Numerische Mathematik I für Ingenieure SS19 Verständnisfragen – Übung 2

Die Lösungen der Verständnisfragen sollten nicht auswendig gelernt werden. Es ist wichtig zu verstehen und begründen zu können, warum die entsprechenden Aussagen richtig oder falsch sind.

VF-1: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b, m, r, R)$ die Standardrundung, und es sei \ominus (gem. Vorlesung/Buch) der Minusoperator für \mathbb{M} , d.h.: $x \ominus y := fl(fl(x) - fl(y))$ wobei wir hier annehmen, dass alle Zwischenergebnisse in \mathbb{D} liegen. Alle Zahlen sind im Dezimalsystem angegeben.

1110	and dimension, quee dire 2 vicenent germane in 2 megen. The 2 dimen cinq in 2 cannata, even angeges en		
1.	Es existiert ein $x \in \mathbb{D}$, so dass $\frac{ f(x)-x }{ x } = \text{eps.}$		
2.	Die Subtraktion zweier Zahlen mit demselben Vorzeichen ist immer schlecht konditioniert.		
3.	Die Zahl 17 ist in $\mathbb{M}(2,6,-4,4)$ exakt darstellbar.		
4.	Bei einem stabilen Algorithmus ist der Ausgabefehler nicht viel größer als der Eingabefehler.		
5.	Es gilt $\frac{ (x \ominus y) - (x - y) }{ x - y } \le \text{eps für alle } x, y \in \mathbb{M}(b, m, r, R) \text{ mit } x \ne y.$		
6.	Es gilt $\frac{ (x\ominus y)-(x-y) }{ x-y } \le \text{eps für alle } x,y \in \mathbb{D} \text{ mit } x \ne y.$		
7.	Berechne x_{MAX} für $\mathbb{M}(3,2,-1,4)$.		

VF-2: Es seien x_{MIN} bzw. x_{MAX} die kleinste bzw. größte (strikt) positive Zahl sowie eps die relative Maschinengenauigkeit in der Menge $\mathbb{M}(b,m,r,R)$ der Maschinenzahlen gemäß Vorlesung/Buch und $\mathbb{D} := [-x_{\text{MAX}}, -x_{\text{MIN}}] \cup [x_{\text{MIN}}, x_{\text{MAX}}]$. Ferner beschreibe fl : $\mathbb{D} \to \mathbb{M}(b, m, r, R)$ die Standardrundung. Alle Zahlen sind im Dezimalsystem angegeben.

1.	In $M(10, 8, -2, 4)$ gilt: $x_{MIN} = 0.001$.	
2.	Für jedes $x \in \mathbb{D}$ existiert eine Zahl ϵ mit $ \epsilon \leq$ eps und $\mathrm{fl}(x) = x + \epsilon$.	
3.	Es gilt $\left \frac{\mathbf{fl}(x) - x}{x} \right \le \text{eps für alle } x \in \mathbb{D}.$	
4.	Die Zahl 256 ist in $\mathbb{M}(2,4,-6,6)$ exakt darstellbar.	
5	For with $ \theta(x+y) \le \theta(x) + \theta(y) $ für allo $x, y \in \mathbb{D}$	

5. Es gilt
$$|\operatorname{fl}(x+y)| \le |\operatorname{fl}(x)| + |\operatorname{fl}(y)|$$
 für alle $x, y \in \mathbb{D}$.

6. Die Funktion
$$f(x) = \frac{1}{x+1}$$
 ist gut konditioniert für alle $x \in (-1,1)$.

7. Gib die nicht-normalisierte Darstellung der Zahl 93 in
$$\mathbb{M}(5,8,-8,8)$$
 an.

VF-3: Es sei $A \in \mathbb{R}^{n \times n}$ mit $\det(A) \neq 0$, und $\kappa_2(A)$ bezeichne die Konditionszahl der Matrix A bezüglich der Euklidischen Norm. Beantworte alle Fragen mit wahr oder falsch.

1.	$\kappa_2(A) \ge 1.$
2.	$\kappa_2(\alpha A) = \kappa_2(A)$ für alle $\alpha \in \mathbb{R}, \ \alpha \neq 0$.

3.
$$\kappa_2(A^{-1}) = \kappa_2(A)^{-1}$$
.

4.
$$\kappa_2(A) = 1$$
 falls A orthogonal ist.

5. Berechne
$$\kappa_2(A)$$
 für $A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$