Kapitel 5

Buch Dahmen-Reusken

RWTH Aachen University

2022

2/1

Motivation

- Gleichungssysteme
- 2. Je genauer das (mathematische) Modell ist, desto eher ist es nichtlinear:
 - \triangleright Pendelschwingung: Auslenkungswinkel φ beschrieben durch

Die meisten Probleme in der Praxis führen auf nichtlineare

$$\ddot{arphi}(t)+rac{g}{\ell}arphi(t)=0$$
 vs. $\ddot{arphi}(t)+rac{g}{\ell} ext{sin}(arphi(t))=0$

für kleine vs. große Auslenkungen.

[Motivation-01]/1 Dahmen-Reusken Kapitel 5

Motivation

- Gleichungssysteme
- 2. Je genauer das (mathematische) Modell ist, desto eher ist es nichtlinear:
 - Pendelschwingung: Auslenkungswinkel φ beschrieben durch

Die meisten Probleme in der Praxis führen auf nichtlineare

$$\ddot{arphi}(t)+rac{g}{\ell}arphi(t)=0$$
 vs. $\ddot{arphi}(t)+rac{g}{\ell} ext{sin}(arphi(t))=0$

für kleine vs. große Auslenkungen.

lacktriangle Lineare vs. nichtlineare Diffusion: Temperatur $m{u}$ beschrieben durch

$$u_t = \operatorname{div}({\color{red} k} \,
abla u)$$
 vs. $u_t = \operatorname{div}({\color{red} k(u)} \,
abla u)$

mit Wärmeleitfähigkeit $k(u) = c_1 + c_2 u + c_3 u^3$.

[Motivation-01]/2

Motivation

- 1. Die meisten Probleme in der Praxis führen auf nichtlineare Gleichungssysteme
- 2. Je genauer das (mathematische) Modell ist, desto eher ist es nichtlinear:
 - lacktriangle Pendelschwingung: Auslenkungswinkel $oldsymbol{arphi}$ beschrieben durch

$$\ddot{arphi}(t)+rac{g}{\ell}arphi(t)=0$$
 vs. $\ddot{arphi}(t)+rac{g}{\ell} ext{sin}(arphi(t))=0$

für kleine vs. große Auslenkungen.

lacktriangle Lineare vs. nichtlineare Diffusion: Temperatur u beschrieben durch

$$u_t = \operatorname{div}(oldsymbol{k} \,
abla u)$$
 vs. $u_t = \operatorname{div}(oldsymbol{k}(u) \,
abla u)$

mit Wärmeleitfähigkeit $k(u)=c_1+c_2u+c_3u^3$.

Strömungsprobleme, Netzwerkanalyse, . . .

[Motivation-01]/3 Dahmen-Reusken Kapitel 5

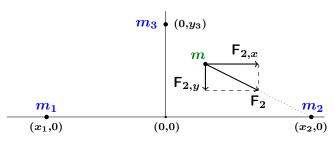
2/3

Für die Gravitationskraft zwischen zwei Punktmassen M_1 und M_2 mit gegenseitigem Abstand r gilt (Newtons Gravitationsgesetz):

$$F = G \frac{M_1 M_2}{r^2}$$

wobei $G = 6.67 \cdot 10^{-11} \text{Nm}^2/\text{kg}$.

Wir betrachten das folgende Gravitationsfeld:



[Beispiel-5.1-01]

Gesucht: Punkt (x,y), so dass für eine Punktmasse m an der Stelle (x,y) die Gravitationskräfte F_i zwischen m und $m_i, i=1,2,3$, im Gleichgewicht sind.

Hilfsgrößen mit i=1,2,3, sind

$$egin{aligned} r_i &:= \sqrt{(x-x_i)^2 + (y-y_i)^2} \ F_i &:= G rac{m_i m}{r_i^2} \ F_{i,x} &:= rac{F_i (x_i - x)}{r_i} \ F_{i,y} &:= rac{F_i (y_i - y)}{r_i} \end{aligned}$$

[Beispiel-5.1-02] Dahmen-Reusken Kapitel 5

Die Gleichgewichtsbedingungen sind wie folgt:

$$F_{1,x} + F_{2,x} + F_{3,x} = 0$$
 und $F_{1,y} + F_{2,y} + F_{3,y} = 0$

[Beispiel-5.1-03]/1 Dahmen-Reusken Kapitel 5 5/1

Die Gleichgewichtsbedingungen sind wie folgt:

$$F_{1,x} + F_{2,x} + F_{3,x} = 0$$
 und $F_{1,y} + F_{2,y} + F_{3,y} = 0$

Hieraus ergibt sich das System

$$egin{array}{lll} f_1(x,y) &=& \sum_{i=1}^3 rac{m_i(x_i-x)}{\left((x-x_i)^2+(y-y_i)^2
ight)^{3/2}} = 0 \ && \ f_2(x,y) &=& \sum_{i=1}^3 rac{m_i(y_i-y)}{\left((x-x_i)^2+(y-y_i)^2
ight)^{3/2}} = 0. \end{array}$$

[Beispiel-5.1-03]/2 Dahmen-Reusken Kapitel 5

5/2

Statt der linearen Integralgleichung im Beispiel 3.3.

$$u(x) + 2 \int_0^1 \cos(xt) u(t) dt = 2, \quad x \in [0, 1]$$

ist nun eine nichtlineare Integralgleichung zu lösen:

Gesucht ist eine Funktion $u(x) \geq 0$, die die Integralgleichung

$$u(x) + \int_0^1 \cos(xt) u(t)^3 dt = 2, \quad x \in [0, 1],$$

erfüllt.

[Beispiel-5.2-01] Dahmen-Reusken Kapitel 5

Das Problem wird, wie in Beispiel 3.7, auf dem Gitter

$$t_j=\left(j-rac{1}{2}
ight)h, \quad j=1,\ldots,n, \quad h=rac{1}{n},$$

diskretisiert.

Man erhält dann die Gleichungen

$$u_i+h\sum_{j=1}^n\cos(t_it_j)u_j^3=2,\quad i=1,\dots,n,$$

für die Unbekannten $u_i \approx u(t_i), i = 1, \ldots, n$.

[Beispiel-5.2-02] Dahmen-Reusken Kapitel 5

Aufgabe

Zu gegebenem
$$f=egin{pmatrix} f_1\ dots\ f_n \end{pmatrix}:\mathbb{R}^n o\mathbb{R}^n$$
 bestimme $x^*=egin{pmatrix} x_1^*\ dots\ x_n^* \end{pmatrix}$,

so dass

$$egin{array}{lll} f_1(x_1^*,\ldots,x_n^*) &=& 0 \ &dots &dots &dots \ f_n(x_1^*,\ldots,x_n^*) &=& 0 \end{array}$$

erfüllt ist.

Kompakte Darstellung:

$$f(x^*) = 0$$

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$;

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$;

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

► Lineare Gleichungssysteme: Sonderfall dieser Problemstellung

$$A x^* = b \Leftrightarrow f(x^*) = A x^* - b = 0.$$

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$;

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

▶ Lineare Gleichungssysteme: Sonderfall dieser Problemstellung

$$A x^* = b \Leftrightarrow f(x^*) = A x^* - b = 0.$$

▶ Der Spezialfall n = 1 wird oft als skalare Gleichung in einer Unbekannten bezeichnet.

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$;

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

► Lineare Gleichungssysteme: Sonderfall dieser Problemstellung

$$A x^* = b \Leftrightarrow f(x^*) = A x^* - b = 0.$$

- ightharpoonup Der Spezialfall n=1 wird oft als skalare Gleichung in einer Unbekannten bezeichnet.
- Hat man mehr (nichtlineare) Gleichungen als Unbekannte, d.h.

$$f:\mathbb{R}^n o\mathbb{R}^m$$
 mit $m>n$

erhält man ein nichtlineares Ausgleichsproblem → siehe nächstes Kapitel.

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Aufgabe

Gegeben: $f:\mathbb{R}^n o \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Aufgabe

Gegeben: $f:\mathbb{R}^n o \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Vorgehen: iterative Lösungsverfahren, d.h. schrittweise Annäherung an Lösung, bis gewünschte Genauigkeit erreicht ist.

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Vorgehen: iterative Lösungsverfahren, d.h. schrittweise Annäherung an Lösung, bis gewünschte Genauigkeit erreicht ist.

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Vorgehen: iterative Lösungsverfahren, d.h. schrittweise Annäherung an Lösung, bis gewünschte Genauigkeit erreicht ist.

Fragen/Probleme:

▶ Wie finden wir ein geeignetes iteratives Verfahren?

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Vorgehen: iterative Lösungsverfahren, d.h. schrittweise Annäherung an Lösung, bis gewünschte Genauigkeit erreicht ist.

- Wie finden wir ein geeignetes iteratives Verfahren?
- Unter welchen Bedingungen konvergiert das Verfahren?

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Vorgehen: iterative Lösungsverfahren, d.h. schrittweise Annäherung an Lösung, bis gewünschte Genauigkeit erreicht ist.

- ▶ Wie finden wir ein geeignetes iteratives Verfahren?
- Unter welchen Bedingungen konvergiert das Verfahren?
- Wie schnell konvergiert das Verfahren?

Aufgabe

Gegeben: $f: \mathbb{R}^n \to \mathbb{R}^n$

Gesucht: $x^* \in \mathbb{R}^n$, so dass $f(x^*) = 0$.

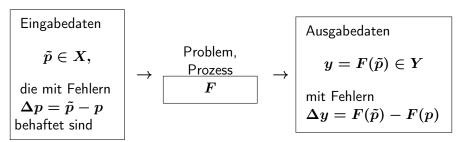
Problem: analytische Lösung i.A. nicht möglich, d.h. exakte Lösung in einer endlichen Anzahl von Schritten nicht möglich.

Vorgehen: iterative Lösungsverfahren, d.h. schrittweise Annäherung an Lösung, bis gewünschte Genauigkeit erreicht ist.

- ▶ Wie finden wir ein geeignetes iteratives Verfahren?
- Unter welchen Bedingungen konvergiert das Verfahren?
- Wie schnell konvergiert das Verfahren?
- ▶ Ist die gewünschte Genauigkeit erreicht?

Kondition eines Nullstellenproblems

Absolute Kondition:



Struktur: $f: \mathbb{R}^n \to \mathbb{R}^n$ durch einen Satz $p = (p_1, \dots, p_m)^T \in \mathbb{R}^m$ von Parametern vollständig beschreibbar: f(x) = f(x; p).

Schwierigkeit: eine explizite Vorschrift $F: p \to x^*$ nicht vorhanden.

[Kondition-01] Dahmen-Reusken Kapitel 5

Kondition eines Nullstellenproblems

Beispiel 5.6: Nullstelle eines Polynoms $(x \in \mathbb{R}, \ p \in \mathbb{R}^{n+1})$

Die Eingabeparameter sind $p=(p_0,\ldots,p_n)\in\mathbb{R}^{n+1}$ und

$$f:\, \mathbb{R} imes \mathbb{R}^{n+1} o \mathbb{R}, \quad f(x;p):=\sum_{i=0}^n p_i x^i=:P(x).$$

Es gilt:
$$f(x; p) = 0 \Leftrightarrow P(x) = 0$$
.

[Kondition-02]/1 Dahmen-Reusken Kapitel 5 12/1

Kondition eines Nullstellenproblems

Beispiel 5.6: Nullstelle eines Polynoms $(x \in \mathbb{R}, \ p \in \mathbb{R}^{n+1})$

Die Eingabeparameter sind $p=(p_0,\ldots,p_n)\in\mathbb{R}^{n+1}$ und

$$f:\, \mathbb{R} imes \mathbb{R}^{n+1} o \mathbb{R}, \quad f(x;p):=\sum_{i=0}^n p_i x^i=:P(x).$$

Es gilt: $f(x;p) = 0 \Leftrightarrow P(x) = 0$.

Frage: wie hängt $\|x^* - \tilde{x}^*\|$ von $\|p - \tilde{p}\|$ ab?

Annahme: $\det \left(D_x f(x^*;p)\right) \neq 0$ (d.h., x^* ist eine einfache Nullstelle).

Mit Taylorentwicklung:

$$\|x^*- ilde{x}^*\|_{\mathbb{R}^n}\stackrel{\cdot}{\leq} \kappa_{\mathrm{abs}}(x^*,p)\|p- ilde{p}\|_{\mathbb{R}^m}$$
 mit $\kappa_{\mathrm{abs}}(x^*,p):=\|\left(D_xf(x^*;p)
ight)^{-1}D_nf(x^*;p)\|_{\mathbb{R}^m o\mathbb{R}^n}.$

[Kondition-02]/2 Dahmen-Reusken Kapitel 5 12/2

Kondition eines Nullstellenproblems: Beispiel 5.10

Für
$$f(x;p)=\sum_{i=0}^n p_i x^i=P(x)$$
 erhält man $D_x f(x^*;p)=P'(x^*), \ D_p f(x^*;p)=ig(0\quad x^*\quad (x^*)^2\quad \dots\quad (x^*)^nig)\,.$

Mit der Norm $\|\cdot\|_1$ in \mathbb{R}^{n+1} , ergibt sich

$$|x^* - ilde{x}^*| \stackrel{\cdot}{\leq} |P'(x^*)|^{-1} \max_{1 \leq j \leq n} |x^*|^j \sum_{j=0}^n |p_j - ilde{p}_j|.$$

[Kondition-03]/1 Dahmen-Reusken Kapitel 5 13/1

Kondition eines Nullstellenproblems: Beispiel 5.10

Für
$$f(x;p)=\sum_{i=0}^n p_i x^i=P(x)$$
 erhält man $D_x f(x^*;p)=P'(x^*), \ D_p f(x^*;p)=ig(0\quad x^*\quad (x^*)^2\quad \dots\quad (x^*)^nig)\,.$

Mit der Norm $\|\cdot\|_1$ in \mathbb{R}^{n+1} , ergibt sich

$$|x^* - ilde{x}^*| \stackrel{\cdot}{\leq} |P'(x^*)|^{-1} \max_{1 \leq j \leq n} |x^*|^j \sum_{j=0}^n |p_j - ilde{p}_j|.$$

Annahme: $P'(x^*) \neq 0$, also x^* ist eine einfache Nullstelle.

Man erwartet eine schlechte absolute Kondition in Fällen, in denen $\kappa_{\rm abs}(x^*,p) = |P'(x^*)|^{-1} \max_{1 \le i \le n} |x^*|^j$ groß ist.

[Kondition-03]/2 Dahmen-Reusken Kapitel 5 13/2

Kondition bei mehrfachen Nullstellen

Annahme: $\det (D_x f(x^*; p)) = 0$ (mehrfache Nullstelle).

Wir betrachten n = 1, also $f : \mathbb{R} \to \mathbb{R}$.

Sei m > 1, die Vielfachheit der Nullstelle x^* :

$$f(x^*) = 0$$
, $f'(x^*) = 0$, ..., $f^{(m-1)}(x^*) = 0$, $f^{(m)}(x^*) \neq 0$.

14/1

Kondition bei mehrfachen Nullstellen

Annahme: $\det (D_x f(x^*; p)) = 0$ (mehrfache Nullstelle).

Wir betrachten n = 1, also $f : \mathbb{R} \to \mathbb{R}$.

