Numerische Mathematik I für Ingenieure SS19 Verständnisfragen – Hausübung 7

VI	VF-1: Sei $A \in \mathbb{R}^{m \times n}$ mit $m \ge n$. Beantworte alle Fragen mit wahr oder falsch!			
1.	Der Aufwand zur Berechnung von A^TA ist proportional zu $m^2 n$.			
2.	Der Aufwand zur Berechnung von A^TA ist proportional zu $n^2 m$.			
3.	Der Aufwand zur Berechnung von A^TA ist stets größer als der zum Lösen der Normalgleichungen.			
4.	Zur Lösung der Normalgleichungen verwendet man das Cholesky-Verfahren, weil das Vorwärts-/Rückwärtseinsetzen bei der L D L^T -Zerlegung ungefähr halb soviele Operationen benötigt wie das bei einer L R -Zerlegung.			
5.	Zur Berechnung der LDL^T -Zerlegung von A^TA benötigt man etwa αn^p Operationen. Gib α an.			

VF-2: Mit m > n und A ∈ ℝ^{m×n}, x ∈ ℝⁿ, b ∈ ℝ^m soll das lineare Ausgleichsproblem x* = argmin_{x∈ℝⁿ} ||Ax-b||₂ gelöst werden. Hierbei habe die Matrix A den Rang n und die Cholesky-Zerlegung A^T A = LDL^T. Beantworte alle Fragen mit wahr oder falsch!
1. Es gilt L^Tx* = D⁻¹y, wobei y die Lösung der Gleichung Ly = b ist.
2. Die Normalgleichungen lassen sich immer mit Gauß-Elimination ohne Pivotisierung lösen.
3. Wenn die Spalten von A orthonormal sind, dann ist x* auch die Lösung von ||x - A^T b||₂ → min_{x∈ℝⁿ}.
4. Es gilt stets ||LDL^Tx* - A^Tb||₂ = 0.
5. Zur Berechnung der LDL^T-Zerlegung von A^TA benötigt man etwa α n^p Operationen. Gib p an.

VF-3: Mit m > n und $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ soll das lineare Ausgleichsproblem $x^* = \underset{\text{argmin}_{x \in \mathbb{R}^n}}{\operatorname{min}} \|Ax - b\|_2$ gelöst werden. Hierbei habe die Matrix A den Rang n. Beantworte alle Fragen mit wahr oder falsch!

1. Wegen $\kappa_2(A^TA) = \kappa_2(A)^2$ sind die Normalgleichungen für die numerische Lösung des Ausgleichsproblems immer ungeeignet.

2. Die Normalgleichungen lassen sich mit dem Cholesky-Verfahren lösen, nicht aber mit Gauß-Elimination mit Pivotisierung.

3. Mit der Cholesky-Zerlegung $A^TA = LDL^T$ gilt stets $L^Tx^* = D^{-1}y$, wobei y die Lösung der Gleichung $Ly = A^Tb$ ist.

4. Es gilt stets $\|Ax^* - b\|_2 = \|LDL^Tx^* - A^Tb\|_2$.

5. Für welche α ist die Matrix $Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \alpha \end{pmatrix}$ orthogonal?

VF-4: Mit mit $m > n$ und $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ soll das lineare Ausgleichsproblem $x^* = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \ Ax - b\ _2$ gelöst werden. Beantworte alle Fragen mit wahr oder falsch!			
1.	Die Normalgleichungen tragen ihren Namen, weil das damit berechnete Residuum senkrecht auf b steht.		
2.	Wenn man die Normalgleichungen statt mit Cholesky-Verfahren mit einer Q R -Zerlegung von A^T A löst, dann bekommt man die selbe Genauigkeit in x^* wie bei der Lösung mittels Q R -Zerlegung von A .		
3.	Im Gegensatz zu Givens-Rotationen lässt sich mit Householder-Spiegelungen das Residuum $\ Ax - b\ _2$ nicht direkt aus dem transformierten System ablesen, sondern man muss erst $Ax - b$ explizit ausrechnen.		
4.	Bei der Verwendung einer QR -Transformation (Givens/Householder) muss die Matrix Q nicht explizit aufgestellt werden, um die Lösung x zu erhalten.		
5.	Es sei $A = \begin{pmatrix} \cos(0.5) & \sin(0.5) \\ -\sin(0.5) & \cos(0.5) \end{pmatrix}$. Berechne $ A _2$.		

VF-5: Gegeben seien $A \in \mathbb{R}^{m \times n}$ mit vollem Rang und m > n, eine QR-Zerlegung A = QR und $b \in \mathbb{R}^m$. Es seien $Q^TA = R := \begin{pmatrix} \tilde{R} \\ 0 \end{pmatrix}$ mit $\tilde{R} \in \mathbb{R}^{n \times n}$ und $Q^Tb = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ mit $b_1 \in \mathbb{R}^n$ und $b_2 \in \mathbb{R}^{(m-n)}$. Weiter sei $x^* = \operatorname{argmin}_{x \in \mathbb{R}^n} \|Ax - b\|_2$ (die Lösung des zugehörigen linearen Ausgleichproblems).

1. Es gilt det $R \neq 0$.

2. Das Residuum des zugehörigen linearen Ausgleichproblems ist $\|b_1\|_2$.

3. Es gilt $\|Ax - b\|_2 = \|Rx - Q^Tb\|_2$ für alle $x \in \mathbb{R}^n$.

4. Die Lösung des linearen Ausgleichsproblems ist gegeben durch $x^* = R^{-1}Q^Tb$.

5. Es seien $Q = \begin{pmatrix} 0.6 & 0.8 \\ -0.8 & 0.6 \end{pmatrix}$ und $R = \begin{pmatrix} 2 & 0 \\ 0 & 1.5 \end{pmatrix}$. Berechne $\kappa_2(A)$.

	VF-6: Gesucht ist ein Fixpunkt der Abbildung $\Phi(x) = 0.1 + \frac{1}{2}\sin(x)$. Für $x_0 \in \mathbb{R}$ wird die Fixpunktiteration $x_{k+1} = \Phi(x_k), \ k = 0, 1, 2, \dots$ definiert.			
1.	Alle Voraussetzungen des Banachschen Fixpunktsatzes sind für Φ auf dem Intervall $[-1,0]$ erfüllt.			
2.	Alle Voraussetzungen des Banachschen Fixpunktsatzes sind für Φ auf dem Intervall $[-1,1]$ erfüllt.			
3.	Das Problem $x = \Phi(x), x \in \mathbb{R}$, hat eine eindeutige Lösung.			
4.	Die Fixpunktiteration konvergiert für beliebiges $x_0 \in \mathbb{R}$.			
5.	Berechne x_2 zu $x_0 = 0$.			