Numerische Mathematik I für Ingenieure SS19 Verständnisfragen – Übung 10

VF-1: Es seien $F: \mathbb{R}^n \to \mathbb{R}^m$ mit m > n und $x^* \in \mathbb{R}^n$ eine Lösung des zugehörigen nichtlinearen Ausgleichsproblems $||F(x)||_2 \to \min$ sowie $\phi(x) := \frac{1}{2}F(x)^T F(x)$. Weiterhin nehmen wir an, dass x^* in einer Umgebung U eindeutig ist und F'(x) in U vollen Rang hat. Dann gilt: (Beantworte alle Fragen mit wahr oder falsch!)

φ(x*) = min_{x∈U} φ(x).
Die Gauß-Newton-Methode zur Lösung des nichtlinearen Ausgleichsproblems kann als Fixpunktiteration geschrieben werden mit der Iterationsfunktion Φ(x) := x - (F'(x)^TF'(x))⁻¹ ∇φ(x).
Falls die Gauß-Newton-Methode konvergiert, dann konvergiert sie lokal quadratisch.
Lokale Maxima und Sattelpunkte sind für die Gauß-Newton-Methode abstoßend.
Das Gauß-Newton-Verfahren konvergiere mit der genauen Konvergenzordnung 2. Dann konvergiert das Levenberg-Marquardt mit konstantem λ = 1 höchstens mit der Konvergenzordnung p. Gib p an.

VF-2: Es sei $F: \mathbb{R}^n \to \mathbb{R}^m$ mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem: Bestimme $x^* \in \mathbb{R}^n$ so, dass $||F(x^*)||_2 = \min_{x \in \mathbb{R}^n} ||F(x)||_2$. Dazu sei noch $\phi(x) = 1/2 \cdot F(x)^T F(x)$. Weiterhin nehmen wir an, dass x^* in einer Umgebung U eindeutig sowie F zweimal stetig differenzierbar ist und F'(x) in U vollen Rang hat. Beantworte alle Fragen mit wahr oder falsch!

- 1. Das Gauß-Newton-Verfahren ist eine Fixpunktiteration.
- 2. Mit genügend guten Startwerten kann man mit dem Gauß-Newton-Verfahren auch lokale Maxima von ϕ bestimmen.
- 3. Mit genügend guten Startwerten kann man mit dem Gauß-Newton-Verfahren immer die lokalen Minima von ϕ bestimmen.
- 4. Wenn $||F(x^*)||_2 = 0$ ist, so hat das Gauß-Newton-Verfahren eine Konvergenzordnung p > 1.
- 5. Sei nun $F(x,y) = \begin{pmatrix} (x-1)^2 \\ 2xy-3 \\ 3y-2 \end{pmatrix}$. Wir betrachten $||F(x,y)||_2 \to \text{min. Bestime für } (x_0,y_0) = (0,0)$ $(x_1,y_1) \text{ mit dem Gauß-Newton-Verfahren und gib } y_1 \text{ an.}$

VF-3: Es sei $F : \mathbb{R}^n \to \mathbb{R}^m$ mit m > n. Wir betrachten das (nichtlineare) Ausgleichsproblem $\min_{x \in \mathbb{R}^n} ||F(x)||_2$. Beantworte alle Fragen mit wahr oder falsch, bzw. gib einen numerischen Wert mit fünf signifikanten Ziffern an!

- 1. Das Gauß-Newton-Verfahren ist lokal quadratisch konvergent.
- 2. Das Levenberg-Marquardt-Verfahren ist lokal quadratisch konvergent.
- 3. Beim Levenberg-Marquardt-Verfahren hat das linearisierte Ausgleichsproblem in jedem Iterationsschritt stets eine eindeutige Lösung.
- 4. Beim Gauß-Newton-Verfahren hat das linearisierte Ausgleichsproblem in jedem Iterationsschritt stets eine eindeutige Lösung.
- Sei nun $F(x,y) = \begin{pmatrix} (x-1)^2 \\ 2x-3 \\ 3y-2 \end{pmatrix}$. Wir betrachten $||F(x,y)||_2 \to \text{min. Bestime für } (x_0,y_0) = (0,0)$ $(x_1,y_1) \text{ mit dem Gauß-Newton-Verfahren und gib } x_1 \text{ an.}$