Sei $m \geq 1$, die Vielfachheit der Nullstelle x^* :

$$f(x^*) = 0, \quad f'(x^*) = 0, \quad \dots, \quad f^{(m-1)}(x^*) = 0, \quad f^{(m)}(x^*) \neq 0.$$

Mit Taylorentwicklung:

$$| ilde{x}^* - x^*| \stackrel{\cdot}{\leq} \left(m! rac{\|D_p f(x^*;p)\|_\infty}{|f^{(m)}(x^*)|}
ight)^{rac{1}{m}} \| ilde{p} - p\|_1^{rac{1}{m}}.$$

Kondition bei mehrfachen Nullstellen

Annahme: $\det (D_x f(x^*; p)) = 0$ (mehrfache Nullstelle).

Wir betrachten n = 1, also $f : \mathbb{R} \to \mathbb{R}$.

Sei $m \geq 1$, die Vielfachheit der Nullstelle x^* :

$$f(x^*) = 0, \quad f'(x^*) = 0, \quad \dots, \quad f^{(m-1)}(x^*) = 0, \quad f^{(m)}(x^*) \neq 0.$$

Mit Taylorentwicklung:

$$| ilde{x}^* - x^*| \stackrel{\cdot}{\leq} \left(m! rac{\|D_p f(x^*;p)\|_\infty}{|f^{(m)}(x^*)|}
ight)^{rac{1}{m}} \| ilde{p} - p\|_1^{rac{1}{m}}.$$

- ▶ Ein Datenfehler $\|\tilde{p} p\|_1 = \epsilon \ll 1$ kann wegen des Faktors $\epsilon^{\frac{1}{m}}$ enorm verstärkt werden.
- ► Probleme mit mehrfachen Nullstellen sind im Allgemeinen hinsichtlich Störungen in den Eingabedaten sehr schlecht konditioniert

[KondNullR2R-01]/3 Dahmen-Reusken Kapitel 5 14/3

Das Polynom

$$f(x;p) = \sum_{i=0}^{3} p_i x^i = x^3 - 3x^2 + 3x - 1$$

hat eine dreifache Nullstelle $x^* = 1$.

Wir betrachten eine Störung (nur) des Eingabeparameters p_0 :

$$\tilde{p}_0 = p_0 - \epsilon = -1 - \epsilon, \quad 0 < \epsilon \ll 1.$$

Das Polynom

$$f(x;p) = \sum_{i=0}^{3} p_i x^i = x^3 - 3x^2 + 3x - 1$$

hat eine dreifache Nullstelle $x^* = 1$.

Wir betrachten eine Störung (nur) des Eingabeparameters p_0 :

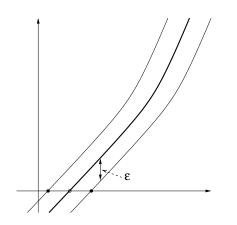
$$\tilde{p}_0 = p_0 - \epsilon = -1 - \epsilon, \quad 0 < \epsilon \ll 1.$$

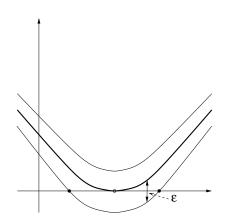
Es gilt

$$f(\tilde{x}^*; \tilde{p}) = 0 \Leftrightarrow f(\tilde{x}^*; p) - \epsilon = 0 \Leftrightarrow (\tilde{x}^* - 1)^3 - \epsilon = 0 \Leftrightarrow \tilde{x}^* = 1 + \epsilon^{\frac{1}{3}}.$$

Zum Beispiel für $\epsilon = 10^{-12}$ ergibt sich $|x^* - \tilde{x}^*| = 10^{-4}$.

Kondition bei mehrfachen Nullstellen: $f:\mathbb{R} ightarrow \mathbb{R}$





[KondNullR2R-03] Dahmen-Reusken Kapitel 5 16

Unvermeidbarer Fehler aufgrund der Auswertung

Sei $\tilde{f}(x)$ die mit (Rundungs)fehlern behaftete Auswertung der Funktion f an der Stelle x.

Ein auf den \tilde{f} -Werten basiertes Verfahren kann bestenfalls eine Annäherung \tilde{x}^* bestimmen, die $\tilde{f}(\tilde{x}^*)=0$ erfüllt.

Wir verwenden Rückwärtsfehleranalyse:

Die Auswertung von f ist rückwärtsstabil wenn Folgendes gilt:

$$ilde{f}(x) \doteq f(x; ilde{p}) \quad ext{und} \quad \lVert ilde{p} - p
Vert_1 \leq c_{aus} ext{eps} \lVert p
Vert_1$$

mit einer "akzeptabelen" Konstante c_{aus} .

Polynomauswertung

$$f(x;p) = \sum_{i=0}^n p_i x^i$$

Annahme (der Einfachheit halber): Koeffizienten p_i sind Maschinenzahlen. Auswertung: die Potenzen x^i , $i=0,\ldots,n$, werden gebildet und anschliessend die Summe $\sum_{i=0}^n$ rückwärts (Anfang bei i=n) berechnet. Fehleranalyse:

$$ilde{f}(x) \doteq \sum_{i=0}^n p_i (1+\delta_i) x^i, \quad |\delta_i| \leq (n+1) ext{eps.}$$

[Beispiel-5.13]/1 Dahmen-Reusken Kapitel 5 18/1

Polynomauswertung

$$f(x;p) = \sum_{i=0}^{n} p_i x^i$$

Annahme (der Einfachheit halber): Koeffizienten p_i sind Maschinenzahlen. Auswertung: die Potenzen x^i , $i = 0, \ldots, n$, werden gebildet und anschliessend die Summe $\sum_{i=0}^{n}$ rückwärts (Anfang bei i=n) berechnet. Fehleranalyse:

$$ilde{f}(x) \doteq \sum_{i=0}^n p_i (1+\delta_i) x^i, \quad |\delta_i| \leq (n+1) ext{eps.}$$

Folgerung:

Wegen $\|\tilde{p} - p\|_1 < (n+1) \operatorname{eps} \|p\|_1$ ist für nicht allzugroße Werte von n ist diese Polynomauswertung rückwärtsstabil.

[Beispiel-5.13]/2 Dahmen-Reusken Kapitel 5 18/2

Auwertung auf einem Rechner (Bemerkung 5.14)

Sei f eine skalare stetige Funktion mit einer lokal eindeutigen Nullstelle:

$$f(x) = 0$$
 für $x \in (a, b) \iff x = x^*$.

Auf einem Rechner (Maschinenzahlen M):

$$ilde{f}:\,(a,b) o exttt{M}.$$

[Auswertung-01]/1 Dahmen-Reusken Kapitel 5 19/1

19/2

Auwertung auf einem Rechner (Bemerkung 5.14)

Sei f eine skalare stetige Funktion mit einer lokal eindeutigen Nullstelle:

$$f(x) = 0$$
 für $x \in (a, b) \iff x = x^*$.

Auf einem Rechner (Maschinenzahlen M):

$$ilde{f}:\,(a,b) o exttt{M}.$$

Die Auswertung $ilde{f}$ ist stückweise konstant:

Es sei $\hat{x}\in\mathbb{M}$, dann gilt $\tilde{f}(x)=\tilde{f}(\hat{x})$ für alle $x\in(a,b)$ für die $\mathrm{fl}(x)=\hat{x}$ gilt.

[Auswertung-01]/2 Dahmen-Reusken Kapitel 5

Auwertung auf einem Rechner (Bemerkung 5.14)

Sei f eine skalare stetige Funktion mit einer lokal eindeutigen Nullstelle:

$$f(x) = 0$$
 für $x \in (a, b) \iff x = x^*$.

Auf einem Rechner (Maschinenzahlen M):

$$ilde{f}:\,(a,b) o exttt{M}.$$

Die Auswertung \tilde{f} ist stückweise konstant:

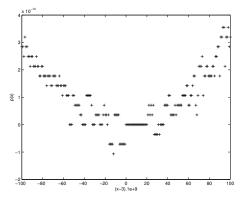
Es sei $\hat{x}\in\mathbb{M}$, dann gilt $\tilde{f}(x)=\tilde{f}(\hat{x})$ für alle $x\in(a,b)$ für die $\mathrm{fl}(x)=\hat{x}$ gilt.

$ilde{f}(x)=0$ für $x\in\mathbb{M}$:

möglicherweise keine Lösung, oder (sehr) viele Lösungen.

[Auswertung-01]/3 Dahmen-Reusken Kapitel 5 19/3

Sei $P(x)=x^3-6x^2+9x$ (doppelte Nullstelle $x^*=3$). Auswertungen: $P(3+i*10^{-9}), \qquad i=-100,-99,\dots 99,100.$



 $ilde{P}$ hat viele Nullstellen im Intervall $[3-10^{-7},3+10^{-7}]$

[Beispiel-5.15] Dahmen-Reusken Kapitel 5 20

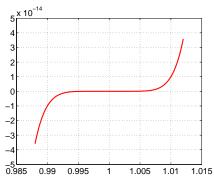
Beispiel: Polynom 7. Grades

Matlab Plot

```
x = 0.988:0.0001:1.012;

y = (x-1).^7;

plot(x,y)
```



Eine mehrfache Nullstelle

[Polynom7G-G-01]/1

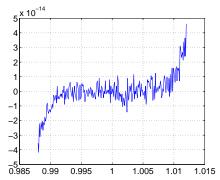
Beispiel: Polynom 7. Grades

Matlab Plot

```
x = 0.988:0.0001:1.012;

y = x.^7 - 7*x.^6 + 21*x.^5 - 35*x.^4 + 35*x.^3 - 21*x.^2 + 7*x - 1;

plot(x,y)
```



Viele Nullstellen

[Polynom7G-G-01]/2 Dahmen-Reusken Kapitel 5 21/2

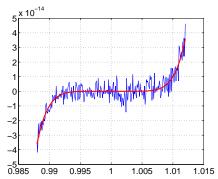
Beispiel: Polynom 7. Grades

Matlab Plot

```
x = 0.988:0.0001:1.012;

y = x.^7 - 7*x.^6 + 21*x.^5 - 35*x.^4 + 35*x.^3 - 21*x.^2 + 7*x - 1;

plot(x,y)
```



Viele Nullstellen

[Polynom7G-G-01]/3 Dahmen-Reusken Kapitel 5 21/3

Fragen/Probleme:

▶ Wie finden wir ein geeignetes iteratives Verfahren?

Allgemeiner Ansatz für Fixpunktiteration:

Fragen/Probleme:

Wie finden wir ein geeignetes iteratives Verfahren?

Allgemeiner Ansatz für Fixpunktiteration:

Sei $M_x \in \mathbb{R}^{n imes n}$ eine von x abhängige Matrix, die in einer Umgebung der Nullstelle x^* invertierbar ist. Dann folgt

$$f(x^*) = 0 \iff M_{x^*} f(x^*) = 0$$

Fragen/Probleme:

Wie finden wir ein geeignetes iteratives Verfahren?

Allgemeiner Ansatz für Fixpunktiteration:

Sei $M_x \in \mathbb{R}^{n \times n}$ eine von x abhängige Matrix, die in einer Umgebung der Nullstelle x^* invertierbar ist. Dann folgt

$$f(x^*) = 0 \quad \Longleftrightarrow \quad M_{x^*} \ f(x^*) = 0$$

Erweitere die Gleichung mit x^* , d.h.

$$M_{x^*} f(x^*) = 0 \iff x^* = x^* - M_{x^*} f(x^*)$$

Fragen/Probleme:

▶ Wie finden wir ein geeignetes iteratives Verfahren?

Allgemeiner Ansatz für Fixpunktiteration:

Sei $M_x \in \mathbb{R}^{n imes n}$ eine von x abhängige Matrix, die in einer Umgebung der Nullstelle x^* invertierbar ist. Dann folgt

$$f(x^*) = 0 \quad \Longleftrightarrow \quad M_{x^*} \ f(x^*) = 0$$

ightharpoonup Erweitere die Gleichung mit x^* , d.h.

$$M_{x^*} f(x^*) = 0 \iff x^* = x^* - M_{x^*} f(x^*)$$

Daraus folgt: Das Nullstellenproblem

$$f(x^*) = 0$$

ist äquivalent zum Fixpunktproblem

$$x^* = \Phi(x^*), \text{ mit } \Phi(x) := x - M_x f(x).$$

Fixpunktiteration

- ightharpoonup Wähle Startwert x_0 in einer Umgebung von x^*
- Bilde

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots$$

Fixpunktiteration

- lacktriangle Wähle Startwert x_0 in einer Umgebung von x^*
- ► Bilde

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots$$

Bemerkungen:

- 1. $\Phi : \mathbb{R} \to \mathbb{R}$. Die Steigung von Φ an x^* entscheidet darüber, ob die Fixpunktiteration gegen x^* konvergiert/divergiert:
 - $|\Phi'(x^*)| < 1$: x^* anziehend
 - lacksquare $|\Phi'(x^*)| > 1$: x^* abstoßend

Fixpunktiteration

- lacktriangle Wähle Startwert x_0 in einer Umgebung von x^*
- ► Bilde

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots$$

Bemerkungen:

- 1. $\Phi : \mathbb{R} \to \mathbb{R}$. Die Steigung von Φ an x^* entscheidet darüber, ob die Fixpunktiteration gegen x^* konvergiert/divergiert:
 - $\blacktriangleright |\Phi'(x^*)| < 1: x^*$ anziehend
 - lacksquare $|\Phi'(x^*)| > 1$: x^* abstoßend
- 2. Durch eine geeignete Wahl von M_x (bzw. Φ) lässt sich die Konvergenz der Fixpunktiteration positiv beeinflussen.

Ein paar Definitionen

Lipschitz-Stetigkeit

Sei $E \subseteq \mathbb{R}^n$. Eine Funktion

$$f:E o \mathbb{R}^n$$

heißt Lipschitz-stetig auf E, wenn eine Konstante L existiert, so dass

$$\|f(x)-f(y)\| \leq L \, \|x-y\|$$

für alle $x, y \in E$.

[Definitionen-01] Dahmen-Reusken Kapitel 5

Ein paar Definitionen

Kontraktion

Sei $E\subseteq \mathbb{R}^n$. Eine Abbildung $\Phi:E o \mathbb{R}^n$ heißt Kontraktion auf E, wenn

$$\|\Phi(x) - \Phi(y)\| \le L \|x - y\|$$

für alle $x, y \in E$ mit L < 1.

[Definitionen-02]/1 Dahmen-Reusken Kapitel 5

25/1

Ein paar Definitionen

Kontraktion

Sei $E\subseteq\mathbb{R}^n$. Eine Abbildung $\Phi:E o\mathbb{R}^n$ heißt Kontraktion auf E, wenn

$$\|\Phi(x) - \Phi(y)\| \le L \|x - y\|$$

für alle $x, y \in E$ mit L < 1.

 $oldsymbol{\Phi}$ ist genau dann eine Kontraktion, wenn sie Lipschitz-stetig mit der Konstanten $L \in [0,1)$ ist.

Selbstabbildung

Eine Abbildung Φ ist eine Selbstabbildung auf $E\subset \mathbb{R}^n$, wenn

$$\Phi: E \to E$$
.

[Definitionen-02]/2 Dahmen-Reusken Kapitel 5 25/2

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

[Beispiel-5.20-01]/1 Kapitel 5 Dahmen-Reusken

26/1

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

 \triangleright Die Funktion f hat eine eindeutige positive Nullstelle x^* und es gilt $x^* \in [1, 2]$.

