0&1\0&1\end{pmatrix}$, $b=egin{pmatrix}2\1\1\end{pmatrix}$.

Bestimmen Sie Θ . $\boxed{0}$

Verständnisfragen

Es seien $A \in \mathbb{R}^{m \times n}$ mit $\operatorname{Rang}(A) = n < m, \ b \in \mathbb{R}^m$, $Q \in \mathbb{R}^{m \times m}$ eine orthogonale Matrix und $R \in \mathbb{R}^{m \times n}$ eine obere Dreiecksmatrix so, dass QA = R gilt. Weiterhin seien $x^* \in \mathbb{R}^n$ die eindeutige Minimalstelle des Minimierungsproblems $\min_{x \in \mathbb{R}^n} \|Ax - b\|_2$ sowie $\Theta \in \left[0, \frac{\pi}{2}\right)$ der Winkel zwischen Ax^* und b.

- f Je kleiner der Winkel Θ , desto schlechter ist das Problem konditioniert.
- $oxed{\mathsf{w}}$ Es gilt $\|A\,x-b\|_2=\|R\,x-Q\,b\|_2$ für beliebiges $x\in\mathbb{R}^n$.
- $oldsymbol{\mathsf{f}}$ Die Matrix $oldsymbol{R}$ kann man über Gauß-Elimination mit Spaltenpivotisierung bestimmen.
- lacksquare Es gilt $A\,x^*-b\perp \mathsf{Bild}(A)$.