Numerische Mathematik I für Ingenieure SS19 $Verst \ddot{a}ndnisfragen - \ddot{U}bung \ 5$

VF-1: Mit $A, L, D \in \mathbb{R}^{n \times n}$ seien L eine normierte linke untere Dreiecksmatrix und D eine Diagonalmatrix.			
1.	Ist A regulär, so existiert stets eine $L D L^T$ –Zerlegung mit $A = LDL^T$.		
2.	Ist A positiv definit und symmetrisch, so existiert stets eine LDL^T –Zerlegung mit $A = LDL^T$, wobei alle Diagonalelemente von D positiv sind.		
3.	Nur mithilfe einer zusätzlichen Pivotisierung kann man garantieren, dass beim Cholesky-Algorithmus keine Division durch Null auftritt.		
4.	Nur für positiv definite Matrizen A kann man mit dem Cholesky-Algorithmus eine Zerlegung $A=LDL^T$ finden.		
5.	Ist A regulär und symmetrisch, so existiert stets eine LDL^T –Zerlegung, so dass $A=LDL^T$ gilt.		
6.	Ist A symmetrisch positiv definit, so existiert stets eine normierte untere Dreiecksmatrix L und eine obere Dreiecksmatrix R , so dass $A = LR$.		
7.	Es sei $A = LDL^T$ die LDL^T -Zerlegung von A mit einer Diagonalmatrix D , für die $\det(D) > 0$ gilt. Dann ist A symmetrisch positiv definit.		
8.	Es sei $A=LDL^T$ die Cholesky-Zerlegung der positiv definiten Matrix A . Dann ist $A^{-1}=L^{-T}D^{-1}L^{-1}$ die Cholesky-Zerlegung der Matrix A^{-1} .		
9.	Es seien $n=4$ und $A=LDL^T$ die LDL^T -Zerlegung von A mit einer Diagonalmatrix D , für die $d_{ii}=i$ $(i=1,\ldots,4)$ gilt. Berechne $\det(A)$.		

VF-2: Es seien $A \in \mathbb{R}^{n \times n}$ eine allgemeine, reguläre Matrix und $x, b \in \mathbb{R}^n$ mit Ax = b. Weiter sei $R \in \mathbb{R}^{n \times n}$ eine reguläre, obere Dreiecksmatrix und $S \in \mathbb{R}^{n \times n}$ eine symmetrische, positiv-definite Matrix. Beantworte alle Fragen mit wahr oder falsch!

|--|

- 2. Die Lösung von Ax = b per Gaußelimination benötigt $n^3 + \mathcal{O}(n^2)$ Ops
- 3. Die Lösung von Sx = b per Choleskyzerlegung benötigt $\frac{n^3}{3} + \mathcal{O}(n^2)$ Ops
- 4. Die Skalierung von A benötigt $\mathcal{O}(n^2)$ Ops
- 5. Die Lösung von Ax = b per Gaußelimination benötigt $\alpha n^3 + \mathcal{O}(n^2)$ Ops. Gib α an.

VF-3: Es seien $A, B \in \mathbb{R}^{n \times n}$ orthogonale (quadratische) Matrizen, d.h. $A^T A = I$ und $B^T B = I$, wobei I die Einheitsmatrix ist. Weiter bezeichne $\|.\|_2$ die Euklidische Vektor- / Matrixnorm und κ_2 die zugehörige Konditionszahl. Welche der folgenden Aussagen sind immer korrekt?

1. 4	A^T ist	orthogonal
--------	-----------	------------

- $2. \mid A A^T = I$
- 3. A ist nicht symmetrisch
- 4. A ist symmetrisch
- 5. AB ist eine orthogonale Matrix
- 6. A + B ist eine orthogonale Matrix
- 7. Die Spalten von A sind paarweise orthogonal
- 8. Die Zeilen von A sind paarweise orthogonal
- 9. Alle Zeilen und Spalten von A haben die Euklidische Länge 1
- 10. $||Ax||_2 = ||x||_2 \quad \forall x \in \mathbb{R}^n$
- 11. Für jede orthogonale Matrix Q gilt $Q^2 = I$.
- 12. Gib $\kappa_2(A)$ an.