26/2

[Beispiel-5.20-01]/2 Dahmen-Reusken Kapitel 5

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

- ▶ Die Funktion f hat eine eindeutige positive Nullstelle x^* und es gilt $x^* \in [1, 2]$.
- Mögliche Fixpunktfunktionen sind

$$\Phi_1(x) := x^6 - 1$$
 oder $\Phi_2(x) := (x+1)^{\frac{1}{6}}$.

[Beispiel-5.20-01]/3

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

- ▶ Die Funktion f hat eine eindeutige positive Nullstelle x^* und es gilt $x^* \in [1, 2]$.
- Mögliche Fixpunktfunktionen sind

$$\Phi_1(x) := x^6 - 1$$
 oder $\Phi_2(x) := (x+1)^{\frac{1}{6}}$.

▶ Betrachte $\Phi_1(x)$: wir erhalten

$$|\Phi_1'(x)| = |6 \, x^5| > 1 \quad ext{für } x \in [1,2],$$

d.h. $\Phi_1(x)$ ist nicht als Fixpunktfunktion geeignet.

[Beispiel-5.20-01]/4

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

- ▶ Die Funktion f hat eine eindeutige positive Nullstelle x^* und es gilt $x^* \in [1, 2]$.
- Mögliche Fixpunktfunktionen sind

$$\Phi_1(x) := x^6 - 1$$
 oder $\Phi_2(x) := (x+1)^{\frac{1}{6}}$.

▶ Betrachte $\Phi_1(x)$: wir erhalten

$$|\Phi_1'(x)| = |6x^5| > 1$$
 für $x \in [1, 2]$,

d.h. $\Phi_1(x)$ ist nicht als Fixpunktfunktion geeignet.

Determine Betrachte $\Phi_2(x)$: wir erhalten

$$|\Phi_2'(x)|=\left|rac{1}{6}(x+1)^{-rac{5}{6}}
ight|\leq rac{1}{6}$$
 für $x\in [1,2]$

26/5

[Beispiel-5.20-01]/5 Dahmen-Reusken Kapitel 5

und damit (Mittelwertsatz, $\xi \in (1,2)$)

$$\begin{array}{lcl} |\Phi_2(x) - \Phi_2(y)| & = & |\Phi_2'(\xi)(x-y)| \\ & \leq & \frac{1}{6} \, |x-y| & \text{für } x,y \in [1,2]. \end{array}$$

27/1

und damit (Mittelwertsatz, $\xi \in (1,2)$)

$$\begin{array}{lcl} |\Phi_2(x) - \Phi_2(y)| & = & |\Phi_2'(\xi)(x-y)| \\ & \leq & \frac{1}{6} \, |x-y| & \text{für } x,y \in [1,2]. \end{array}$$

▶ Die Funktion $\Phi_2(x)$ ist eine Selbstabbildung auf [1,2], d.h. $\Phi_2:[1,2] \to [1,2]$.

und damit (Mittelwertsatz, $\xi \in (1,2)$)

$$\begin{array}{lcl} |\Phi_2(x) - \Phi_2(y)| & = & |\Phi_2'(\xi)(x-y)| \\ & \leq & \frac{1}{6} \, |x-y| & \text{für } x,y \in [1,2]. \end{array}$$

- $lackbox{ iny Die Funktion } \Phi_2(x)$ ist eine Selbstabbildung auf [1,2], d.h. $\Phi_2:[1,2]
 ightarrow [1,2].$
- Ergebnisse

	$x_0 = 1.2$	$x_0 = 1.135$
k	$x_{k+1} = \Phi_2(x_k)$	$x_{k+1} = \Phi_1(x_k)$
0	1.20000000	1.14e+000
1	1.14043476	1.14e+000
2	1.13522949	1.17e+000
3	1.13476890	1.57e+000
4	1.13472810	1.38e+001
5	1.13472448	6.91e+006
6	1.13472416	1.09e+041
7	1.13472414	1.66e+246

27/3

[Beispiel-5.20-02]/3 Dahmen-Reusken Kapitel 5

Sei X ein linear normierter Raum und $E\subseteq X$ eine vollständige Teilmenge von X. Sei Φ eine Selbstabbildung auf E, d.h.

$$\Phi: E \to E,$$

und ferner eine Kontraktion auf E, d.h.

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\|$$
 für alle $x, y \in E$,

 $\mathsf{mit}\; L<1.$

Sei X ein linear normierter Raum und $E\subseteq X$ eine vollständige Teilmenge von X. Sei Φ eine Selbstabbildung auf E, d.h.

$$\Phi: E \to E$$
,

und ferner eine Kontraktion auf E, d.h.

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\|$$
 für alle $x, y \in E$,

 $\mathsf{mit}\; L < 1.$

Dann gilt:

1. Es existiert genau ein Fixpunkt x^* von Φ in E.

Sei X ein linear normierter Raum und $E\subseteq X$ eine vollständige Teilmenge von X. Sei Φ eine Selbstabbildung auf E, d.h.

$$\Phi: E \to E,$$

und ferner eine Kontraktion auf E, d.h.

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\|$$
 für alle $x, y \in E$,

 $\mathsf{mit}\; L < 1.$

Dann gilt:

- 1. Es existiert genau ein Fixpunkt x^* von Φ in E.
- 2. Für beliebiges $x_0 \in E$ konvergiert die Fixpunktiteration

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, 2, \dots$$

28/3

gegen den Fixpunkt x^* .

[BanachFixSatz-01]/3 Dahmen-Reusken Kapitel 5

Sei X ein linear normierter Raum und $E\subseteq X$ eine vollständige Teilmenge von X. Sei Φ eine Selbstabbildung auf E, d.h.

$$\Phi: E \to E,$$

und ferner eine Kontraktion auf E, d.h.

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\|$$
 für alle $x, y \in E$,

 $\mathsf{mit}\; L<1.$

3. A-priori-Fehlerabschätzung:

$$||x_k - x^*|| \le \frac{L^k}{1 - L} ||x_1 - x_0||.$$

Sei X ein linear normierter Raum und $E\subseteq X$ eine vollständige Teilmenge von X. Sei Φ eine Selbstabbildung auf E, d.h.

$$\Phi: E \to E,$$

und ferner eine Kontraktion auf E, d.h.

$$\|\Phi(x) - \Phi(y)\| \le L\|x - y\|$$
 für alle $x, y \in E$,

 $\mathsf{mit}\; L<1.$

3. A-priori-Fehlerabschätzung:

$$||x_k - x^*|| \le \frac{L^k}{1 - L} ||x_1 - x_0||.$$

4. A-posteriori-Fehlerabschätzung:

$$\|x_k - x^*\| \le \frac{L}{1 - L} \|x_k - x_{k-1}\|.$$

Fragen/Probleme:

Unter welchen Bedingungen konvergiert iteratives Verfahren?

Fragen/Probleme:

- Unter welchen Bedingungen konvergiert iteratives Verfahren?
- ⇒ Banachscher Fixpunktsatz liefert hinreichende Bedingungen, damit

$$x_{k+1} = \Phi(x_k), \ k = 0, 1, \dots$$

gegen einen Fixpunkt x^* konvergiert.

Fragen/Probleme:

- Unter welchen Bedingungen konvergiert iteratives Verfahren?
- ⇒ Banachscher Fixpunktsatz liefert hinreichende Bedingungen, damit

$$x_{k+1} = \Phi(x_k), \ k = 0, 1, \dots$$

gegen einen Fixpunkt x^* konvergiert.

Fragen/Probleme:

Ist die gewünschte Genauigkeit erreicht?

Fragen/Probleme:

- Unter welchen Bedingungen konvergiert iteratives Verfahren?
- ⇒ Banachscher Fixpunktsatz liefert hinreichende Bedingungen, damit

$$x_{k+1} = \Phi(x_k), \ k = 0, 1, \dots$$

gegen einen Fixpunkt x^* konvergiert.

Fragen/Probleme:

- ► Ist die gewünschte Genauigkeit erreicht?
- \Rightarrow Wir möchten eine gewünschte Genauigkeit ϵ erreichen, so dass

$$||x_k - x^*|| \le \epsilon.$$

Frage

▶ Wie viele Iterationen müssen wir durchführen?

Bemerkungen zum Banachschen Fixpunktsatz

Frage

- Wie viele Iterationen müssen wir durchführen?
- ⇒ Mit Hilfe der a-priori-Fehlerabschätzung erhalten wir

$$||x_k - x^*|| \le \frac{L^k}{1 - L} ||x_1 - x_0|| \le \epsilon.$$

Bemerkungen zum Banachschen Fixpunktsatz

Frage

- Wie viele Iterationen müssen wir durchführen?
- ⇒ Mit Hilfe der a-priori-Fehlerabschätzung erhalten wir

$$\|x_k - x^*\| \leq rac{L^k}{1 - L} \|x_1 - x_0\| \stackrel{!}{\leq} \epsilon.$$

und damit ist die maximal benötigte Anzahl an Iterationen

$$k \geq \log\left(\epsilon(1-L)/\|x_1-x_0\|\right)/\log(L)$$

Bemerkungen zum Banachschen Fixpunktsatz

Frage

- ▶ Wie viele Iterationen müssen wir durchführen?
- ⇒ Mit Hilfe der a-priori-Fehlerabschätzung erhalten wir

$$\|x_k - x^*\| \leq rac{L^k}{1 - L} \|x_1 - x_0\| \stackrel{!}{\leq} \epsilon.$$

und damit ist die maximal benötigte Anzahl an Iterationen

$$k \geq \log\left(\epsilon(1-L)/\|x_1-x_0\|\right)/\log(L)$$

Beachte

Wegen

$$||x_k - x_{k-1}|| \le L^{k-1} ||x_1 - x_0||$$

ist die Schranke in der a-posteriori-Fehlerabschätzung immer besser (d.h. kleiner) als die in der a-priori-Fehlerabschätzung.

Folgerungen aus Banachscher Fixpunktsatz

Folgerung 5.24

Sei $X=\mathbb{R}$, E=[a,b] und Φ auf E stetig differenzierbar.

Es gelte

$$\Phi:[a,b] o [a,b]$$
 (Selbstabbildung),

und

$$\max_{x \in [a,b]} \left| \Phi'(x) \right| =: L < 1.$$

Dann sind alle Voraussetzungen aus BF-Satz erfüllt für $\|\cdot\| = |\cdot|$

Beachte

Nach Mittelwertsatz gilt

$$|\Phi(x)-\Phi(y)|=|\Phi'(\xi)(x-y)|\leq \max_{\xi\in[a,b]}|\Phi'(\xi)||x-y|,$$

d.h. Φ ist eine Kontraktion.

Folgerungen aus Banachscher Fixpunktsatz

Folgerung 5.25

Sei $E\subseteq X=\mathbb{R}^n$ eine abgeschlossene konvexe Menge, und $\Phi:E\to\mathbb{R}^n$ sei stetig differenzierbar. Es gelte

$$\Phi: E \to E$$
 (Selbstabbildung),

und bzgl. einer Vektornorm $\|\cdot\|$ auf \mathbb{R}^n gelte für die zugehörige Matrixnorm

$$\max_{x \in E} \|\Phi'(x)\| = L < 1.$$

Dann sind alle Voraussetzungen aus BF-Satz erfüllt.

Hierbei ist

$$\Phi'(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} \Phi_1(x) & \cdots & \frac{\partial}{\partial x_n} \Phi_1(x) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} \Phi_n(x) & \cdots & \frac{\partial}{\partial x_n} \Phi_n(x) \end{pmatrix}$$

die Jacobi-Matrix von Φ an der Stelle x.

Beispiel 5.20

Man berechne die positive Nullstelle der Funktion $f(x) := x^6 - x - 1$.

[Beispiel-5.20-03]/1 Dahmen-Reusken Kapitel 5

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

Mögliche Fixpunktfunktion

$$\Phi_2(x) := (x+1)^{\frac{1}{6}}.$$

Es gilt

$$\Phi_2: [1,2] \rightarrow [1,2]$$
 (Selbstabbildung)

$$|\Phi_2'(x)| = \left|\frac{1}{6}(x+1)^{-\frac{5}{6}}\right| \leq \frac{1}{6} \quad \text{für } x \in [1,2].$$

Beispiel 5.20

Man berechne die positive Nullstelle der Funktion

$$f(x) := x^6 - x - 1.$$

Mögliche Fixpunktfunktion

$$\Phi_2(x) := (x+1)^{\frac{1}{6}}.$$

Es gilt

$$\Phi_2: [1,2] o [1,2]$$
 (Selbstabbildung)

$$|\Phi_2'(x)| = \left|\frac{1}{6}(x+1)^{-\frac{5}{6}}\right| \leq \frac{1}{6} \quad \text{für } x \in [1,2].$$

Daraus folgt:

f hat eine eindeutige Nullstelle $x^* \in [1, 2]$.

Fixpunktiteration $x_{k+1} = \Phi_2(x_k)$, $x_0 \in [1,2]$, konvergiert gegen x^* .

[Beispiel-5.20-03]/3 Dahmen-Reusken Kapitel 5

Beispiel 5.27

Zeigen Sie, dass das System

$$6x = \cos x + 2y$$

$$8y = xy^2 + \sin x$$

auf $E=[0,1]\times[0,1]$ eine eindeutige Lösung besitzt. Bestimmen Sie diese Lösung bis auf eine Genauigkeit 10^{-3} in der ∞ -Norm.

[Beispiel-5.27-01]/1 Dahmen-Reusken Kapitel 5

Beispiel 5.27

Zeigen Sie, dass das System

$$6x = \cos x + 2y$$

$$8y = xy^2 + \sin x$$

auf $E=[0,1]\times[0,1]$ eine eindeutige Lösung besitzt. Bestimmen Sie diese Lösung bis auf eine Genauigkeit 10^{-3} in der ∞ -Norm.

► Fixpunktfunktion:

Beispiel 5.27

Zeigen Sie, dass das System

$$6x = \cos x + 2y$$

$$8y = xy^2 + \sin x$$

auf $E = [0,1] \times [0,1]$ eine eindeutige Lösung besitzt. Bestimmen Sie diese Lösung bis auf eine Genauigkeit 10^{-3} in der ∞ -Norm.

Fixpunktfunktion:

$$\Phi(x,y) = \begin{pmatrix} \frac{1}{6}\cos x + \frac{1}{3}y \\ \frac{1}{8}xy^2 + \frac{1}{8}\sin x \end{pmatrix}$$

Dahmen-Reusken Kapitel 5

Zeigen Sie, dass das System

$$6x = \cos x + 2y$$

$$8y = xy^2 + \sin x$$

auf $E = [0,1] \times [0,1]$ eine eindeutige Lösung besitzt. Bestimmen Sie diese Lösung bis auf eine Genauigkeit 10^{-3} in der ∞ -Norm.

Fixpunktfunktion:

$$\Phi(x,y) = \begin{pmatrix} \frac{1}{6}\cos x + \frac{1}{3}y \\ \frac{1}{8}xy^2 + \frac{1}{8}\sin x \end{pmatrix}$$

Selbstabbildung:

Zeigen Sie, dass das System

$$6x = \cos x + 2y$$

$$8y = xy^2 + \sin x$$

auf $E=[0,1]\times[0,1]$ eine eindeutige Lösung besitzt. Bestimmen Sie diese Lösung bis auf eine Genauigkeit 10^{-3} in der ∞ -Norm.

► Fixpunktfunktion:

$$\Phi(x,y) = \begin{pmatrix} \frac{1}{6}\cos x + \frac{1}{3}y\\ \frac{1}{8}xy^2 + \frac{1}{8}\sin x \end{pmatrix}$$

Selbstabbildung:

Für $x \in [0,1]$ gilt $0 \le \cos x \le 1$ und $0 \le \sin x \le 1$. Daher gilt

$$\Phi: E \to E$$
.

34/5

[Beispiel-5.27-01]/5 Dahmen-Reusken Kapitel 5

► Kontraktion:

[Beispiel-5.27-02]/1

Kontraktion: Die Jacobi-Matrix ist

$$\Phi'(x,y) = egin{pmatrix} -rac{1}{6}\sin x & rac{1}{3} \ rac{1}{8}y^2 + rac{1}{8}\cos x & rac{1}{4}xy \end{pmatrix}.$$

[Beispiel-5.27-02]/2 Dahmen-Reusken Kapitel 5 35/2

Beispiel 5.27

Kontraktion: Die Jacobi-Matrix ist

$$\Phi'(x,y) = egin{pmatrix} -rac{1}{6}\sin x & rac{1}{3} \ rac{1}{8}y^2 + rac{1}{8}\cos x & rac{1}{4}xy \end{pmatrix}.$$

Damit erhält man für die ∞ -Norm auf \mathbb{R}^2

$$\begin{split} \|\Phi'(x,y)\|_{\infty} &= \max\left\{\frac{1}{6}|\sin x| + \frac{1}{3}, \frac{1}{8}\left(\left|y^2 + \cos x\right| + 2|xy|\right)\right\} \\ &\leq \frac{1}{2}. \end{split}$$

[Beispiel-5.27-02]/3 Dahmen-Reusken Kapitel 5

Beispiel 5.27

Kontraktion: Die Jacobi-Matrix ist

$$\Phi'(x,y) = \begin{pmatrix} -\frac{1}{6}\sin x & \frac{1}{3} \\ \frac{1}{8}y^2 + \frac{1}{8}\cos x & \frac{1}{4}xy \end{pmatrix}.$$

Damit erhält man für die ∞ -Norm auf \mathbb{R}^2

$$\begin{split} \|\Phi'(x,y)\|_{\infty} &= \max\left\{\frac{1}{6}|\sin x| + \frac{1}{3}, \frac{1}{8}\left(|y^2 + \cos x| + 2|xy|\right)\right\} \\ &\leq \frac{1}{2}. \end{split}$$

Wegen Folgerung 5.25 existiert genau eine Lösung in E.

Kapitel 5

Kontraktion: Die Jacobi-Matrix ist

$$\Phi'(x,y) = \begin{pmatrix} -\frac{1}{6}\sin x & \frac{1}{3} \\ \frac{1}{8}y^2 + \frac{1}{8}\cos x & \frac{1}{4}xy \end{pmatrix}.$$

Damit erhält man für die ∞ -Norm auf \mathbb{R}^2

$$\begin{split} \|\Phi'(x,y)\|_{\infty} &= \max\left\{\frac{1}{6}|\sin x| + \frac{1}{3}, \frac{1}{8}\left(|y^2 + \cos x| + 2|xy|\right)\right\} \\ &\leq \frac{1}{2}. \end{split}$$

Wegen Folgerung 5.25 existiert genau eine Lösung in E.

Fehlerschätzung:

Kontraktion: Die Jacobi-Matrix ist

$$\Phi'(x,y) = egin{pmatrix} -rac{1}{6}\sin x & rac{1}{3} \ rac{1}{8}y^2 + rac{1}{8}\cos x & rac{1}{4}xy \end{pmatrix}.$$

Damit erhält man für die ∞ -Norm auf \mathbb{R}^2

$$\begin{split} \|\Phi'(x,y)\|_{\infty} &= \max\left\{\frac{1}{6}|\sin x| + \frac{1}{3}, \frac{1}{8}\left(\left|y^2 + \cos x\right| + 2|xy|\right)\right\} \\ &\leq \frac{1}{2}. \end{split}$$

Wegen Folgerung 5.25 existiert genau eine Lösung in E.

Fehlerschätzung: Mit $\epsilon=10^{-3}$ und $L=\frac{1}{2}$ benötigt man maximal $k \geq \log\left(rac{0.5\cdot 10^{-3}}{\|x_1-x_0\|}
ight) \Big/\log\left(rac{1}{2}
ight)$

Schritte.

Für den Startwert

$$(x_0, y_0) = (0, 0)$$

erhält man als 1. Iterierte

$$(x_1, y_1) = \Phi(x_0, y_0) = \begin{pmatrix} \frac{1}{6}\cos x_0 + \frac{1}{3}y_0 \\ \frac{1}{8}x_0 y_0^2 + \frac{1}{8}\sin x_0 \end{pmatrix} = \begin{pmatrix} \frac{1}{6}, 0 \end{pmatrix}$$

und damit

$$k \geq \log\left(rac{0.5 imes 10^{-3}}{1/6}
ight) \Big/\log\left(rac{1}{2}
ight) = 8.38,$$

d.h. es werden maximal 9 Iterationen benötigt.

[Beispiel-5.27-03]/1

Beispiel 5.27

Für den Startwert

$$(x_0, y_0) = (0, 0)$$

erhält man als 1. Iterierte

$$(x_1, y_1) = \Phi(x_0, y_0) = \begin{pmatrix} \frac{1}{6}\cos x_0 + \frac{1}{3}y_0 \\ \frac{1}{8}x_0 y_0^2 + \frac{1}{8}\sin x_0 \end{pmatrix} = \begin{pmatrix} \frac{1}{6}, 0 \end{pmatrix}$$

und damit

$$k \geq \log\left(rac{0.5 imes 10^{-3}}{1/6}
ight) \Big/\log\left(rac{1}{2}
ight) = 8.38,$$

d.h. es werden maximal 9 Iterationen benötigt.

Ergebnisse: Siehe folgende Tabelle.

[Beispiel-5.27-03]/2 Dahmen-Reusken Kapitel 5

	$(x_0,y_0)=(0,0)$	$\frac{0.5}{1-0.5}*$
k	$(x_k, y_k) = \phi(x_{k-1}, y_{k-1})$	$\ (x_k,y_k)-(x_{k-1},y_{k-1})^T\ _{\infty}$
0	(0.0000000, 0.00000000)	_
1	(0.16666667, 0.00000000)	1.67e-01
2	(0.16435721, 0.02073702)	2.07e-02
3	(0.17133296, 0.02046111)	6.98e-03
4	(0.17104677, 0.02132096)	8.60e-04
5	(0.17134151, 0.02128646)	2.95e-04
6	(0.17132164, 0.02132275)	3.63e-05
7	(0.17133430, 0.02132034)	1.27e-05
8	(0.17133314, 0.02132189)	1.56e-06
9	(0.17133369, 0.02132175)	5.52e-07

Aus der a-posteriori-Fehlerabschätzung ergibt sich, dass schon für k=4 (statt k=9) die gewünschte Genauigkeit erreicht ist.

[Beispiel-5.27-04] Dahmen-Reusken Kapitel 5 37

Es gilt

$$Ax = b \Leftrightarrow x = x + C(b - Ax) =: \Phi(x)$$

mit einer beliebigen regulären Matrix $C \in \mathbb{R}^{n imes n}$.

Fixpunktiteration:

$$x^{k+1} = x^k + C(b - Ax^k), \quad k = 0, 1, 2, \dots$$

Es gilt

$$Ax = b \Leftrightarrow x = x + C(b - Ax) =: \Phi(x)$$

mit einer beliebigen regulären Matrix $C \in \mathbb{R}^{n \times n}$.

Fixpunktiteration:

$$x^{k+1} = x^k + C(b - Ax^k), \quad k = 0, 1, 2, \dots$$

Für den Fehler gilt

$$x^{k+1} - x^* = (I - CA)^{k+1}(x^0 - x^*)$$
$$||x^k - x^*|| \le ||I - CA||^k ||x^0 - x^*||.$$

Hinreichend für Konvergenz der Fixpunktiteration:

$$||I - CA|| < 1$$

Wird zur Lösung großer dünnbesetzter Gleichungssysteme verwendet. Effizienz des Verfahrens hängt ab von:

- Rechenaufwand pro Iteration
- Konvergenzgeschwindigkeit der Fixpunktiteration

Wird zur Lösung großer dünnbesetzter Gleichungssysteme verwendet. Effizienz des Verfahrens hängt ab von:

- Rechenaufwand pro Iteration
- Konvergenzgeschwindigkeit der Fixpunktiteration

Beispiel: das Gauß-Seidel Verfahren

Sei L der untere Dreiecksanteil der Matrix A. Annahme: $\det(L) \neq 0$. Wähle $C := L^{-1}$. Beachte:

$$z_k = C(b - Ax^k) \iff Lz_k = b - Ax^k$$

Also: geringer Rechenaufwand pro Iteration. Für bestimmte Problemklassen:

$$||I - CA|| < 1$$

Also: Konvergenz.

Stabilität der Fixpunktiteration

Es sei $p=(p_1,\ldots,p_m)^T\in\mathbb{R}^m$ ein Satz von Parametern, der die Iterationsfunktion vollständig beschreibt: $x=\Phi(x)=\Phi(x;p)$

Sei $\tilde{\Phi}(\cdot;p)$ die mit Rundungsfehlern behaftete Auswertung. Annahme: die Auswertung is Rückwärtsstabil:

$$ilde{\Phi}(x;p) = \Phi(x; ilde{p}), \quad \mathsf{mit} \ \| ilde{p} - p\|_{\mathbb{R}^m} \leq c_{aus} \mathrm{eps} \|p\|_{\mathbb{R}^m}$$

Auf einem Rechner: $\hat{x}^{k+1} := \tilde{\Phi}(\hat{x}^k;p)$, $k=0,1,\ldots$

Stabilität der Fixpunktiteration

Es sei $p=(p_1,\ldots,p_m)^T\in\mathbb{R}^m$ ein Satz von Parametern, der die Iterationsfunktion vollständig beschreibt: $x=\Phi(x)=\Phi(x;p)$

Sei $\tilde{\Phi}(\cdot;p)$ die mit Rundungsfehlern behaftete Auswertung. Annahme: die Auswertung is Rückwärtsstabil:

$$ilde{\Phi}(x;p) = \Phi(x; ilde{p}), \quad \mathsf{mit} \ \| ilde{p} - p\|_{\mathbb{R}^m} \leq c_{aus} \mathrm{eps} \|p\|_{\mathbb{R}^m}$$

Auf einem Rechner: $\hat{x}^{k+1} := \tilde{\Phi}(\hat{x}^k;p)$, $k=0,1,\ldots$

Man kann zeigen:

Für k hinreichend groß ist der Fehler $\|\hat{x}^k - x^*\|$ (maximal) etwa von derselben Größenordnung wie der aufgrund der Kondition des Fixpunktproblems unvermeidbaren Fehler. D.h., falls die Φ -Auswertung rückwärtsstabil ist, ist die Fixpunktiteration ein stabiles Verfahren.

Konvergenzordnung und Fehlerschätzung

Ein Maß für die Konvergenzgeschwindigkeit einer Folge ist der Begriff der Konvergenzordnung.

Definition 5.32

Es sei $\{x_k\}_{k\in\mathbb{N}}$ eine konvergente Folge mit Grenzwert x^* und mit folgender Eigenschaft: Es existieren $c\in(0,\infty)$, $p\in[1,\infty)$ und $k_0\in\mathbb{N}$, so dass

$$||x_{k+1} - x^*|| \le c ||x_k - x^*||^p$$

für alle $k \geq k_0$ gilt, wobei

$$0 < c < 1$$
 ist, falls $p = 1$.

Der maximale p-Wert, für den diese Eigenschaft gilt, wird als Konvergenzordnung der Folge bezeichnet.

[BFKonvFehler-01] Dahmen-Reusken Kapitel 5 41

Konvergenzordnung und Fehlerschätzung

Die Konvergenzordnung eines iterativen Verfahrens kann man entsprechend festlegen

Definition

Ein iteratives Verfahren zur Bestimmung von $x^* \in \mathbb{R}^n$ (z.B. die Nullstelle einer Funktion) hat die

Konvergenzordnung p,

wenn es eine Umgebung U von x^st gibt, so dass für alle Startwerte

$$x_0 \in U \setminus \{x^*\}$$

die von dem Verfahren erzeugte Folge $\{x_k\}_{k\in\mathbb{N}}$ gegen x^* konvergiert und sie die Konvergenzordnung p hat.

[BFKonvFehler-02] Dahmen-Reusken Kapitel 5 4:

Vergleich der Konvergenzgeschwindigkeit zwischen

- 1. Verfahren der Ordnung p=1 (lineare Konvergenz), und
- 2. Verfahren der Ordnung p = 2 (quadratische Konvergenz).

Sei $\|x_0 - x^*\| = 0.2$ und $e_k := \|x_k - x^*\|$, dann ergibt sich

[Beispiel-5.34]/1 Dahmen-Reusken Kapitel 5 43/1

Vergleich der Konvergenzgeschwindigkeit zwischen

- 1. Verfahren der Ordnung p=1 (lineare Konvergenz), und
- 2. Verfahren der Ordnung p=2 (quadratische Konvergenz).

Sei
$$\|x_0 - x^*\| = 0.2$$
 und $e_k := \|x_k - x^*\|$, dann ergibt sich

1. Linear: p=1 und $c=\frac{1}{2}$

$oldsymbol{k}$	1	2	3	4	5	6	
$e_k \le$	0.1	0.05	0.025	0.0125	0.00625	0.003125	

[Beispiel-5.34]/2 Dahmen-Reusken Kapitel 5 43/2

Vergleich der Konvergenzgeschwindigkeit zwischen

- 1. Verfahren der Ordnung p=1 (lineare Konvergenz), und
- 2. Verfahren der Ordnung p = 2 (quadratische Konvergenz).

Sei
$$\|x_0 - x^*\| = 0.2$$
 und $e_k := \|x_k - x^*\|$, dann ergibt sich

1. Linear: p=1 und $c=\frac{1}{2}$

$oldsymbol{k}$	1	2	3	4	5	6
$e_k \le$	0.1	0.05	0.025	0.0125	0.00625	0.003125

2. Quadratisch: p=2 und c=3

\boldsymbol{k}	1	2	3	4	5	6
$e_k \le$	0.12	0.0432	0.0056	0.000094	$3\cdot 10^{-8}$	$2\cdot 10^{-15}$

[Beispiel-5.34]/3 Dahmen-Reusken Kapitel 5 43/3

Konvergenzordnung einer Fixpunktiteration

Sei

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, \dots,$$

eine konvergente Fixpunktiteration mit Fixpunkt x^* . Mit Hilfe der Taylorreihenentwicklung erhält man

$$x_{k+1} - x^* = \Phi(x_k) - \Phi(x^*)$$

= $\Phi'(x^*)(x_k - x^*) + \mathcal{O}(\|x_k - x^*\|^2).$

Konvergenzordnung einer Fixpunktiteration

Sei

$$x_{k+1} = \Phi(x_k), \quad k = 0, 1, \dots,$$

eine konvergente Fixpunktiteration mit Fixpunkt x^* . Mit Hilfe der Taylorreihenentwicklung erhält man

$$x_{k+1} - x^* = \Phi(x_k) - \Phi(x^*)$$

= $\Phi'(x^*)(x_k - x^*) + \mathcal{O}(\|x_k - x^*\|^2).$

Daraus folgt für die Konvergenzordnung:

- wenn $0 \neq \|\Phi'(x^*)\| < 1$: Lineare Konvergenz (p=1).
- $lackbox{ wenn }\Phi'(x^*)=0, \ \Phi''(x^*)
 eq 0$: Quadratische Konvergenz (p=2).

Für die meisten in der Praxis benutzten Methoden zur Nullstellenbestimmung gilt p=1 (lineare Konvergenz) oder p=2 (quadratisch).

Fehlerschätzung für skalare Folgen

Definiere
$$e_k := x^* - x_k$$
 und $A_k := \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$

Lemma 5.36

Sei $\{x_k\}_{k=0}^{\infty}$ eine konvergente Folge mit Grenzwert x^* .

Für
$$p>1$$
: $\lim_{k\to\infty} \frac{e_{k+1}}{e_k}=0$ und $\lim_{k\to\infty} \frac{x_{k+1}-x_k}{e_k}=1$.

Fehlerschätzung für skalare Folgen

Definiere
$$e_k := x^* - x_k$$
 und $A_k := \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$

Lemma 5.36

Sei $\{x_k\}_{k=0}^{\infty}$ eine konvergente Folge mit Grenzwert x^* .

Für
$$p>1$$
: $\lim_{k\to\infty} \frac{e_{k+1}}{e_k}=0$ und $\lim_{k\to\infty} \frac{x_{k+1}-x_k}{e_k}=1$.

Aus

$$\lim_{k\to\infty}\frac{e_{k+1}}{e_k}=A\in(-1,1),\ \ A\neq 0,$$

folgt, dass die Konvergenzordnung der Folge genau 1 ist und

$$\lim_{k o\infty}A_k=A, \qquad \lim_{k o\infty}rac{rac{A_k}{1-A_k}(x_k-x_{k-1})}{e_k}=1.$$

Fehlerschätzung für skalare Folgen

Es ergeben sich einfache Fehlerschätzungen (für k hinreichend groß) aus den Resultaten in Lemma 5.36:

$$p=1: \;\; x^*-x_kpprox rac{A_k}{1-A_k}(x_k-x_{k-1}),$$

wobei $A_k = rac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$ etwa konstant sein sollte.

$$p > 1 : x^* - x_k \approx x_{k+1} - x_k$$
.

Beachte:

Für p=1 (lineare Konvergenz) ist

$$|x_k - x_{k-1}|$$
 oder $|x_{k+1} - x_k|$

meist keine sinnvolle Schätzung der Größe des Fehlers $|x^* - x_k|$.

[FehlerSkalFolgen-02] Dahmen-Reusken Kapitel 5 46

Für die Fixpunktiteration $x_{k+1} = \Phi_2(x_k)$ aus Beispiel 5.20 sind einige Resultate in folgender Tabelle zusammengestellt:

\boldsymbol{k}	$x_0 = 0.5, x_{k+1} = \Phi_2(x_k)$	$A_k = \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}$	$\frac{A_k}{1 - A_k}(x_k - x_{k-1})$	$x^* - x_k$
0	0.50000000000	_	_	6.35e-01
1	1.069913193934	_	_	6.48e-02
2	1.128908359044	0.1035161	6.81e-03	5.82e-03
3	1.134208317737	0.0898372	5.23e-04	5.16e-04
4	1.134678435924	0.0887022	4.58e-05	4.57e-05
5	1.134720089466	0.0886023	4.05e-06	4.05e-06
6	1.134723779696	0.0885934	3.59e-07	3.59e-07
7	1.134724106623	0.0885926	3.18e-08	3.18e-08
8	1.134724135586	0.0885926	2.82e-09	2.82e-09
9	1.134724138152	0.0885926	2.49e-10	2.49e-10
10	1.134724138379	0.0885925	2.21e-11	2.21e-11

[Beispiel-5.38-01] Dahmen-Reusken Kapitel 5

Fehlerschätzung für Vektorfolgen

Lemma 5.40

Sei $\{x_k\}_{k=0}^\infty$ eine konvergente Folge in \mathbb{R}^n mit Grenzwert x^* und Konvergenzordnung p>1. Dann gilt

$$\lim_{k\to\infty}\frac{\|x_{k+1}-x_k\|}{\|e_k\|}=1.$$

Aus diesem Resultat ergibt sich folgende Fehlerschätzung:

$$p>1: \|x_k-x^*\| pprox \|x_{k+1}-x_k\|,$$
 für k genügend groß.

Fehlerschätzung für Vektorfolgen

Lemma 5.40

Sei $\{x_k\}_{k=0}^\infty$ eine konvergente Folge in \mathbb{R}^n mit Grenzwert x^* und Konvergenzordnung p>1. Dann gilt

$$\lim_{k\to\infty}\frac{\|x_{k+1}-x_k\|}{\|e_k\|}=1.$$

Aus diesem Resultat ergibt sich folgende Fehlerschätzung:

$$p>1: \ \|x_k-x^*\|pprox \|x_{k+1}-x_k\|, \ ext{ für } k ext{ genügend groß}.$$

Es sei bemerkt, dass im skalaren Fall der Fehler e_k und im vektoriellen Fall die Größe des Fehlers, $\|e_k\|$, geschätzt wird.

Algorithmus 5.42

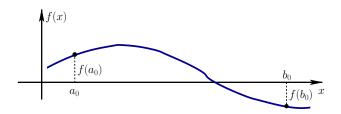
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$



[Bisektion-01]/1 Dahmen-Reusken Kapitel 5 49/1

Algorithmus 5.42

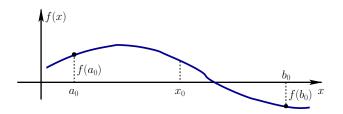
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k=0,1,2,\ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$



[Bisektion-01]/2 Dahmen-Reusken Kapitel 5 49/2

Algorithmus 5.42

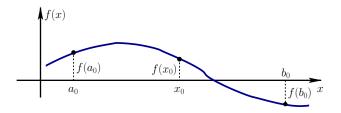
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad \text{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad \text{sonst.}$



[Bisektion-01]/3 Dahmen-Reusken Kapitel 5 49/3

Algorithmus 5.42

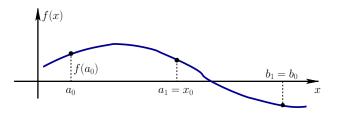
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$



[Bisektion-01]/4 Dahmen-Reusken Kapitel 5 49/4

Algorithmus 5.42

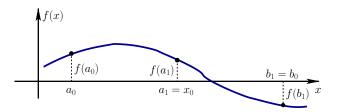
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$



[Bisektion-01]/5 Dahmen-Reusken Kapitel 5 49/5

Algorithmus 5.42

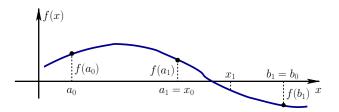
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$



[Bisektion-01]/6 Dahmen-Reusken Kapitel 5 49/6

Algorithmus 5.42

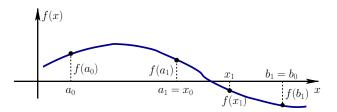
Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

$$lacksquare x_k = rac{1}{2}(a_k + b_k)$$
 und $f(x_k)$

Setze

$$a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0$$
 $a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$



[Bisektion-01]/7 Dahmen-Reusken Kapitel 5 49/7

Bestimmen Sie die Nullstelle $x^* \in [1,2]$ der Funktion

$$f(x) = x^6 - x - 1$$

mittels Bisektion (vgl. Beispiel 5.20).

Die Bisektion mit den Startwerten $a_0=1$ und $b_0=2$ liefert:

k	a_k	b_k	x_k	$b_k - a_k$	$f(x_k)$
0	1.00000	2.00000	1.50000	1.00000	8.89062
1	1.00000	1.50000	1.25000	0.50000	1.56470
2	1.00000	1.25000	1.12500	0.25000	-0.09771
3	1.12500	1.25000	1.18750	0.12500	0.61665
4	1.12500	1.18750	1.15625	0.06250	0.23327
5	1.12500	1.15625	1.14062	0.03125	0.06158
6	1.12500	1.14062	1.13281	0.01562	-0.01958
7	1.13281	1.14062	1.13672	0.00781	0.02062
8	1.13281	1.13672	1.13477	0.00391	0.00043
9	1.13281	1.13477	1.13379	0.00195	-0.00960

[Beispiel-5.43-01] Dahmen-Reusken Kapitel 5 50

Ziel: Konstruiere Φ so, dass die Fixpunktiteration $x_{k+1} = \Phi(x_k)$ möglichst schnell konvergiert.

Ziel: Konstruiere Φ so, dass die Fixpunktiteration $x_{k+1} = \Phi(x_k)$ möglichst schnell konvergiert.

Ansatz:

lacktriangle Setze $\Phi(x)=x-M_x\,f(x)$, wobei hier $M_x=g(x)$ (skalar).

Ziel: Konstruiere Φ so, dass die Fixpunktiteration $x_{k+1} = \Phi(x_k)$ möglichst schnell konvergiert.

Ansatz:

- ightharpoonup Setze $\Phi(x) = x M_x f(x)$, wobei hier $M_x = g(x)$ (skalar).
- ightharpoonup Wähle g(x) so, dass $\Phi'(x^*) = 0$.

Ziel: Konstruiere Φ so, dass die Fixpunktiteration $x_{k+1} = \Phi(x_k)$ möglichst schnell konvergiert.

Ansatz:

- lacktriangle Setze $\Phi(x)=x-M_x\,f(x)$, wobei hier $M_x=g(x)$ (skalar).
- ightharpoonup Wähle g(x) so, dass $\Phi'(x^*) = 0$.

Es gilt:
$$\Phi'(x^*) = 0 \iff g(x^*) = rac{1}{f'(x^*)},$$

und daraus folgt $\Phi(x) := x - \frac{f(x)}{f'(x)}$.

Ziel: Konstruiere Φ so, dass die Fixpunktiteration $x_{k+1} = \Phi(x_k)$ möglichst schnell konvergiert.

Ansatz:

- lacktriangle Setze $\Phi(x)=x-M_x\,f(x)$, wobei hier $M_x=g(x)$ (skalar).
- ightharpoonup Wähle g(x) so, dass $\Phi'(x^*) = 0$.

Es gilt:
$$\Phi'(x^*) = 0 \iff g(x^*) = \frac{1}{f'(x^*)},$$

und daraus folgt $\Phi(x) := x - \frac{f(x)}{f'(x)}$.

Newton-Verfahren

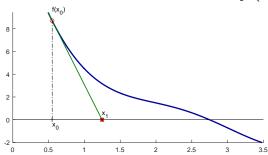
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, 2, \dots$$

Es gilt
$$f(x) = \underbrace{f(x_k) + (x - x_k)f'(x_k)}_{=: T(x)} + \frac{1}{2}(x - x_k)^2 f''(\xi_k)$$

$$T(x_{k+1}) = 0 \quad \Leftrightarrow \quad x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}.$$

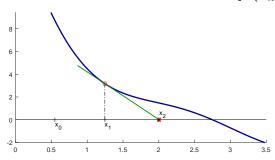
Es gilt
$$f(x) = \underbrace{\frac{f(x_k) + (x - x_k)f'(x_k)}{=: T(x)}} + \frac{1}{2}(x - x_k)^2 f''(\xi_k)$$

$$T(x_{k+1}) = 0 \quad \Leftrightarrow \quad x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}.$$



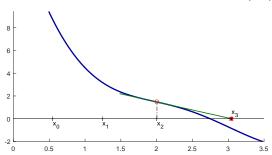
Es gilt
$$f(x) = \underbrace{\frac{f(x_k) + (x - x_k)f'(x_k)}{=: T(x)}} + \frac{1}{2}(x - x_k)^2 f''(\xi_k)$$

$$T(x_{k+1}) = 0 \quad \Leftrightarrow \quad x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}.$$



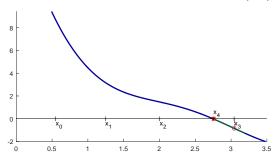
Es gilt
$$f(x) = \underbrace{f(x_k) + (x - x_k)f'(x_k)}_{=: T(x)} + \frac{1}{2}(x - x_k)^2 f''(\xi_k)$$

$$T(x_{k+1}) = 0 \quad \Leftrightarrow \quad x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}.$$



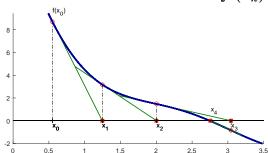
Es gilt
$$f(x) = \underbrace{\frac{f(x_k) + (x - x_k)f'(x_k)}{=: T(x)}} + \frac{1}{2}(x - x_k)^2 f''(\xi_k)$$

$$T(x_{k+1}) = 0 \quad \Leftrightarrow \quad x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}.$$



Es gilt
$$f(x) = \underbrace{\frac{f(x_k) + (x - x_k)f'(x_k)}{=: T(x)}} + \frac{1}{2}(x - x_k)^2 f''(\xi_k)$$

$$T(x_{k+1}) = 0 \quad \Leftrightarrow \quad x_{k+1} = x_k - rac{f(x_k)}{f'(x_k)}.$$



Konvergenz Newton-Verfahren

Satz 5.44

Sei f zweimal stetig differenzierbar U = [a,b], $x^* \in (a,b)$, und es gelte

$$f(x^*) = 0$$
$$f'(x^*) \neq 0.$$

Für $x_k \in U$ und

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)}$$

gilt

$$x_{k+1} - x^* = rac{1}{2} rac{f''(\xi_k)}{f'(x_k)} (x_k - x^*)^2, \quad \xi_k \in U.$$

Also ist das Newton-Verfahren lokal quadratisch konvergent.

54/1

Beispiel 5.45

Bestimmen Sie die Nullstelle $x^* \in [1,2]$ der Funktion

$$f(x) = x^6 - x - 1$$

mittels Newton-Verfahrens (vgl. Beispiel 5.20).

[Beispiel-5.45-01]/1 Dahmen-Reusken Kapitel 5

Bestimmen Sie die Nullstelle $x^* \in [1,2]$ der Funktion

$$f(x) = x^6 - x - 1$$

mittels Newton-Verfahrens (vgl. Beispiel 5.20).

Die Newton-Iteration
$$x_{k+1} = x_k - \frac{x_k^6 - x_k - 1}{6x_k^5 - 1}$$
 liefert:

k	x_k mit $x_0=0.5$	x_k mit $x_0=2$	$x_{k+1}-x_k$ mit $x_0=2$
0	0.50000000000000	2.000000000000000	-3.19e-01
1	-1.32692307692308	1.68062827225131	-2.50e-01
2	-1.10165080870249	1.43073898823906	-1.76e-01
3	-0.92567640260338	1.25497095610944	-9.34e-02
4	-0.81641531662254	1.16153843277331	-2.52e-02
5	-0.78098515830640	1.13635327417051	-1.62e-03
6	-0.77810656986872	1.13473052834363	-6.39e-06
7	-0.77808959926268	1.13472413850022	-9.87e-11
8	-0.77808959867860	1.13472413840152	0.00e+00
9	-0.77808959867860	1.13472413840152	_

[Beispiel-5.45-01]/2 Dahmen-Reusken Kapitel 5 54/2

Man berechne \sqrt{a} für ein a > 0 mit Hilfe des Newton-Verfahrens.

[Beispiel-5.46-01]/1 Dahmen-Reusken Kapitel 5 55/1

Man berechne \sqrt{a} für ein a>0 mit Hilfe des Newton-Verfahrens.

Ansatz: Die Wurzel von a, \sqrt{a} , ist Lösung von

$$f(x) := x^2 - a = 0.$$

[Beispiel-5.46-01]/2 Dahmen-Reusken Kapitel 5 55/2

Man berechne \sqrt{a} für ein a>0 mit Hilfe des Newton-Verfahrens.

Ansatz: Die Wurzel von a, \sqrt{a} , ist Lösung von

$$f(x) := x^2 - a = 0.$$

Das Newton-Verfahren ergibt hier $x_{k+1} = \frac{1}{2}(x_k + a/x_k)$ und liefert für a=2 die Resultate:

	x_k	$x_{k+1} - x_k$	$\sqrt{2}-x_k$
0	100.000000000000000	-5.00e+01	-9.86e+01
1	50.01000000000000	-2.50e+01	-4.86e+01
2	25.02499600079984	-1.25e+01	-2.36e+01
3	12.55245804674590	-6.20e+00	-1.11e+01
4	6.35589469493114	-3.02e+00	-4.94e+00
5	3.33528160928043	-1.37e+00	-1.92e+00
6	1.96746556223115	-4.75e-01	-5.53e-01
7	1.49200088968972	-7.58e-02	-7.78e-02
8	1.41624133203894	-2.03e-03	-2.03e-03
9	1.41421501405005	-1.45e-06	-1.45e-06
10	1.41421356237384	-	-7.45e-13

[Beispiel-5.46-01]/3 Dahmen-Reusken Kapitel 5 55/3

56/1

Beispiel 5.46: Globale Konvergenz

Verfahren konvergiert für jeden Startwert $x_0 > 0$.

Für $x_0 > 0$ gilt

$$x_{k+1} - \sqrt{a} = rac{1}{2} \left(x_k + rac{a}{x_k}
ight) - \sqrt{a} = rac{1}{2x_k} \left(x_k - \sqrt{a}
ight)^2 \geq 0$$

also $x_k > \sqrt{a}$ für alle k > 1.

[Beispiel-5.46-02]/1 Dahmen-Reusken Kapitel 5

56/2

Beispiel 5.46: Globale Konvergenz

Verfahren konvergiert für jeden Startwert $x_0 > 0$.

Für $x_0 > 0$ gilt

$$\left(x_{k+1}-\sqrt{a}=rac{1}{2}\left(x_{k}+rac{a}{x_{k}}
ight)-\sqrt{a}=rac{1}{2x_{k}}\left(x_{k}-\sqrt{a}
ight)^{2}\geq0$$

also $x_k > \sqrt{a}$ für alle k > 1.

Damit ergibt sich, für k > 1:

$$0 \leq x_{k+1} - \sqrt{a} = rac{1}{2} rac{x_k - \sqrt{a}}{x_k} (x_k - \sqrt{a}) \leq rac{1}{2} (x_k - \sqrt{a}).$$

Damit ist das Newtonverfahren hier global konvergent auf $(0, \infty)$.

Dahmen-Reusken Kapitel 5

Newton-Verfahren Matlab-Demo 5.48

Konvergenzverhalten des Newton-Verfahrens:

Newton-Verfahren Matlab-Demo 5.48

Konvergenzverhalten des Newton-Verfahrens:

- ► Im Allgemeinen nur lokale Konvergenz
- Divergenz kann auftreten
- Manchmal globale Konvergenz
- Lokale quadratische Konvergenz
- "Endlose" Iteration möglich
- Überspringen von Nullstellen

Merke:

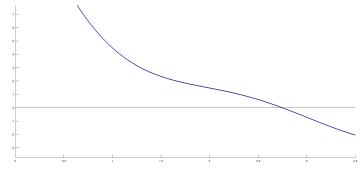
- Quadratische Konvergenz nur lokal
- Guter Startwert ist wichtig

Idee:

ightharpoonup Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

lacktriangle Nullstelle der Sekante ergibt neue Annäherung x_{k+1}

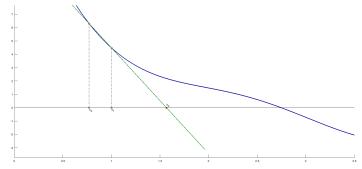


Idee:

ightharpoonup Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

lacktriangle Nullstelle der Sekante ergibt neue Annäherung x_{k+1}

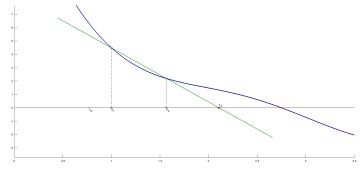


Idee:

ightharpoonup Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

lacktriangle Nullstelle der Sekante ergibt neue Annäherung x_{k+1}

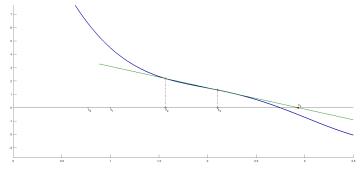


Idee:

lacktriangle Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

Nullstelle der Sekante ergibt neue Annäherung x_{k+1}

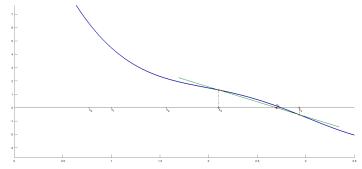


Idee:

ightharpoonup Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

lacktriangle Nullstelle der Sekante ergibt neue Annäherung x_{k+1}

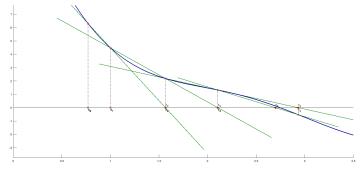


Idee:

ightharpoonup Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

lacktriangle Nullstelle der Sekante ergibt neue Annäherung x_{k+1}

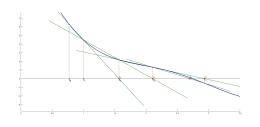


Idee:

ightharpoonup Ersetze Tangente T(x) im Newton-Verfahren durch Sekante

$$S(x) = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}} .$$

lacktriangle Nullstelle der Sekante ergibt neue Annäherung x_{k+1}



Der Sekantenanstieg

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

entspricht gerade $f'(x_k)$ im Newton-Verfahren.

Sekanten-Verfahren

Sekanten-Verfahren

$$x_{k+1} = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}}$$

$$= x_k - f(x_k) \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \right)$$

$$= \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Sekanten-Verfahren

Sekanten-Verfahren

$$x_{k+1} = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}}$$

$$= x_k - f(x_k) \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \right)$$

$$= \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Vorteile gegenüber Newton-Verfahren

- Berechnung der Ableitung f'(x) wird vermieden.
- lacktriangle Effizienter, wenn Auswertung von f'(x) und f(x) etwa gleich teuer.

Sekanten-Verfahren

Sekanten-Verfahren

$$x_{k+1} = f(x_k) \frac{x - x_{k-1}}{x_k - x_{k-1}} + f(x_{k-1}) \frac{x_k - x}{x_k - x_{k-1}}$$

$$= x_k - f(x_k) \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \right)$$

$$= \frac{x_{k-1} f(x_k) - x_k f(x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Vorteile gegenüber Newton-Verfahren

- ightharpoonup Berechnung der Ableitung f'(x) wird vermieden.
- lacktriangle Effizienter, wenn Auswertung von f'(x) und f(x) etwa gleich teuer.

Nachteile gegenüber Newton-Verfahren

- ► Konvergenzordnung $p \approx 1.6$.
- ▶ Verfahren benötigt zwei Startwerte.

Bestimmen Sie die Nullstelle $x^* \in [1,2]$ der Funktion

$$f(x) = x^6 - x - 1$$

Das Sekanten-Verfahren mit den Startwerten $x_0 = 2$ und $x_1 = 1$ liefert:

k	x_k	$x_{k+1} - x_k$
0	2.000000000000000	-1.00e+00
1	1.000000000000000	1.61e-02
2	1.01612903225806	1.74e-01
3	1.19057776867664	-7.29e-02
4	1.11765583094155	1.49e-02
5	1.13253155021613	2.29e-03
6	1.13481680800485	-9.32e-05
7	1.13472364594870	4.92e-07
8	1.13472413829122	1.10e-10
9	1.13472413840152	_

Die Werte in der dritten Spalte ergeben eine Fehlerabschätzung.

[Beispiel-5.49-01] Dahmen-Reusken Kapitel 5 60

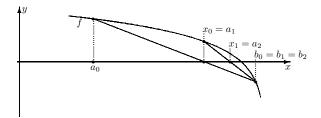
Regula-Falsi

Mischung der Bisektion und des Sekanten-Verfahrens.

Annahme: $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Statt der Mitte des Intervalls wird die Nullstelle der Sekante durch die Punkte $(a_0, f(a_0))$, $(b_0, f(b_0))$ bestimmt.

Man wählt nun ein neues Intervall $[a_1,b_1]=[a_0,x_0]$ oder $[a_1,b_1]=[x_0,b_0]$ für das $f(a_1)f(b_1)\leq 0$ gilt, usw.



[Regula-Falsi-01] Dahmen-Reusken Kapitel 5 61

Regula-Falsi

Algorithmus 5.50

Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

- $\blacktriangleright \ x_k = \frac{a_k f(b_k) b_k f(a_k)}{f(b_k) f(a_k)}, \ \text{und} \ f(x_k)$
- Setze $a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls} \ f(x_k)f(a_k) \leq 0 \ a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$

[Regula-Falsi-02]/1 Dahmen-Reusken Kapitel 5 62/1

Regula-Falsi

Algorithmus 5.50

Gegeben $a_0 < b_0$ mit $f(a_0)f(b_0) < 0$.

Für $k = 0, 1, 2, \ldots$ berechne:

- $\blacktriangleright \ x_k = \frac{a_k f(b_k) b_k f(a_k)}{f(b_k) f(a_k)}, \ \text{und} \ f(x_k)$
- Setze $a_{k+1}=a_k, \quad b_{k+1}=x_k \quad ext{falls } f(x_k)f(a_k) \leq 0 \ a_{k+1}=x_k, \quad b_{k+1}=b_k \quad ext{sonst.}$

- $x^* \in (a_k, b_k)$ für alle k und $a_k \to x^*$ oder $b_k \to x^*$ für $k \to \infty$.
- $x^* \in (a_k, b_k)$: die Methode ist sehr zuverlässig.
- Im Allg. schnellere Konvergenz als bei Bisektion, aber p=1

[Regula-Falsi-02]/2 Dahmen-Reusken Kapitel 5 62/2

Aufgabe

Sei $f=(f_1,\ldots,f_n)^T:\mathbb{R}^n\to\mathbb{R}^n$ (für n>1) eine zweimal stetig differenzierbare vektorwertige Funktion.

Bestimme

$$x^* = (x_1^*, \dots, x_n^*)^T \in \mathbb{R}^n$$
, so dass $f(x^*) = 0$.

Aufgabe

Sei $f=(f_1,\ldots,f_n)^T:\mathbb{R}^n\to\mathbb{R}^n$ (für n>1) eine zweimal stetig differenzierbare vektorwertige Funktion.

Bestimme

$$x^* = (x_1^*, \dots, x_n^*)^T \in \mathbb{R}^n$$
, so dass $f(x^*) = 0$.

Notation: Wir bezeichnen die Lösung am Iterationsschritt k mit $x^k=(x_1^k,\dots,x_n^k)^T\in\mathbb{R}^n.$

Aufgabe

Sei $f=(f_1,\ldots,f_n)^T:\mathbb{R}^n\to\mathbb{R}^n$ (für n>1) eine zweimal stetig differenzierbare vektorwertige Funktion.

Bestimme

$$x^* = (x_1^*, \dots, x_n^*)^T \in \mathbb{R}^n$$
, so dass $f(x^*) = 0$.

- Notation: Wir bezeichnen die Lösung am Iterationsschritt k mit $x^k = (x_1^k, \dots, x_n^k)^T \in \mathbb{R}^n$.
- lacktriangle Zur Erinnerung: Taylor-Entwicklung (für $i=1,2,\ldots n$)

$$f_i(x) = f_i(x^k) + \sum_{i=1}^n rac{\partial f_i(x^k)}{\partial x_j} \cdot (x_j - x_j^k) + \mathcal{O}\left(\|x - x^k\|_2^2
ight)$$

Taylor-Entwicklung kompakt

$$f(x) = f(x^k) + f'(x^k)(x - x^k) + \mathcal{O}(\|x - x^k\|_2^2),$$

wobei die Jacobi-Matrix gegeben ist durch

$$f'(x) = egin{pmatrix} rac{\partial f_1(x)}{\partial x_1} & \cdots & rac{\partial f_1(x)}{\partial x_n} \ dots & & dots \ rac{\partial f_n(x)}{\partial x_1} & \cdots & rac{\partial f_n(x)}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{n imes n}$$

Taylor-Entwicklung kompakt

$$f(x) = f(x^k) + f'(x^k)(x - x^k) + \mathcal{O}(\|x - x^k\|_2^2),$$

wobei die Jacobi-Matrix gegeben ist durch

$$f'(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \cdots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n(x)}{\partial x_1} & \cdots & \frac{\partial f_n(x)}{\partial x_n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

lacktriangle Für die Nullstelle x^{k+1} der linearen Näherung von f in x^k folgt

$$0 = f(x^k) + f'(x^k)(x^{k+1} - x^k),$$

und hieraus erhält man

$$x^{k+1} = x^k - (f'(x^k))^{-1} f(x^k).$$

Algorithmus 5.51 (Newton-Iteration)

Gegeben: Startwert x^0 .

Für $k=0,1,2,\ldots$

- 1. Berechne $f(x^k)$ und $f'(x^k)$
- 2. Löse das lineare Gleichungssystem in $\boldsymbol{s^k}$

$$f'(x^k)s^k = -f(x^k).$$

3. Setze (Newton-Korrektur)

$$x^{k+1} = x^k + s^k$$

Algorithmus 5.51 (Newton-Iteration)

Gegeben: Startwert x^0 .

Für $k=0,1,2,\ldots$

- 1. Berechne $f(x^k)$ und $f'(x^k)$
- 2. Löse das lineare Gleichungssystem in s^k

$$f'(x^k)s^k = -f(x^k).$$

3. Setze (Newton-Korrektur)

$$x^{k+1} = x^k + s^k$$

Beachte

- lacktriangle Schritt 2 erfordert die Lösung eines n imes n linearen Gleichungssystems.
- ▶ Die Inverse von $f'(x^k)$ wird nicht explizit berechnet.

Gegeben sei das nichtlineare Gleichungssystem

$$egin{array}{lll} f_1(x_1,x_2) &=& 6x_1-\cos x_1-2x_2=0 \ f_2(x_1,x_2) &=& 8x_2-x_1x_2^2-\sin x_1=0 \end{array}$$

Führen Sie einen Schritt des Newton-Verfahrens ausgehend vom Startwert $x^0 = (0,0)^T$ durch.

[Beispiel-5.53-01]/1 Dahmen-Reusken Kapitel 5 66/1

Gegeben sei das nichtlineare Gleichungssystem

$$egin{array}{lll} f_1(x_1,x_2) &=& 6x_1-\cos x_1-2x_2=0 \ f_2(x_1,x_2) &=& 8x_2-x_1x_2^2-\sin x_1=0 \end{array}$$

Führen Sie einen Schritt des Newton-Verfahrens ausgehend vom Startwert $x^0 = (0,0)^T$ durch.

Berechnung der Jacobi-Matrix

$$f'(x) = \begin{pmatrix} 6 + \sin x_1 & -2 \\ -x_2^2 - \cos x_1 & 8 - 2x_1x_2 \end{pmatrix}.$$

[Beispiel-5.53-01]/2 Dahmen-Reusken Kapitel 5 66/2

Gegeben sei das nichtlineare Gleichungssystem

$$egin{array}{lll} f_1(x_1,x_2) &=& 6x_1-\cos x_1-2x_2=0 \ f_2(x_1,x_2) &=& 8x_2-x_1x_2^2-\sin x_1=0 \end{array}$$

Führen Sie einen Schritt des Newton-Verfahrens ausgehend vom Startwert $x^0 = (0,0)^T$ durch.

Berechnung der Jacobi-Matrix

$$f'(x) = \begin{pmatrix} 6 + \sin x_1 & -2 \\ -x_2^2 - \cos x_1 & 8 - 2x_1x_2 \end{pmatrix}.$$

lacktriangle Berechnung von $f(x^0)$ und $f'(x^0)$

$$f(x^0) = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \quad \text{und} \quad f'(x^0) = \begin{pmatrix} 6 & -2 \\ -1 & 8 \end{pmatrix}.$$

[Beispiel-5.53-01]/3 Dahmen-Reusken Kapitel 5 66/3

Newton-Iteration für das nichtlineare Gleichungssystem

$$f_1(x_1, x_2) = 6x_1 - \cos x_1 - 2x_2 = 0$$

 $f_2(x_1, x_2) = 8x_2 - x_1x_2^2 - \sin x_1 = 0$

lacktriangle Berechnung der Newton-Korrektor s^0 aus

$$\begin{pmatrix} 6 & -2 \\ -1 & 8 \end{pmatrix} \begin{pmatrix} s_1^0 \\ s_2^0 \end{pmatrix} = - \begin{pmatrix} -1 \\ 0 \end{pmatrix} \ \Rightarrow \ s^0 = \frac{1}{46} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$

[Beispiel-5.53-02]/1 Dahmen-Reusken Kapitel 5 67/1

Newton-Iteration für das nichtlineare Gleichungssystem

$$f_1(x_1, x_2) = 6x_1 - \cos x_1 - 2x_2 = 0$$

 $f_2(x_1, x_2) = 8x_2 - x_1x_2^2 - \sin x_1 = 0$

lacktriangle Berechnung der Newton-Korrektor s^0 aus

$$\begin{pmatrix} 6 & -2 \\ -1 & 8 \end{pmatrix} \begin{pmatrix} s_1^0 \\ s_2^0 \end{pmatrix} = - \begin{pmatrix} -1 \\ 0 \end{pmatrix} \implies s^0 = \frac{1}{46} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$

lacktriangle Berechnung von x^1 ergibt schließlich

$$x^1 = x^0 + s^0 = \frac{1}{46} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$$

[Beispiel-5.53-02]/2 Dahmen-Reusken Kapitel 5 67/2

Newton-Iteration für das nichtlineare Gleichungssystem

$$f_1(x_1, x_2) = 6x_1 - \cos x_1 - 2x_2 = 0$$

 $f_2(x_1, x_2) = 8x_2 - x_1x_2^2 - \sin x_1 = 0$

Weitere Iterationen:

k	x^k	$f(x^k)$
0	(0,0)	(-1,0)
1	(0.173913043478261, 0.021739130434783)	(0.150, 0.008)e-01
2	(0.171334222062832, 0.021321946986676)	(0.328, 0.050)e-05
3	(0.171333648176505, 0.021321814151379)	(0.162, 0.022)e-12
4	(0.171333648176476, 0.021321814151372)	(-0.138, 0.000)e-16

[Beispiel-5.53-03] Dahmen-Reusken Kapitel 5 68

Annahmen:

- ▶ Gebiet $\Omega \subset \mathbb{R}^n$ offen und konvex
- lackbox Funktion $f:\Omega o\mathbb{R}^n$ stetig differenzierbar

[Satz-5.54-01]/1 Dahmen-Reusken Kapitel 5 69/1

Annahmen:

- Gebiet $\Omega \subset \mathbb{R}^n$ offen und konvex
- lacktriangle Funktion $f:\Omega o\mathbb{R}^n$ stetig differenzierbar
- ightharpoonup Jacobi-Matrix $f'(x) \in \mathbb{R}^{n \times n}$
 - invertierbar

$$\det(f'(x)) \neq 0, \quad \text{für alle } x \in \Omega$$

ightharpoonup die Inverse beschränkt durch eine Konstante eta

$$\|(f'(x))^{-1}\| \leq \beta$$
 für alle $x \in \Omega$.

lacktriangle Lipschitz-stetig auf Ω mit einer Konstanten γ

$$||f'(x)-f'(y)|| \leq \gamma ||x-y||, \quad x,y \in \Omega.$$

[Satz-5.54-01]/2 Dahmen-Reusken Kapitel 5 69/2

Annahmen:

- Gebiet $\Omega \subset \mathbb{R}^n$ offen und konvex
- lacktriangle Funktion $f:\Omega o\mathbb{R}^n$ stetig differenzierbar
- ightharpoonup Jacobi-Matrix $f'(x) \in \mathbb{R}^{n \times n}$
 - invertierbar

$$\det(f'(x)) \neq 0, \quad \text{für alle } x \in \Omega$$

ightharpoonup die Inverse beschränkt durch eine Konstante eta

$$\|(f'(x))^{-1}\| \leq \beta$$
 für alle $x \in \Omega$.

lacktriangle Lipschitz-stetig auf Ω mit einer Konstanten γ

$$||f'(x) - f'(y)|| \le \gamma ||x - y||, \quad x, y \in \Omega.$$

Es existiere eine Lösung x^* von f(x) = 0 in Ω .

[Satz-5.54-01]/3 Dahmen-Reusken Kapitel 5 69/3

Der Startwert x^0 erfülle

$$x^0 \in K_{\omega}(x^*) := \{x \in \mathbb{R}^n \mid ||x^* - x|| < \omega\}$$

mit ω hinreichend klein, so dass $K_{\omega}(x^*)\subset \Omega$ und

$$\omega \leq rac{2}{eta \, \gamma}.$$

[Satz-5.54-02]/1 Dahmen-Reusken Kapitel 5 70/1

Der Startwert x^0 erfülle

$$x^0 \in K_{\omega}(x^*) := \{x \in \mathbb{R}^n \mid \|x^* - x\| < \omega\}$$

mit ω hinreichend klein, so dass $K_{\omega}(x^*)\subset \Omega$ und

$$\omega \leq rac{2}{eta \gamma}.$$

Dann gilt für die durch das Newton-Verfahren definierte Folge

$$\left\{x^k\right\}_{k=0}^{\infty}\subset K_{\omega}(x^*)$$

und sie konvergiert quadratisch gegen x^* :

$$||x^{k+1} - x^*|| \le \frac{\beta \gamma}{2} ||x^k - x^*||^2, \quad k = 0, 1, 2, \dots$$

[Satz-5.54-02]/2 Dahmen-Reusken Kapitel 5 70/2

Beispiel 5.2 (Erinnerung)

Statt der linearen Integralgleichung im Beispiel 3.7 ist nun eine nichtlineare Integralgleichung zu lösen:

Gesucht ist eine Funktion $u(x) \geq 0$, die die Integralgleichung

$$u(x) + \int_0^1 \cos(xt) u(t)^3 dt = 2, \quad x \in [0, 1]$$

erfüllt.

[Beispiel-5.2E-01] Dahmen-Reusken Kapitel 5 71

Aus Beispiel 5.2. ergibt sich für n=60 das Gleichungssystem

$$f_i(x_1, x_2, \dots, x_{60}) = 0, \qquad i = 1, 2, \dots, 60,$$

wobei

$$f_i(x_1,x_2,\ldots,x_{60}) = x_i + rac{1}{60} \sum_{j=1}^{60} \cos \left(rac{(i-rac{1}{2})\,(j-rac{1}{2})}{3600}
ight) x_j^3 - 2.$$

[Beispiel-5.56-01]/1

Aus Beispiel 5.2. ergibt sich für n=60 das Gleichungssystem

$$f_i(x_1, x_2, \dots, x_{60}) = 0, \qquad i = 1, 2, \dots, 60,$$

wobei

$$f_i(x_1,x_2,\ldots,x_{60}) = x_i + rac{1}{60} \sum_{j=1}^{60} \cos \left(rac{(i-rac{1}{2})\,(j-rac{1}{2})}{3600}
ight) x_j^3 - 2.$$

Für die Jacobi-Matrix erhält man

$$\left(f'(x)\right)_{i,j} = \frac{\partial f_i(x)}{\partial x_j} = \left\{ \begin{array}{ll} 1 + \frac{1}{20}\cos\left(\frac{\left(i-\frac{1}{2}\right)^2}{3600}\right)x_i^2 & \text{für } i = j \\ \\ \frac{1}{20}\cos\left(\frac{\left(i-\frac{1}{2}\right)\left(j-\frac{1}{2}\right)}{3600}\right)x_j^2 & \text{für } i \neq j. \end{array} \right.$$

[Beispiel-5.56-01]/2 Dahmen-Reusken Kapitel 5 72/2

In jedem Iterationsschritt des Newton-Verfahrens werden

lacktriangle die Jacobi-Matrix $f'(x^k)$ und der Funktionswert $f(x^k)$ berechnet,

[Beispiel-5.56-02]/1 Dahmen-Reusken Kapitel 5 73/1

In jedem Iterationsschritt des Newton-Verfahrens werden

- lacktriangle die Jacobi-Matrix $f'(x^k)$ und der Funktionswert $f(x^k)$ berechnet,
- lacktriangle das lineare Gleichungssystem $f'(x^k)s^k=-f(x^k)$ gelöst,

[Beispiel-5.56-02]/2 Dahmen-Reusken Kapitel 5 73/2

73/3

Beispiel 5.56

In jedem Iterationsschritt des Newton-Verfahrens werden

- lacktriangle die Jacobi-Matrix $f'(x^k)$ und der Funktionswert $f(x^k)$ berechnet,
- lacktriangle das lineare Gleichungssystem $f'(x^k)s^k=-f(x^k)$ gelöst,
- $x^{k+1} = x^k + s^k$ berechnet.

73/4

Beispiel 5.56

In jedem Iterationsschritt des Newton-Verfahrens werden

- lacktriangle die Jacobi-Matrix $f'(x^k)$ und der Funktionswert $f(x^k)$ berechnet,
- lacktriangle das lineare Gleichungssystem $f'(x^k)s^k=-f(x^k)$ gelöst,
- $x^{k+1} = x^k + s^k$ berechnet.

Ergebnisse für den Startwert $x^0 = (1, 1, \dots, 1)^T$:

k	$\ f(x^k)\ _2$	$ x^{k+1} - x^k _2$
0	5.57e-01	4.59e-01
1	7.53e-02	2.01e-02
2	1.50e-04	3.83e-05
3	5.46e-10	1.40e-10
4	2.49e-15	2.49e-15

Die dritte Spalte zeigt die Fehlerschätzung

[Beispiel-5.56-02]/4 Dahmen-Reusken Kapitel 5

74/1

Beispiel 5.56

Es gilt

$$x_i^4pprox u(t_i)=u\left(rac{i-rac{1}{2}}{60}
ight), \qquad i=1,2,\ldots,60.$$

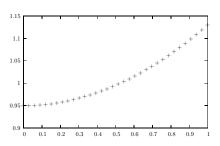
Dahmen-Reusken Kapitel 5

Beispiel 5.56

Es gilt

$$x_i^4pprox u(t_i)=u\left(rac{i-rac{1}{2}}{60}
ight), \qquad i=1,2,\ldots,60.$$

Diese Näherung der Funktion u(x), $x \in [0,1]$, ist in folgender Abbildung dargestellt:



[Beispiel-5.56-03]/2 Dahmen-Reusken Kapitel 5 74/2

1. Auswertung der Jacobi-Matrix

Problem: Einträge der Jacobi-Matrix, $\partial f_i(x^k)/\partial x_j$, nicht oder nur schwer in geschlossener Form berechenbar.

1. Auswertung der Jacobi-Matrix

Problem: Einträge der Jacobi-Matrix, $\partial f_i(x^k)/\partial x_j$, nicht oder nur schwer in geschlossener Form berechenbar.

Ansatz:

Annäherung durch numerische Differentiation

$$rac{\partial f_i(x)}{\partial x_j}pprox rac{f_i(x+h\,e^j)-f_i(x)}{h},$$

wobei e^j der j-te Einheitsvektor ist.

1. Auswertung der Jacobi-Matrix

Problem: Einträge der Jacobi-Matrix, $\partial f_i(x^k)/\partial x_j$, nicht oder nur schwer in geschlossener Form berechenbar.

Ansatz:

Annäherung durch numerische Differentiation

$$rac{\partial f_i(x)}{\partial x_j} pprox rac{f_i(x+h\,e^j)-f_i(x)}{h},$$

wobei e^j der j-te Einheitsvektor ist.

- ▶ Wahl von h
 - zu groß: verringert Genauigkeit der Approximation und damit auch schlechtere Konvergenz
 - zu klein: birgt Gefahr der Auslöschung

2. Das vereinfachte Newton-Verfahren

Problem: Jeder Schritt erfordert Aufstellen und Lösung von

$$f'(x^k)s^k = -f(x^k).$$

2. Das vereinfachte Newton-Verfahren

Problem: Jeder Schritt erfordert Aufstellen und Lösung von

$$f'(x^k)s^k = -f(x^k).$$

Ansatz:

Aufstellen der Jacobi-Matrix im ersten Schritt $f'(x^0)$.

2. Das vereinfachte Newton-Verfahren

Problem: Jeder Schritt erfordert Aufstellen und Lösung von

$$f'(x^k)s^k = -f(x^k).$$

Ansatz:

- Aufstellen der Jacobi-Matrix im ersten Schritt $f'(x^0)$.
- Statt $f'(x^k)$ verwende $f'(x^0)$ zur Bestimmung der Newton-Korrektur, d.h.

$$f'(x^0)s^k = -f(x^k) \to x^{k+1} = x^k + s^k, \ k = 0, 1, 2, \dots$$

2. Das vereinfachte Newton-Verfahren

Problem: Jeder Schritt erfordert Aufstellen und Lösung von

$$f'(x^k)s^k = -f(x^k).$$

Ansatz:

- Aufstellen der Jacobi-Matrix im ersten Schritt $f'(x^0)$.
- Statt $f'(x^k)$ verwende $f'(x^0)$ zur Bestimmung der Newton-Korrektur, d.h.

$$f'(x^0)s^k = -f(x^k) \to x^{k+1} = x^k + s^k, \ k = 0, 1, 2, \dots$$

► *LR*-Berechnung effizient ("mehrere rechte Seiten")

2. Das vereinfachte Newton-Verfahren

Problem: Jeder Schritt erfordert Aufstellen und Lösung von

$$f'(x^k)s^k = -f(x^k).$$

Ansatz:

- Aufstellen der Jacobi-Matrix im ersten Schritt $f'(x^0)$.
- Statt $f'(x^k)$ verwende $f'(x^0)$ zur Bestimmung der Newton-Korrektur, d.h.

$$f'(x^0)s^k = -f(x^k) \to x^{k+1} = x^k + s^k, \ k = 0, 1, 2, \dots$$

LR-Berechnung effizient ("mehrere rechte Seiten")

Beachte

- quadratische Konvergenz geht verloren
- \triangleright evtl. neue Berechnung von f' nach ca. 3-5 Schritten

3. Wahl eines "guten" Startwertes: Homotopieverfahren

Benütze Problemparameter oder künstlich eingeführten Parameter μ zur Definition einer Familie von Problemen

$$F(x,\mu)=0,$$

so dass F für einen μ -Wert einfach lösbar ist.

Beispiel. Nichtlineare Integralgleichung aus Beispiel 5.2:

$$x_i + h \sum_{i=1}^n \cos(t_i t_j) x_j^{\mu} - 2 = 0, \quad i = 1, 2, \dots, n,$$

3. Wahl eines "guten" Startwertes: Homotopieverfahren

Benütze Problemparameter oder künstlich eingeführten Parameter μ zur Definition einer Familie von Problemen

$$F(x,\mu)=0,$$

so dass F für einen μ -Wert einfach lösbar ist.

Beispiel. Nichtlineare Integralgleichung aus Beispiel 5.2:

$$x_i + h \sum_{j=1}^n \cos(t_i t_j) x_j^{\mu} - 2 = 0, \quad i = 1, 2, \dots, n,$$

- 1. Setze $\mu=1$. Löse das lineare Problem F(x,1)=0.
- 2. Setze $\mu_{\rm neu}=1+\Delta\mu$ (klein) und nehme alte Lösung als Startwert der Newton-Iteration für das Problem $F(x,\mu_{\rm neu})=0$.
- 3. Wiederhole bis $\mu_{\rm neu} = 3$.

4. Gedämpftes Newton-Verfahren

Problem: Divergenz bei schlechtem Startwert

4. Gedämpftes Newton-Verfahren

Problem: Divergenz bei schlechtem Startwert

Ansatz: Man setzt

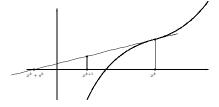
$$x^{k+1} = x^k + \lambda s^k$$

für ein passendes $\lambda = \lambda_k, \ 0 < \lambda \leq 1$.

Idee: Suche λ , so dass

$$(1) \quad \left\|f(x^{k+1})\right\| < \left\|f(x^k)\right\|,$$

Residuum wird in jedem Schritt verringert.



4. Gedämpftes Newton-Verfahren

Problem: Divergenz bei schlechtem Startwert

Ansatz: Man setzt

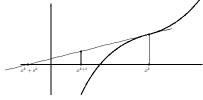
$$x^{k+1} = x^k + \lambda s^k$$

für ein passendes $\lambda=\lambda_k,\ 0<\lambda\leq 1.$

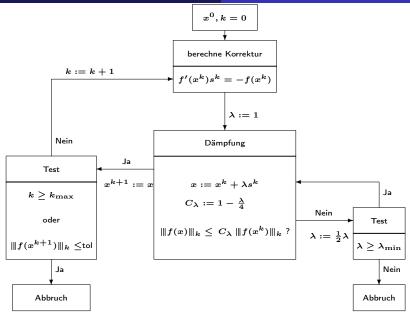
Idee: Suche λ , so dass

$$(1) \quad \left\|f(x^{k+1})\right\| < \left\|f(x^k)\right\|,$$

Residuum wird in jedem Schritt verringert.

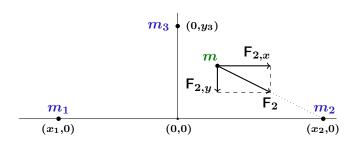


In der Praxis: eine geeignete Norm $\|\cdot\|$, so dass (1) affin invariant ist.



5. Wahl des Startwertes: basiert auf Hintergrundinformation

Bestimme den Punkt (x,y), so dass für eine Punktmasse m an der Stelle (x,y) die Gravitationskräfte F_i zwischen m und m_i im Gleichgewicht sind.



[Beispiel-5.59-01] Dahmen-Reusken Kapitel 5

81/1

Beispiel 5.1. & 5.34.

lacktriangle Gravitationskraft zwischen zwei Punktmassen M_1 und M_2 mit gegenseitigem Abstand r:

$$F = G \frac{M_1 M_2}{r^2},$$

wobei
$$G = 6.67 \cdot 10^{-11} Nm^2/kg$$
.

[Beispiel-5.59-02]/1 Dahmen-Reusken Kapitel 5

81/2

Beispiel 5.1. & 5.34.

Gravitationskraft zwischen zwei Punktmassen M_1 und M_2 mit gegenseitigem Abstand r:

$$F=Grac{M_1M_2}{r^2},$$

wobei $G = 6.67 \cdot 10^{-11} Nm^2/kg$.

Hilfsgrößen

$$egin{array}{lcl} r_i &:=& \sqrt{(x-x_i)^2+(y-y_i)^2}, \ &F_i &:=& Grac{m_i\,m}{r_i^2}, \ &F_{i,x} &:=& rac{F_i(x_i-x)}{r_i}, \ F_{i,y} := rac{F_i(y_i-y)}{r_i}, \ i=1,2,3. \end{array}$$

[Beispiel-5.59-02]/2 Dahmen-Reusken Kapitel 5

Beispiel 5.1. & 5.34.

▶ Gravitationskraft zwischen zwei Punktmassen M_1 und M_2 mit gegenseitigem Abstand r:

$$F=Grac{M_1M_2}{r^2},$$

wobei $G = 6.67 \cdot 10^{-11} Nm^2/kg$.

Hilfsgrößen

$$egin{array}{lcl} r_i &:=& \sqrt{(x-x_i)^2+(y-y_i)^2}, \ &F_i &:=& Grac{m_i\,m}{r_i^2}, \ &F_{i,x} &:=& rac{F_i(x_i-x)}{r_i}, \ F_{i,y} := rac{F_i(y_i-y)}{r_i}, \ i=1,2,3. \end{array}$$

Gleichgewichtsbedingungen

$$F_{1,x} + F_{2,x} + F_{3,x} = 0$$
, $F_{1,y} + F_{2,y} + F_{3,y} = 0$.

[Beispiel-5.59-02]/3 Dahmen-Reusken Kapitel 5 81/3

Hieraus ergibt sich das nichtlineare Gleichungssystem

$$f_1(x,y) = \sum_{i=1}^3 rac{m_i \cdot (x_i - x)}{\left((x - x_i)^2 + (y - y_i)^2
ight)^{3/2}} = 0$$
 $f_2(x,y) = \sum_{i=1}^3 rac{m_i \cdot (y_i - y)}{\left((x - x_i)^2 + (y - y_i)^2
ight)^{3/2}} = 0$

[Beispiel-5.59-03]/1 Dahmen-Reusken Kapitel 5 82/1

82/2

Beispiel 5.1 & 5.59

► Hieraus ergibt sich das nichtlineare Gleichungssystem

$$f_1(x,y) = \sum_{i=1}^3 rac{m_i \cdot (x_i - x)}{\left((x - x_i)^2 + (y - y_i)^2
ight)^{3/2}} = 0$$
 $f_2(x,y) = \sum_{i=1}^3 rac{m_i \cdot (y_i - y)}{\left((x - x_i)^2 + (y - y_i)^2
ight)^{3/2}} = 0$

Für f_1, f_2 gilt

$$egin{pmatrix} f_1(x,y) \ f_2(x,y) \end{pmatrix} =
abla U(x,y),$$

wobei das Potential U gegeben ist durch

$$U(x,y) := \sum_{i=1}^{3} rac{m_i}{((x_i - x)^2 + (y_i - y)^2)^{1/2}}$$

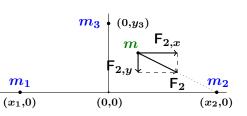
[Beispiel-5.59-03]/2 Dahmen-Reusken Kapitel 5

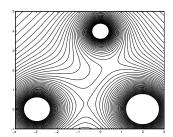
Wahl des Startwerts: (x^*, y^*) ist genau dann Lösung des Systems, wenn (x^*, y^*) ein lokales Minimum, lokales Maximum oder ein Sattelpunkt des Potentials U ist.

[Beispiel-5.59-04]/1 Dahmen-Reusken Kapitel 5 83/1

- Wahl des Startwerts: (x^*, y^*) ist genau dann Lösung des Systems, wenn (x^*, y^*) ein lokales Minimum, lokales Maximum oder ein Sattelpunkt des Potentials U ist.
- Plot: Das Potential U hat zwei Sattelpunkte und keine lokalen Maxima oder Minima.

Das System hat also genau zwei Lösungen.





[Beispiel-5.59-04]/2 Dahmen-Reusken Kapitel 5 83/2

- Anhand der Graphik kann man geeignete Startwerte wählen.
- Ergebnisse des Newton-Verfahrens:

k	x^k	y^k	$\ f(x^k,y^k)\ _2$	$\ (x^k,y^k)-(x^{k+1},y^{k+1})\ _2$
0	-0.80000000000000000	0.20000000000000000	3.25e-01	1.31e-01
1	-0.6976014350743877	0.2816668886302817	1.03e-02	4.45e-03
2	-0.6941385456976449	0.2844680765354431	1.09e-05	4.09e-06
3	-0.6941346760586007	0.2844693967923931	9.67e-12	4.57e-12
4	-0.6941346760552555	0.2844693967892851	2.56e-16	-

\boldsymbol{k}	x^k	y^k	$\ f(x^k,y^k)\ _2$	$\ (x^k,y^k)-(x^{k+1},y^{k+1})\ _2$
0	0.50000000000000000	2.20000000000000002	1.87e-01	6.32e-02
1	0.4803549525148845	2.2600665983599457	4.51e-03	2.27e-03
2	0.4825811382211886	2.2596180403489625	4.01e-06	1.75e-06
3	0.4825819025667199	2.2596196187994093	3.13e-12	1.59e-12
4	0.4825819025657873	2.2596196187981272	3.33e-16	-

[Beispiel-5.59-05] Dahmen-Reusken Kapitel 5

Deflation

Nullstellen eines reellen Polynoms

$$P_n(x) = \sum_{j=0}^n a_j x^j, \quad a_j \in \mathbb{R}, \ a_n
eq 0.$$

Deflation: Abspaltung eines linearen Faktors x-z.

$$P_n(x) = (x-z)P_{n-1}(x) + R, \quad P_{n-1}(x) = \sum_{j=0}^{n-1} b_j x^j, \quad R \in \mathbb{R}$$

[Polynome-01]/1 Dahmen-Reusken Kapitel 5 85/1

Deflation

Nullstellen eines reellen Polynoms

$$P_n(x) = \sum_{j=0}^n a_j x^j, \quad a_j \in \mathbb{R}, \ a_n
eq 0.$$

Deflation: Abspaltung eines linearen Faktors x-z.

$$P_n(x) = (x-z)P_{n-1}(x) + R, \quad P_{n-1}(x) = \sum_{j=0}^{n-1} b_j x^j, \quad R \in \mathbb{R}$$

Polynomdivision eines linearen Faktors

Eingabe: Koeffizienten
$$a_0,\dots,a_n\in\mathbb{R}$$
, $z\in\mathbb{R}$. $b_{n-1}=a_n;$ Für $j=n-2,\dots,0:$ $b_j=a_{j+1}+zb_{j+1};$ $R=a_0+zb_0$

Beachte: z Nullstelle von $P_n \Leftrightarrow R = 0$.

[Polynome-01]/2 Dahmen-Reusken Kapitel 5 85/2

Newton-Verfahren

Das Newton-Verfahren ist auch zur Berechnung komplexer Nullstellen eines Polynoms verwendbar.

Beispiel 5.65. Das Polynom $P_3(x)=x^3-x^2+x-1$ hat die Nullstellen $1,\ i,\ -i$. Das Newton-Verfahren

$$x_{k+1} = x_k - \frac{x_k^3 - x_k^2 + x_k - 1}{3x_k^2 - 2x_k + 1} = \frac{2x_k^3 - x_k^2 + 1}{3x_k^2 - 2x_k + 1}, \quad k = 0, 1, \dots,$$

mit Startwert $x_0 = 0.4 + 0.75\,i$ liefert die Resultate

k	x_k	$ i-x_k $	$ x_{k+1}-x_k $
0	0.400000000000000000000000000000000000	4.72e-01	7.74e-01
1	-0.36104836292270 + 0.61085408548207 i	5.31e-01	4.79e-01
2	0.10267444513356 + 0.72886626636306 i	2.90e-01	4.58e-01
3	-0.01987923527724 + 1.17013991538812 i	1.71e-01	1.46e-01
4	0.00377579358344 + 1.02575250192764 i	2.60e-02	2.54e-02
5	0.00048863011493 + 1.00054628083004 i	7.33e-04	7.33e-04
6	0.00000056371102 + 0.99999979344332 i	6.00e-07	6.00e-07
7	-0.00000000000037 + 0.9999999999984 i	4.00e-13	4.00e-13
8	0.00000000000000000000000000000000000	5.55e-17	-

[Polynome-02] Dahmen-Reusken Kapitel 5

Das Rechnen mit komplexen Zahlen kann vermieden werden.

Skalierung: $a_n = 1$.

Seien $z_1=u_1+i\,v_1$, $\overline{z}_1=u_1-i\,v_1$ Nullstellen von P_n .

Das Produkt

$$(x-z_1)(x-\overline{z}_1) = x^2 - 2u_1x + u_1^2 + v_1^2$$

ist ein quadratischer Teiler von P_n mit reellen Koeffizienten $1,\,-2u_1$ und $u_1^2+v_1^2.$

[Polynome-03]/1 Dahmen-Reusken Kapitel 5 87/1

Das Rechnen mit komplexen Zahlen kann vermieden werden.

Skalierung: $a_n = 1$.

Seien $z_1=u_1+i\,v_1$, $\overline{z}_1=u_1-i\,v_1$ Nullstellen von P_n .

Das Produkt

$$(x-z_1)(x-\overline{z}_1) = x^2 - 2u_1x + u_1^2 + v_1^2$$

ist ein quadratischer Teiler von P_n mit reellen Koeffizienten $1,\,-2u_1$ und $u_1^2+v_1^2.$

Grundidee: statt der komplexen Nullstellen z_1, \overline{z}_1 wird der quadratische Faktor bestimmt.

[Polynome-03]/2 Dahmen-Reusken Kapitel 5 87/2

Für gegebene $r,s\in\mathbb{R}$ und

$$P_n(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \ (n \ge 2), \quad q_{r,s}(x) = x^2 - rx - s,$$

bestimme $P_{n-2}(x)=x^{n-2}+b_{n-3}x^{n-3}+\ldots+b_0$ und $A,B\in\mathbb{R}$ so dass

$$P_n(x) = q_{r,s}(x)P_{n-2}(x) + Ax + B$$
 für alle $x \in \mathbb{R}$.

Durch Koeffizientenbvergleich ergibt sich

Polynomdivision eines quadratischen Faktors

Eingabe: Koeffizienten a_0,\ldots,a_{n-1} $(a_n=1)$, $r,s\in\mathbb{R}$

$$b_{n-3} = a_{n-1} + r;$$

$$b_{n-4} = a_{n-2} + rb_{n-3} + s;$$

Für
$$j = n - 5, \dots, 0$$
: $b_j = a_{j+2} + rb_{j+1} + sb_{j+2}$;

$$A = a_1 + rb_0 + sb_1;$$

$$B = a_0 + sb_0;$$

[Polynome-04] Dahmen-Reusken Kapitel 5

Beachte: P_{n-2} , A und B hängen von r und s ab, und

$$q_{r,s}$$
 teilt genau dann P_n , wenn $A=B=0$.

Die Aufgabe, solche r und s zu finden, kann man als 2×2 -Nullstellenproblem

$$\begin{cases} A(r,s) = 0 \\ B(r,s) = 0 \end{cases}$$

formulieren. Hierauf lässt sich das Newton-Verfahren anwenden.

Insgesamt ergibt sich das Bairstow-Verfahren.

[Polynome-05] Dahmen-Reusken Kapitel 5